A Step-lIndexing Approach to Partial Functions

David Greve Konrad Slind

Advanced Technology Center, Rockwell Collins Advanced Technology Center, Rockwell Collins

We describe an ACL2 package for defining partial recursivections that also supports efficient
execution. While packages for defining partial recursivactions already exist for other theorem
provers, they often require inductive definitions or remnsoperators which are not available in
ACL2 and they provide little, if any, support for executifgetresulting definitions. We use step-
indexing as the underlying implementation technologybéing the definitions to be carried out in
first order logic. We also show how recent enhancements to2&C4uard feature can be used to
enable the efficient execution of partial recursive funtdio

1 Introduction

The provision of support for defining and reasoning abouingee functions has been an ongoing theme
in interactive proof assistants since at least the time efottiginal LCF and Boyer-Moore systems. In
most of the current interactive proof systems, one can éxpdue able to introduce a function defined
by recursion(s) of practically any form, and to thereupomsiggplied with appropriate tools for reasoning
about the functionge.g, the specified recursion equations and an induction theorestomized to the
recursion pattern.

Of patrticular interest in recent work is the ability to defipartial functions. Supporting partiality
is of course important in modeling systems of any kind. BhHtyi also proves to be a valuable tool
when dealing with the well-known difficulties posed by nestecursion, since partiality support often
allows straightforward proofs of termination| [6]. Finalsupport for partiality means that the two tasks
of (a) defining a function’s behavior and (b) showing that filmection terminates, can be completely
separated by first defining the function as a partial functod, when convenient, showing that the
function terminates.

In a logic of total functions, such as ACL2 or HOL, partialtgn be modeled by defining a separate
domain predicatewhich is used to constrain the introduced function. Givgueents which happen to
be in its domain, the partial function can be unfolded tod/ible corresponding element of its range. A
correspondingly constrained induction theorem can alsarbeéuced.

In some work in Isabelle/HOL.[6] the graph of the partial ftion and its domain predicate are in-
troduced by inductive definitions. However, there are otinys of approaching the definition task. For
example, the first author has shown how techniques from dersgor functional languages (continua-
tions and defunctionalization) can be adapted to defingégparhctions in a first-order settingl[4]. In this
paper we explore a new approach that isep-indexing This new approach is very simple and supports
efficient evaluation of partial functions, an importantuggment not previously addressed by others.

Step-indexing Step-indexing is a technique which adds a counter to obegig) modeled in a logical

construction or an execution. It is typically used to helpaasoning about difficult recursive constructs,
since the counter helps introduce a notion of step of coctdtru (or computation), and therefore can
sometimes allow simple inductions. By this expedient, care @ften avoid heavyweight domain theory

© D. Greve & K. Slind
This work is licensed under the Creative Comnions
Attribution-No Derivative Works License.

R. Gamboa and J. Davis (Eds.): ACL2 Workshop 2013 (ACL2 '13).
EPTCS 114, 2013, pp. 42953, d0i:10.4204/EPTCS.114.4

http://dx.doi.org/10.4204/EPTCS.114.4
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/

D. Greve & K. Slind 43

(dealing with limits of approximations) and instead penfianuch simpler proofs on individual approxi-
mations (roughly speaking). The nomenclature was intreduis [1] but similar ideas appear elsewhere,
e.g, in the notion ofinterpreter admissibilityused in the semantics of the ACL2 theory mechanism [5]
and earlier[[3].

2 lllustrative Example

In the following, we will describe the process of definitiop & worked example. Our description may
seem somewhatd hocbut, in fact, the derivations are completely schematic aadave just using the
example to give concrete instances of general proofs.

Ackermann’s function will be the running example: it is reagbly familiar, and has nested recur-
sion, which reveals issues that don't arise with non-nesgedrsions. Ackermann’s function is defined
as:

(equal (ack x y)
(if (= x 0) (1+ y)
(if (= y 0) (ack (1- x) 1)
(ack (1- x) (ack x (1- y))))))

This recursion terminates for natural number arguments &san example ofterated primitive
recursion i.e., one where the arguments to each recursive call get smaltkar ahe lexicographic com-
bination of the predecessor relation Bin In ACL2, however, we must consider the behavior of the
function for all possible input values, including the negmintegers. Consequently the above recursion
equations describe a partial function apcifieghe following theorems:

e Equational characterization of the domain.

(equal (ack-domain x y)
(Gif (=x0) t
(if (= y 0) (ack-domain (1- x) 1)
(and (ack-domain x (1- y))
(ack-domain (1- x) (ack x (1- y)))))))

e Constrained recursion equations:

(implies
(ack-domain x y)
(equal (ack x y)
(if (= x 0) (1+ y)
(if (= y 0) (ack (1- x) 1)
(ack (1- x) (ack x (1- YN

e Constrained induction theorem:

(and (implies (and (ack-domain x y)
(not (= x 0))
(not (=y 0))
Gpx (+-1y))
C:p x y))
(implies (and (ack-domain x y)
(not (= x 0))
(not (=y 0))

44 A Step-Indexing Approach to Partial Functions

Gpx (+-1y))
G:p (+ -1 x) (ack x (+ -1 y))))
(:p x y))
(implies (and (ack-domain x y)
(not (= x 0))

=y 0
Gp (+ -1 x) 1))
C:p x y))
(implies (and (ack-domain x y)
(= x0))
Cp xy)))

3 Baseformalization

We will next show howack and ack-domain are defined and discuss the derivation of the specified
theorems. We have considered two approaches:

Approach K transforms the input equations using the partiality mo@t¢fore defining a step-indexed
version of the function. In ACL2, the partial operation iartsformed to manipulate a pair con-
sisting of an error flag and a value. The intended functionisndiomain are simple definitions in
terms of the step-indexed version.

Approach G does not transform the input. Instead, it directly definesstiep-indexed function and also
the step-indexed domain.

This paper will focus on approach G as itis fully implemernite&CL2. The method directly defines
iack, the step-indexed version ek, with very little transformation.

(defun iack (4 x y)
(Af (zp) (+y 1)
Gf (=x0) (1+y)
(if (= y 0) (dack (1- d) (1- x) 1)
(iack (1-) (1- x) (dack x (1-) (1- y))))))

The only difference from the original equations taik, besides the addition of the indexwhich
decrements at each recursive call, is a new base case whilshvdieh the case when the index drops to
zero. In that case, a default result is returned which themsg provide. If the user does not provide a
default value, the mechanization picks a value from amoegtiginal base caseg-{ 1 in this example).

Indexed domain The logical domain predicatieack-dom, to be introduced later, is defined in terms
of a step-indexed versioiack-dom, which is, again, defined primitive recursively over an idleat
decrements at each recursive call.

(defun iack-dom (d x y)
(if (zp 4) (= x 0)
(if (=x0) t
(if (= y 0) (iack-dom (1- d) (1- x) 1)
(and (iack-dom (1- d) x (1- y))
(iack-dom (1- d) (1- x) (iack (1- d) x (1- y))))))))

D. Greve & K. Slind 45

Note, however, that the definition @fck-dom is not a completely direct adaptation of the original
equations, since inner calls in nested recursions aral lfig separately as argumentsisak-dom.
Again, we have to supply a value when the index drops to zedisjinction of all of the tests that drive
control flow into a base case is used= 0 in our example).

Measure function A crucial part of the development ismaeasurefunction, ack-measure, having the
property that it yields the least depth of recursion needeabtain a result for the given inputs, when
such a depth exists. We proceed in two steps. First, we usethioose facility to introduce a function
ack-depth, which yields a depth of recursion sufficient to obtain a lteésuch a depth exists.

(defchoose ack-depth (d)
(iack-dom d x y))

While this step of the formalization is not constructive arad computable we will derive computable
conseguences.

In order to formulate the desired induction theoremdck, we will need to have thieastdepth of
recursion. The least depth can be computed once it is knoaitrttiere is a depth at which recursion
terminates; thus we construct a recursive funciimrk-min-index which returns the smallest depth at
whichiack-dom holds.

(defun iack-min-index (d x y)

(if (zp d) ©O
(if (not (iack-dom d x y)) O
(if (not (iack-dom (1- d) x y)) d
(iack-min-index (1- d) x y)))))

With that in hand, we define

(defun ack-measure (x y)
(iack-min-index (ack-depth x y) x y))
and prove thasick-measure returns the least index, when there is an index at whickterminates.
We then define the logical definition factk—Lack—and a logical definition for its domaintack-dom.

(defun Lack (x y) (iack (ack-measure x y) x y))

(defun Lack-dom (x y) (iack-dom (ack-measure x y) x y))

Basic properties Later proofs require a small collection of properties akibet definedness o#ck,
namely that it is deterministic and stable, aa#l-measure is canonical.

(defthm iack-deterministic
(implies (and (iack-dom dl x y) (iack-dom d2 x y))
(equal (iack d1l x y)
(iack d2 x y))))

(defthm iack-stable
(implies (and (iack-dom dl x y) (< (nfix d1) (nfix d2)))
(iack-dom d2 x y)))

(defthm iack-measure-canonical
(implies (iack-dom d x y)
(equal (iack d x y)
(iack (ack-measure x y) x y))))

46 A Step-Indexing Approach to Partial Functions

These are straightforward to prove.

In ACL2, the least-depth property possessedditmeasure is not as useful to the proof automation
as a recursive characterization, especially in the probfseorecursive presentations bick-dom and
Lack. Here is the recursion equation fatk-measure:

(equal (ack-measure x y)
(if (not (Lack-dom x y)) O
(if (=x0)0
(if (= y 0) (1+ (ack-measure (1- x) 1))
(1+ (max (ack-measure x (1- y))
(ack-measure (1- x) (Lack x (1- y)))))))))

Thus, the depth of a recursive call is one less than that obtiggnating call. For multiple recursions,
the maximum of the depths of the recursions is one less tleagiepth of the originating call. As a result,
the measure decreases along each recursive call. Usinggtiédion forack-measure, ACL2 is able to
prove the following theorems aboluick-dom andLack:

(equal (Lack-dom x y)
(if (=x0) t
(if (= y 0) (Lack-dom (1- x) 1)
(and (Lack-dom x (1- y))
(Lack-dom (1- x) (Lack x (1- y)))))))

(equal (Lack x y)
(if (not (Lack-dom x y)) (1+ y)
(if (= x 0) (1+ y)
(if (= y 0) (Lack (1- x) 1)
(Lack (1- x) (Lack x (1- y))))))

With the characterizations of the domain and the measureareeow in a position to introduce
a logical induction scheme fdrack. The induction scheme is a variation of the bodylLetk-dom,
extended with a guard on the domaliack-dom, and justified byack-measure.

(defun Lack-induction (x y)
(declare (xargs :measure (ack-measure x y)))
(if (not (Lack-domain x y)) nil
Gf =x0) ¢t
(if (= y 0) (Lack-induction (1- x) 1)
(and (Lack-induction x (1- y))
(Lack-induction (1- x) (Lack x (1- y))))))))

4 Executableversions

We now have a useful logical theory fback: a defining theorem, a domain predicate, a measure and an
induction scheme. Constructing efficient executablesiwitfis logical theory, however, is not simple.
The defining theorem fokack includes a call ofLack-dom and the defining theorem fdrack-dom
includes a call oLack. Thus,Lack andLack-dom are mutually recursive. However, naively checking
membership in the domain for every argument in an executiounldvbe unnecessarily expensive. To
address this we define a mutually recursive set of functiensk (for mutually recursiveack) and
ack-domain, and attach executable bodies to them using appropriatelg@dMBE. The logical
definitions of these functions are quite benign; it is in tlkeomtable definitions and the guards that
things get interesting.

D. Greve & K. Slind 47

(mutual-recursion

(defun mack (x y)
(declare (xargs :guard (ack-domain x y)))
(mbe :logic (Lack x y)
texec (if (= x 0) (1+ y)
(if (= y 0) (mack (1- x) 1)
(mack (1- x) (mack x (1- y)))))))

(defun ack-domain (x y)
(mbe :logic (Lack-dom x y)
texec (if (=x 0) t
(if (= y 0) (ack-domain (1- x) 1)
(and (ack-domain x (1- y))
(ack-domain (1- x) (Lack x (1- y))))))))

)

The executable body akk-domain still calls mack, but note that the executable bodymefick does
not call ack-domain. A check on the domain is, however, necessary to completeetngsite proof
that the logical bodyl.ack, is the same as the executable body. This necessary chebl diomain is
included as a call tack-domain in the guard ofacKl. The ability to use other functions from within a
mutually recursive clique as guards was added to ACL2 ineer3.6. The beauty of usingck-domain
as a guard is that it need only be satisfied once (prior tancathiack) rather than once every iteration of
mack, as would have been the case had we used the defining theotertkaibove.

While a single call taack-domain is much better than many calls, any such call can result in sub
stantial execution overhead for a given callagk. For reflexive functions such agk, the cost of
evaluating the domain function may actually be expondmtialore expensive than the cost of evalu-
ating the function itself. To minimize this overhead, wenefour executable model even further by
introducing another indexed versionadk, calledcomp-ack for computationabck. The only difference
betweercomp-ack andiack is in the case when the boudds exhaustediack simply returns the default
value, whilecomp-ack checksack-domain and, if false, returns the default value, but if true, comtis
execution by callingnack. Note that this domain check satisfies the guardsadfk.

(defun comp-ack (d x y)
(if (zp 4) (if (ack-domain x y) (mack x y) (+ y 1))
Gf (=x0) (1+y)
(if (= y 0) (comp-ack (1- d) (1- x) 1)
(comp-ack (1- d) (1- x) (comp-ack x (1- d) (1- y)))))))

In this function, the wasted computation of the domain cheakeferred: the function runs nearly
as fast as possible, with only the addition of the index deerg and check, until the index bound is
exhausted. Only then does it perform a potentially expendamain check. If the arguments are in the
domain, execution completes as quickly as possible withoyfurther domain checks or index counters.
Now we pick some large constant numiB6G—in our current implementation, the largest number fitting
into a machine integer—and finally make the ultimate detnitf ack.

(defun ack (x y)
(comp-ack (BIG) x y))

1in addition to any user provided guards

48 A Step-Indexing Approach to Partial Functions

This function allows us to compute values of the partial fiorcack by invoking comp-ack. The
only slowdown until the bound is reached is the constant@iod¢crementing the index at each recursive
call. BIG is large enough, especially in the era of 64-bit machinegigrtg, that most applications that will
terminate should terminate long before the index is exakede

The following characterization afck is then provable:

(equal (ack x y)
(if (not (ack-domain x y)) (comp-ack (BIG) x y)
Gf (= x0) (1+ y)
(if (= y 0) (ack (1- x) 1)
(ack (1- x) (ack x (1- y)))))))

Note that the behavior afck outside of the function domain is not simply our default eqlbut
has been complicated by our usewinp-ack. There is certainly a trade-off here between execution
efficiency and simplicity in that case. The above chararagion ofack is what we export, along with
updated versions aick-domain andack-measure expressed in terms atk and a final induction scheme,
ack-induction, also defined with respect tak and justified byack-measure. This gives us the desired
combination of logical reasoning power plus fast compategiviacomp-ack.

5 Implementation

A mechanized implementation of these ideas has been codifie€L2 in a macro calleddef::ung.
While our previous discussion illustrated the general behaf this macro, the actual behavior exhibited
by def::ung for a given invocation may be a subset of the behaviors weritbesabove. Nonetheless, the
macro is fully automated and is designed to behave as a sptau fordefun for introducing partial
recursive functions.

Just as withdefun, def::ung constructs guards from Common Lisp declarations andtdhgs :guard
keyword. It also deduces guard conditions from thegs :signature keyword. This feature, inherited
from def::un (from coi/util/defun in the ACL2 books), provides a convemt, Common Lisp declaration-
inspired language for specifying a function’s logical sigme. Guard proofs can be controlled using
:guard-hints and the signature proofs can be controlled usiighature-hints. Such low-level control is,
however, discouraged. A better approach is to admit the itdefirin a theory conducive to automated
proofs of these conjectures. Guard proofs can also be dklagiag:verify-guards nil. Note that guard
verification of the admitted function may require guard fieation of a number of supporting functions
as well.

If no guard information is provided by the user in the form etlrations or theguard or :signature
keywords,def::ung will produce an executable from the logical definition uséageall to suppress any
residual guard conditions. Such default execution belhawigghly mimic that odefun. Note that when
no guard information is provided ttef::ung, an indexed executable is not generated under the rationale
that efficient execution is not a priority in that case.

In addition to thesignature and:signature-hints keywords, thelef::ung macro accepts a number of
other non-standargargs keywords that give the user additional control over its bélra

:default-value expr
The:default-value keyword allows the user to provide an expression to comngeléfault value
to be returned by the function when its arguments are outsidiee function domain. This ex-
pression may be computed from the function arguments. Wdhefault-value is not specified,
def::ung chooses a default value from among the function’s base cases

D. Greve & K. Slind 49

:non-executable [nil]/t
Def::ung will, by default, attempt to produce an executable functefinition. Whennon-executable
is t, def::ung will provide only the logical theory for the function with ablutely no support for
execution. Nonetheless, if:signature is provided, an appropriate type theorem will still be gen-
erated.

:indexed-execution [t]/nil
By default, when guard information is provided, the exeblgaunction defined bydef::ung
is indexed to optimize performance. The indexed functignh@vever, somewhat more diffi-
cult to reason about outside of the function’s domain. I§tisian issue, the user may specify
:indexed-execution nil to suppress the generation and use of an indexed exadutiation.

‘wrapper-macro hame
When :indexed-execution is nil, the guard of the resulting executable requires thatfunction
arguments be in the domain of the function. When a name isigedwia the:wrapper-macro
keyword, def::ung will generate a wrapper macro that tests whether the argisnaea in the do-
main prior to calling the function. If the arguments are nothe domain, the default value is
returned. This wrapper macro can then be invoked in pladesofunction when the domain guard

may not be satisfied.

Following is an illustration of how we might define oatk example usinglef::ung. Because we
provide guard informationdef::ung will generate an indexed executable. The default value weige
here, 0, is used to define the behavior of the function on aegisnoutside of its domain, as in (ack -1

0).

(def::ung ack (x y)
(declare (xargs :signature ((natp natp) natp)
:default-value 0))
(if (=x 0) (1+ y)
(if (=y 0) (ack (1- x) 1)
(ack (1- x) (ack x (1- y))))))

We can verify the defining equation atk:

(defthm check-ack-definition
(equal (ack x y)
(if (not (ack-domain x y)) (ack-compute (defung::big-depth-fn) x y)
(Af (= x 0) (1+y)
(if (= y 0) (ack (1- x) 1)
(ack (1- x) (ack x (1- YN

thints (("Goal" :in-theory (disable (:rewrite defung::generalize-big-depth-fn))))
:rule-classes nil)

We can also executeck on some concrete values:

ACL2 !>(time$ (ack 3 11))
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 1.25 seconds realtime, 1.25 seconds runtime
; (1,120 bytes allocated).
16381

Here we run an equivalent program mode definition for conspari

50 A Step-Indexing Approach to Partial Functions

ACL2 !'>(defun ack0 (x y)
(declare (xargs :mode :program))
(if (= x 0) (1+ y)
(if (= y 0) (ack0 (1- x) 1)
(ack0 (1- x) (ack0 x (1- y)))))

Summary

Form: (DEFUN ACKO ...)

Rules: NIL

Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
ACKO

ACL2 '>(time$ (ackO0 3 11))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 0.61 seconds realtime, 0.61 seconds runtime
; (1,120 bytes allocated).

16381

It is interesting to observe the impact that the domain clivaskon computational performance. Here
we define a version afck without indexed computation. When evaluating this funciio the top level
loop, ACL2 first checks whether the inputs are in the domaitneffunction by executingck2-domain.

(def::ung ack2 (x y)
(declare (xargs :signature ((natp natp) natp)
:indexed-execution nil
:wrapper-macro ack2-exec))
(if (=x 0) (1+ y)
(if (= y 0) (ack2 (1- x) 1)
(ack2 (1- x) (ack2 x (1- y))))))

Now compare the difference in time between evaluatiokp and ack2-domain below. Note that
the ack2-domain computation time dominates thek2 computation time and thaick, which executes
without a domain check, essentially makes up the differeith reflexive functions such asgk?, it
is possible for the domain computation time to grow expaaéntfaster than the function computation
time.

ACL2 !'>(time$ (ack2 3 8))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 15.34 seconds realtime, 15.34 seconds runtime
; (1,120 bytes allocated).

2045

ACL2 !>(time$ (ack2-domain 3 8))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 15.32 seconds realtime, 15.31 seconds runtime
; (1,120 bytes allocated).

T

ACL2 '>(time$ (ack 3 8))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 0.02 seconds realtime, 0.02 seconds runtime

; (1,120 bytes allocated).

2045

The support for partiality provided byef::ung means that the two tasks of (a) defining a function’s
behavior and (b) showing that the function terminates, @aodmpletely separated by first defining the

D. Greve & K. Slind 51

function as a partial function and, when convenient, shgufirat the function terminates. Thef::total
macro, also exported by thaef::ung book, provides support for proving termination of funcsoad-
mitted usingdef::ung. The macro allows the user to specify sargs :measure and, as appropriate, a
:well-founded-relation that justifies termination. In addition, the body of the nearay contain a pred-
icate that articulates the condition under which the fuorcts total. This condition may simply be t. If
multiple termination proofs (presumably under differenhditions) are desired, the user may specify
different names for the different proofs using ttaegs keyword:totality-theorem name

We can prove the totality of our exampkbek, when the function guards are satisfied, that is: when
the inputs are natural numbers.

(def::total ack (x y)
(declare (xargs :measure (llist x y)
:well-founded-relation 1<
:totality-theorem natp-ack-terminates))
(and (natp x) (nmatp y)))

The def::ung macro is being used within Rockwell Collins to develop tofals reasoning about
software systems, especially systems written inGh@rogramming language. While the correctness of
such tools is of interest to us, their termination is not. #iddally, because these tools are being applied
to actualC programs, it is important that they execute quickly. ™eé&:ung macro addresses both of
these issues, allowing us to reason formally about our teibksn the logic and allowing them to execute
quickly on concrete input.

6 Related work

The second author’'s PhDI[9] developed a recursion opebaised approach to defining total recursive
functions. One theme in the work was attempting to sepahnateefinition of a function from reasoning
about its termination, a long-standing problem with nestszursions. Although successful for total
functions, the approach failed to capture any notion ofiglést or explicit domain of a function and
hence nested recursive functions were painful to formalim reason about, and partial functions were
not dealt with at all.

In his dissertation work, Krauss|[6] took a different tackstead of instantiating a pre-proved re-
cursion theorem, a construction is done fresh for each fiomstubmitted. The approach uses inductive
definitions to construct the graph and the domain of the fancfThe specified function itself is obtained
once the graph is (automatically) shown to be functionad, then the constrained induction theorem and
recursion equations are derived. The package also comesuyport for automated termination proofs.

A nice overview—as of 2006—of support in Type Theory implatagions for recursive definitions is
given in [2]. The technical contribution in the paper is lthea inductively defining the graph, similar
to (and contemporaneous with) Krauss’ approach, althougjd not deal with nested recursion.

ACL2 for a long time only supported total functions, but M&os and Moorel[7] discovered that
tail-recursions are consistent to admit into ACL2. Basedhat work, the first author of the present
paper created an ACL2 macro that maps arbitrary recursaefggations into CPS (continuation-passing
style) and then transforms the CPS result down to first omla®”ining a tail-recursive model of the
original function, from which the desired equations andopqarinciples can be derivedl[4]. Similar to
Krauss’ work, a separate domain predicate is defined, tpearatng the definition of a function and its
termination proof. The implementation was, however, caxpind performed somewhat inefficiently.

52 A Step-Indexing Approach to Partial Functions

The general approach taken in TEL [9], namely to instantgbee-proved recursion theorem, com-
presses much of the model-building work into one theorerhdha be instantiated and manipulated to
deliver the desired result. It remains to be seen whethemdasly useful recursion theorem can be
generated for partial functions, whereby the domain of thnetion is explicitly included. This could be
a potential application of encapsulate and functionabimsation in ACL2.

Finally, none of the work we are aware of deals with the isduexecution of partial functions in
theorem provers.

7 Future Work

The ability to admit partial functions and to delay proofderimination is a useful feature. Thef::total
macro already provides support for proving the terminatibpartial functions admitted witHef::ung.
Total functions, however, can be executed in ACL2 more effity than partial functions. The ability
to add an executable body to an encapsulated function syonibolreplace an existing executable body
has been recently added to ACL2 (dafattach). A useful extension oflef::total would be the ability
to attach a more efficient (total) executable body to theimaigpartial function symbol.

Ideally def::ung would be a seamless replacement defun. While the current package attempts
this, certain aspects of function admission in ACL2 are dubwr control. For example, while it is
possible to assign theorems to the rule clasénition, it is not possible to control the names of runic
designators. We cannot, for example, change the runic msigused bylefun and we cannot assign
the runic designatof:definition foo) to a theorem whose name is nfob. Without such ability it is
impossible for a user to mimic fully the behavior of built4imacros such asdefun. The clever use of
add-macro-alias (as indefun-inline), however, might strengthen the desired illusion.

Single threaded objects and multi-value returns are ahaayissue for macros that generate or ma-
nipulate function definitions. They are particularly bodwmme because they do not readily admit generic
solutions, going so far as to infect even such constructheapsulation. Theef::ung macro does not
currently support either construct.

Early experiments suggest that the monadic approach (Apprk), while requiring more extensive
surgery to the body of the function definition, may substdiytimprove execution speed by execut-
ing the domain computation in parallel with the function garation. The primary drawback of this
approach is that, for optimal efficiency, it requires the asenultiple-value returns — a construct not
currently supported in the framework. Nonetheless, thig@gch may ultimately be required in order to
provide general support for single-threaded objects gimeelomain computation in such functions will
likely involve predicates over an evolving single-threcidtate.

Care has been taken to automate, control, and streamlir@dbéprocess behindef::ung. All of
the proofs performed by the macro are schematic, meaninghia follow the same line of reasoning
with every invocation. Unfortunately, it is often difficuth keep ACL2 on the script. For example, ACL2
will always replace symbols with nil if it knows that the syoilis null. Unfortunately, even such simple
transformations can break our schematic proofs. ACL2 adsodifficulty manipulating large single-
threaded function definitions and it is nearly impossibl&gep ACL2 from performing beta reduction.
As a resultdef::ung can be much slower and more brittle than we would like. To esklsuch issues,
we are exploring the possibility of using clause procestmrsolate and insulate the proof process from
the whims of ACL2.

However, the ultimate solution might be to simply incorgera partial function definition capability
directly into the ACL2 core. While the definitions generatgddef::ung have been verified to be sound

D. Greve & K. Slind 53

on a variety of examples, it is unclear to the authors how oigiiwerify the soundness of the approach
once and for all.

8 Conclusions

We have developed a new ACL2 package for partial functiomndiefin, with particular emphasis on
efficient execution of partial functions. A long-term go&bairs has been to move programming notions
as much as possible into logic, so that our chosen logic emvients allow the full comfort of program-
ming with the usual idioms and techniques while also proygdiirect and unfettered use of the theorem
prover to establish properties. An important part of thatlgs efficient execution of formal models
while maintaining a strong connection between the funcéisran entity being reasoned about and the
function as an entity being executed. The package discusgbis paper supports programming as an
activity that can be done inside a theorem prover withoutifiging execution speed or burdening the
programmer with onerous termination proofs.

Acknowledgments

It is a pleasure to acknowledge Matt Kaufmann’s major cbatidns to this research. Many of the ideas
presented here have been learned from discussions withavdtin extended sessions at the terminal
with him.

References

[1] Andrew W. Appel & David McAllester (2001)An indexed model of recursive types for foundational proof-
carrying code ACM Trans. Program. Lang. Sy&3(5), pp. 657—683, d0i:10.1145/504709.504712.

[2] Gilles Barthe, Julien Forest, David Pichardie & Vlad BY2006):Defining and Reasoning About Recursive
Functions: A Practical Tool for the Coq Proof Assistath Masami Hagiya & Philip Wadler, editorg:unc-
tional and Logic Programmind.ecture Notes in Computer Scien8845, Springer Berlin Heidelberg, pp.
114-129, d0i:10.1007/11737494

[3] Robert S. Boyer & J Strother Moore (199 Automated reasoning and its applicatiorhapter Mechanized
formal reasoning about programs and computing machined,4x-176. MIT Press, Cambridge, MA, USA.
Available athttp://dl.acm.org/citation.cfm?id=271101.271126.

[4] David Greve (2009):Assuming terminatian In: Proceedings of the Eighth International Workshop on
the ACL2 Theorem Prover and its Application5CL2 '09, ACM, New York, NY, USA, pp. 114-122,
doii10.1145/1637837.1637€56.

[5] Matt Kaufmann & J. Strother Moore (2001Btructured Theory Development for a Mechanized Logic
Autom. Reasor26(2), pp. 161-203, d6i:10.1023/A:1026517200045.

[6] Alexander Krauss (2010Partial and Nested Recursive Function Definitions in Higbeter Logic J. Autom.
Reason44(4), pp. 303-336, dni:10.1007/s10817-009-9157-2.

[7] Panagiotis Manolios & J. Strother Moore (200Bartial Functions in ACL2 J. Autom. ReasorB81(2), pp.
107-127, doi:10.1023/B:JARS.0000009505.07087.34.

[8] Eugenio Moggi (1991): Notions of computation and monads Inf. Comput. 93(1), pp. 55-92,
doi{10.1016/0890-5401(91)90052-4.

[9] Konrad Slind (1999)Reasoning about Terminating Functional Programi.D. thesis, Institut fur Informatik,
Technische Universitat Munchen.

http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1007/11737414_9
http://dl.acm.org/citation.cfm?id=271101.271126
http://dx.doi.org/10.1145/1637837.1637856
http://dx.doi.org/10.1023/A:1026517200045
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.1023/B:JARS.0000009505.07087.34
http://dx.doi.org/10.1016/0890-5401(91)90052-4

	1 Introduction
	2 Illustrative Example
	3 Base formalization
	4 Executable versions
	5 Implementation
	6 Related work
	7 Future Work
	8 Conclusions

