
R. Gamboa and J. Davis (Eds.): ACL2 Workshop 2013 (ACL2 ’13).
EPTCS 114, 2013, pp. 42–53, doi:10.4204/EPTCS.114.4

c© D. Greve & K. Slind
This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

A Step-Indexing Approach to Partial Functions

David Greve
Advanced Technology Center, Rockwell Collins

Konrad Slind
Advanced Technology Center, Rockwell Collins

We describe an ACL2 package for defining partial recursive functions that also supports efficient
execution. While packages for defining partial recursive functions already exist for other theorem
provers, they often require inductive definitions or recursion operators which are not available in
ACL2 and they provide little, if any, support for executing the resulting definitions. We use step-
indexing as the underlying implementation technology, enabling the definitions to be carried out in
first order logic. We also show how recent enhancements to ACL2’s guard feature can be used to
enable the efficient execution of partial recursive functions.

1 Introduction

The provision of support for defining and reasoning about recursive functions has been an ongoing theme
in interactive proof assistants since at least the time of the original LCF and Boyer-Moore systems. In
most of the current interactive proof systems, one can expect to be able to introduce a function defined
by recursion(s) of practically any form, and to thereupon besupplied with appropriate tools for reasoning
about the function,e.g., the specified recursion equations and an induction theoremcustomized to the
recursion pattern.

Of particular interest in recent work is the ability to definepartial functions. Supporting partiality
is of course important in modeling systems of any kind. Partiality also proves to be a valuable tool
when dealing with the well-known difficulties posed by nested recursion, since partiality support often
allows straightforward proofs of termination [6]. Finally, support for partiality means that the two tasks
of (a) defining a function’s behavior and (b) showing that thefunction terminates, can be completely
separated by first defining the function as a partial functionand, when convenient, showing that the
function terminates.

In a logic of total functions, such as ACL2 or HOL, partialitycan be modeled by defining a separate
domain predicate, which is used to constrain the introduced function. Given arguments which happen to
be in its domain, the partial function can be unfolded to yield the corresponding element of its range. A
correspondingly constrained induction theorem can also beproduced.

In some work in Isabelle/HOL [6] the graph of the partial function and its domain predicate are in-
troduced by inductive definitions. However, there are otherways of approaching the definition task. For
example, the first author has shown how techniques from compilers for functional languages (continua-
tions and defunctionalization) can be adapted to define partial functions in a first-order setting [4]. In this
paper we explore a new approach that usesstep-indexing. This new approach is very simple and supports
efficient evaluation of partial functions, an important requirement not previously addressed by others.

Step-indexing Step-indexing is a technique which adds a counter to objectsbeing modeled in a logical
construction or an execution. It is typically used to help inreasoning about difficult recursive constructs,
since the counter helps introduce a notion of step of construction (or computation), and therefore can
sometimes allow simple inductions. By this expedient, one can often avoid heavyweight domain theory

http://dx.doi.org/10.4204/EPTCS.114.4
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/

D. Greve & K. Slind 43

(dealing with limits of approximations) and instead perform much simpler proofs on individual approxi-
mations (roughly speaking). The nomenclature was introduced in [1] but similar ideas appear elsewhere,
e.g., in the notion ofinterpreter admissibilityused in the semantics of the ACL2 theory mechanism [5]
and earlier [3].

2 Illustrative Example

In the following, we will describe the process of definition by a worked example. Our description may
seem somewhatad hocbut, in fact, the derivations are completely schematic and we are just using the
example to give concrete instances of general proofs.

Ackermann’s function will be the running example: it is reasonably familiar, and has nested recur-
sion, which reveals issues that don’t arise with non-nestedrecursions. Ackermann’s function is defined
as:

(equal (ack x y)

(if (= x 0) (1+ y)

(if (= y 0) (ack (1- x) 1)

(ack (1- x) (ack x (1- y))))))

This recursion terminates for natural number arguments as it is an example ofiterated primitive
recursion, i.e., one where the arguments to each recursive call get smaller under the lexicographic com-
bination of the predecessor relation onN. In ACL2, however, we must consider the behavior of the
function for all possible input values, including the negative integers. Consequently the above recursion
equations describe a partial function andspecifiesthe following theorems:

• Equational characterization of the domain.

(equal (ack-domain x y)

(if (= x 0) t

(if (= y 0) (ack-domain (1- x) 1)

(and (ack-domain x (1- y))

(ack-domain (1- x) (ack x (1- y)))))))

• Constrained recursion equations:

(implies

(ack-domain x y)

(equal (ack x y)

(if (= x 0) (1+ y)

(if (= y 0) (ack (1- x) 1)

(ack (1- x) (ack x (1- y)))))))

• Constrained induction theorem:

(and (implies (and (ack-domain x y)

(not (= x 0))

(not (= y 0))

(:p x (+ -1 y)))

(:p x y))

(implies (and (ack-domain x y)

(not (= x 0))

(not (= y 0))

44 A Step-Indexing Approach to Partial Functions

(:p x (+ -1 y))

(:p (+ -1 x) (ack x (+ -1 y))))

(:p x y))

(implies (and (ack-domain x y)

(not (= x 0))

(= y 0)

(:p (+ -1 x) 1))

(:p x y))

(implies (and (ack-domain x y)

(= x 0))

(:p x y)))

3 Base formalization

We will next show howack and ack-domain are defined and discuss the derivation of the specified
theorems. We have considered two approaches:

Approach K transforms the input equations using the partiality monad [8] before defining a step-indexed
version of the function. In ACL2, the partial operation is transformed to manipulate a pair con-
sisting of an error flag and a value. The intended function andits domain are simple definitions in
terms of the step-indexed version.

Approach G does not transform the input. Instead, it directly defines the step-indexed function and also
the step-indexed domain.

This paper will focus on approach G as it is fully implementedin ACL2. The method directly defines
iack, the step-indexed version ofack, with very little transformation.

(defun iack (d x y)

(if (zp d) (+ y 1)

(if (= x 0) (1+ y)

(if (= y 0) (iack (1- d) (1- x) 1)

(iack (1- d) (1- x) (iack x (1- d) (1- y)))))))

The only difference from the original equations forack, besides the addition of the indexd which
decrements at each recursive call, is a new base case which deals with the case when the index drops to
zero. In that case, a default result is returned which the user may provide. If the user does not provide a
default value, the mechanization picks a value from among the original base cases (y+1 in this example).

Indexed domain The logical domain predicateLack-dom, to be introduced later, is defined in terms
of a step-indexed versioniack-dom, which is, again, defined primitive recursively over an index that
decrements at each recursive call.

(defun iack-dom (d x y)

(if (zp d) (= x 0)

(if (= x 0) t

(if (= y 0) (iack-dom (1- d) (1- x) 1)

(and (iack-dom (1- d) x (1- y))

(iack-dom (1- d) (1- x) (iack (1- d) x (1- y))))))))

D. Greve & K. Slind 45

Note, however, that the definition ofiack-dom is not a completely direct adaptation of the original
equations, since inner calls in nested recursions are lifted out separately as arguments toiack-dom.
Again, we have to supply a value when the index drops to zero. Adisjunction of all of the tests that drive
control flow into a base case is used (x= 0 in our example).

Measure function A crucial part of the development is ameasurefunction,ack-measure, having the
property that it yields the least depth of recursion needed to obtain a result for the given inputs, when
such a depth exists. We proceed in two steps. First, we use thedefchoose facility to introduce a function
ack-depth, which yields a depth of recursion sufficient to obtain a result if such a depth exists.

(defchoose ack-depth (d)

(iack-dom d x y))

While this step of the formalization is not constructive andnot computable we will derive computable
consequences.

In order to formulate the desired induction theorem forack, we will need to have theleastdepth of
recursion. The least depth can be computed once it is known that there is a depth at which recursion
terminates; thus we construct a recursive functioniack-min-index which returns the smallest depth at
which iack-dom holds.

(defun iack-min-index (d x y)

(if (zp d) 0

(if (not (iack-dom d x y)) 0

(if (not (iack-dom (1- d) x y)) d

(iack-min-index (1- d) x y)))))

With that in hand, we define

(defun ack-measure (x y)

(iack-min-index (ack-depth x y) x y))

and prove thatack-measure returns the least index, when there is an index at whichiack terminates.
We then define the logical definition forack—Lack—and a logical definition for its domain—Lack-dom.

(defun Lack (x y) (iack (ack-measure x y) x y))

(defun Lack-dom (x y) (iack-dom (ack-measure x y) x y))

Basic properties Later proofs require a small collection of properties aboutthe definedness ofiack,
namely that it is deterministic and stable, andack-measure is canonical.

(defthm iack-deterministic

(implies (and (iack-dom d1 x y) (iack-dom d2 x y))

(equal (iack d1 x y)

(iack d2 x y))))

(defthm iack-stable

(implies (and (iack-dom d1 x y) (< (nfix d1) (nfix d2)))

(iack-dom d2 x y)))

(defthm iack-measure-canonical

(implies (iack-dom d x y)

(equal (iack d x y)

(iack (ack-measure x y) x y))))

46 A Step-Indexing Approach to Partial Functions

These are straightforward to prove.
In ACL2, the least-depth property possessed byack-measure is not as useful to the proof automation

as a recursive characterization, especially in the proofs of the recursive presentations ofLack-dom and
Lack. Here is the recursion equation forack-measure:

(equal (ack-measure x y)

(if (not (Lack-dom x y)) 0

(if (= x 0) 0

(if (= y 0) (1+ (ack-measure (1- x) 1))

(1+ (max (ack-measure x (1- y))

(ack-measure (1- x) (Lack x (1- y)))))))))

Thus, the depth of a recursive call is one less than that of theoriginating call. For multiple recursions,
the maximum of the depths of the recursions is one less than the depth of the originating call. As a result,
the measure decreases along each recursive call. Using thisequation forack-measure, ACL2 is able to
prove the following theorems aboutLack-dom andLack:

(equal (Lack-dom x y)

(if (= x 0) t

(if (= y 0) (Lack-dom (1- x) 1)

(and (Lack-dom x (1- y))

(Lack-dom (1- x) (Lack x (1- y)))))))

(equal (Lack x y)

(if (not (Lack-dom x y)) (1+ y)

(if (= x 0) (1+ y)

(if (= y 0) (Lack (1- x) 1)

(Lack (1- x) (Lack x (1- y))))))

With the characterizations of the domain and the measure, weare now in a position to introduce
a logical induction scheme forLack. The induction scheme is a variation of the body ofLack-dom,
extended with a guard on the domain,Lack-dom, and justified byack-measure.

(defun Lack-induction (x y)

(declare (xargs :measure (ack-measure x y)))

(if (not (Lack-domain x y)) nil

(if (= x 0) t

(if (= y 0) (Lack-induction (1- x) 1)

(and (Lack-induction x (1- y))

(Lack-induction (1- x) (Lack x (1- y))))))))

4 Executable versions

We now have a useful logical theory forLack: a defining theorem, a domain predicate, a measure and an
induction scheme. Constructing efficient executables within this logical theory, however, is not simple.
The defining theorem forLack includes a call ofLack-dom and the defining theorem forLack-dom
includes a call ofLack. Thus,Lack andLack-dom are mutually recursive. However, naively checking
membership in the domain for every argument in an execution would be unnecessarily expensive. To
address this we define a mutually recursive set of functions,mack (for mutually recursiveack) and
ack-domain, and attach executable bodies to them using appropriate guards andMBE. The logical
definitions of these functions are quite benign; it is in the executable definitions and the guards that
things get interesting.

D. Greve & K. Slind 47

(mutual-recursion

(defun mack (x y)

(declare (xargs :guard (ack-domain x y)))

(mbe :logic (Lack x y)

:exec (if (= x 0) (1+ y)

(if (= y 0) (mack (1- x) 1)

(mack (1- x) (mack x (1- y)))))))

(defun ack-domain (x y)

(mbe :logic (Lack-dom x y)

:exec (if (= x 0) t

(if (= y 0) (ack-domain (1- x) 1)

(and (ack-domain x (1- y))

(ack-domain (1- x) (Lack x (1- y))))))))

)

The executable body ofack-domain still callsmack, but note that the executable body ofmack does
not call ack-domain. A check on the domain is, however, necessary to complete therequisite proof
that the logical body,Lack, is the same as the executable body. This necessary check on the domain is
included as a call toack-domain in the guard ofmack1. The ability to use other functions from within a
mutually recursive clique as guards was added to ACL2 in version 3.6. The beauty of usingack-domain
as a guard is that it need only be satisfied once (prior to callingmack) rather than once every iteration of
mack, as would have been the case had we used the defining theorem ofLack above.

While a single call toack-domain is much better than many calls, any such call can result in sub-
stantial execution overhead for a given call ofack. For reflexive functions such asack, the cost of
evaluating the domain function may actually be exponentially more expensive than the cost of evalu-
ating the function itself. To minimize this overhead, we refine our executable model even further by
introducing another indexed version ofack, calledcomp-ack for computationalack. The only difference
betweencomp-ack andiack is in the case when the boundd is exhausted:iack simply returns the default
value, whilecomp-ack checksack-domain and, if false, returns the default value, but if true, continues
execution by callingmack. Note that this domain check satisfies the guards ofmack.

(defun comp-ack (d x y)

(if (zp d) (if (ack-domain x y) (mack x y) (+ y 1))

(if (= x 0) (1+ y)

(if (= y 0) (comp-ack (1- d) (1- x) 1)

(comp-ack (1- d) (1- x) (comp-ack x (1- d) (1- y)))))))

In this function, the wasted computation of the domain checkis deferred: the function runs nearly
as fast as possible, with only the addition of the index decrement and check, until the index bound is
exhausted. Only then does it perform a potentially expensive domain check. If the arguments are in the
domain, execution completes as quickly as possible withoutany further domain checks or index counters.
Now we pick some large constant numberBIG—in our current implementation, the largest number fitting
into a machine integer—and finally make the ultimate definition ofack.

(defun ack (x y)

(comp-ack (BIG) x y))

1In addition to any user provided guards

48 A Step-Indexing Approach to Partial Functions

This function allows us to compute values of the partial function ack by invoking comp-ack. The
only slowdown until the bound is reached is the constant costof decrementing the index at each recursive
call. BIG is large enough, especially in the era of 64-bit machine integers, that most applications that will
terminate should terminate long before the index is exceeded.

The following characterization ofack is then provable:

(equal (ack x y)

(if (not (ack-domain x y)) (comp-ack (BIG) x y)

(if (= x 0) (1+ y)

(if (= y 0) (ack (1- x) 1)

(ack (1- x) (ack x (1- y)))))))

Note that the behavior ofack outside of the function domain is not simply our default value, but
has been complicated by our use ofcomp-ack. There is certainly a trade-off here between execution
efficiency and simplicity in that case. The above characterization ofack is what we export, along with
updated versions ofack-domain andack-measure expressed in terms ofack and a final induction scheme,
ack-induction, also defined with respect toack and justified byack-measure. This gives us the desired
combination of logical reasoning power plus fast computations viacomp-ack.

5 Implementation

A mechanized implementation of these ideas has been codifiedin ACL2 in a macro calleddef::ung.
While our previous discussion illustrated the general behavior of this macro, the actual behavior exhibited
by def::ung for a given invocation may be a subset of the behaviors we describe above. Nonetheless, the
macro is fully automated and is designed to behave as a replacement fordefun for introducing partial
recursive functions.

Just as withdefun, def::ung constructs guards from Common Lisp declarations and thexargs :guard
keyword. It also deduces guard conditions from thexargs :signature keyword. This feature, inherited
from def::un (from coi/util/defun in the ACL2 books), provides a convenient, Common Lisp declaration-
inspired language for specifying a function’s logical signature. Guard proofs can be controlled using
:guard-hints and the signature proofs can be controlled using:signature-hints. Such low-level control is,
however, discouraged. A better approach is to admit the definition in a theory conducive to automated
proofs of these conjectures. Guard proofs can also be delayed using:verify-guards nil. Note that guard
verification of the admitted function may require guard verification of a number of supporting functions
as well.

If no guard information is provided by the user in the form of declarations or the:guard or :signature
keywords,def::ung will produce an executable from the logical definition usingec-call to suppress any
residual guard conditions. Such default execution behavior roughly mimic that ofdefun. Note that when
no guard information is provided todef::ung, an indexed executable is not generated under the rationale
that efficient execution is not a priority in that case.

In addition to the:signature and:signature-hints keywords, thedef::ung macro accepts a number of
other non-standardxargs keywords that give the user additional control over its behavior.

:default-value expr

The:default-value keyword allows the user to provide an expression to compute the default value
to be returned by the function when its arguments are outsideof the function domain. This ex-
pression may be computed from the function arguments. When:default-value is not specified,
def::ung chooses a default value from among the function’s base cases.

D. Greve & K. Slind 49

:non-executable [nil]/t

Def::ungwill, by default, attempt to produce an executable functiondefinition. When:non-executable
is t, def::ung will provide only the logical theory for the function with absolutely no support for
execution. Nonetheless, if a:signature is provided, an appropriate type theorem will still be gen-
erated.

:indexed-execution [t]/nil

By default, when guard information is provided, the executable function defined bydef::ung
is indexed to optimize performance. The indexed function is, however, somewhat more diffi-
cult to reason about outside of the function’s domain. If this is an issue, the user may specify
:indexed-execution nil to suppress the generation and use of an indexed execution function.

:wrapper-macro name

When :indexed-execution is nil, the guard of the resulting executable requires that the function
arguments be in the domain of the function. When a name is provided via the:wrapper-macro
keyword,def::ung will generate a wrapper macro that tests whether the arguments are in the do-
main prior to calling the function. If the arguments are not in the domain, the default value is
returned. This wrapper macro can then be invoked in place of the function when the domain guard
may not be satisfied.

Following is an illustration of how we might define ourack example usingdef::ung. Because we
provide guard information,def::ung will generate an indexed executable. The default value we provide
here, 0, is used to define the behavior of the function on arguments outside of its domain, as in (ack -1
0).

(def::ung ack (x y)

(declare (xargs :signature ((natp natp) natp)

:default-value 0))

(if (= x 0) (1+ y)

(if (= y 0) (ack (1- x) 1)

(ack (1- x) (ack x (1- y))))))

We can verify the defining equation ofack:

(defthm check-ack-definition

(equal (ack x y)

(if (not (ack-domain x y)) (ack-compute (defung::big-depth-fn) x y)

(if (= x 0) (1+ y)

(if (= y 0) (ack (1- x) 1)

(ack (1- x) (ack x (1- y)))))))

:hints (("Goal" :in-theory (disable (:rewrite defung::generalize-big-depth-fn))))

:rule-classes nil)

We can also executeack on some concrete values:

ACL2 !>(time$ (ack 3 11))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 1.25 seconds realtime, 1.25 seconds runtime

; (1,120 bytes allocated).

16381

Here we run an equivalent program mode definition for comparison:

50 A Step-Indexing Approach to Partial Functions

ACL2 !>(defun ack0 (x y)

(declare (xargs :mode :program))

(if (= x 0) (1+ y)

(if (= y 0) (ack0 (1- x) 1)

(ack0 (1- x) (ack0 x (1- y))))))

Summary

Form: (DEFUN ACK0 ...)

Rules: NIL

Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

ACK0

ACL2 !>(time$ (ack0 3 11))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 0.61 seconds realtime, 0.61 seconds runtime

; (1,120 bytes allocated).

16381

It is interesting to observe the impact that the domain checkhas on computational performance. Here
we define a version ofack without indexed computation. When evaluating this function in the top level
loop, ACL2 first checks whether the inputs are in the domain ofthe function by executingack2-domain.

(def::ung ack2 (x y)

(declare (xargs :signature ((natp natp) natp)

:indexed-execution nil

:wrapper-macro ack2-exec))

(if (= x 0) (1+ y)

(if (= y 0) (ack2 (1- x) 1)

(ack2 (1- x) (ack2 x (1- y))))))

Now compare the difference in time between evaluatingack2 andack2-domain below. Note that
theack2-domain computation time dominates theack2 computation time and thatack, which executes
without a domain check, essentially makes up the difference. With reflexive functions such asack2, it
is possible for the domain computation time to grow exponentially faster than the function computation
time.

ACL2 !>(time$ (ack2 3 8))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 15.34 seconds realtime, 15.34 seconds runtime

; (1,120 bytes allocated).

2045

ACL2 !>(time$ (ack2-domain 3 8))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 15.32 seconds realtime, 15.31 seconds runtime

; (1,120 bytes allocated).

T

ACL2 !>(time$ (ack 3 8))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 0.02 seconds realtime, 0.02 seconds runtime

; (1,120 bytes allocated).

2045

The support for partiality provided bydef::ung means that the two tasks of (a) defining a function’s
behavior and (b) showing that the function terminates, can be completely separated by first defining the

D. Greve & K. Slind 51

function as a partial function and, when convenient, showing that the function terminates. Thedef::total
macro, also exported by thedef::ung book, provides support for proving termination of functions ad-
mitted usingdef::ung. The macro allows the user to specify anxargs :measure and, as appropriate, a
:well-founded-relation that justifies termination. In addition, the body of the macro may contain a pred-
icate that articulates the condition under which the function is total. This condition may simply be t. If
multiple termination proofs (presumably under different conditions) are desired, the user may specify
different names for the different proofs using thexargs keyword:totality-theorem name.

We can prove the totality of our example,ack, when the function guards are satisfied, that is: when
the inputs are natural numbers.

(def::total ack (x y)

(declare (xargs :measure (llist x y)

:well-founded-relation l<

:totality-theorem natp-ack-terminates))

(and (natp x) (natp y)))

The def::ung macro is being used within Rockwell Collins to develop toolsfor reasoning about
software systems, especially systems written in theC programming language. While the correctness of
such tools is of interest to us, their termination is not. Additionally, because these tools are being applied
to actualC programs, it is important that they execute quickly. Thedef::ung macro addresses both of
these issues, allowing us to reason formally about our toolswithin the logic and allowing them to execute
quickly on concrete input.

6 Related work

The second author’s PhD [9] developed a recursion operator-based approach to defining total recursive
functions. One theme in the work was attempting to separate the definition of a function from reasoning
about its termination, a long-standing problem with nestedrecursions. Although successful for total
functions, the approach failed to capture any notion of partiality or explicit domain of a function and
hence nested recursive functions were painful to formalizeand reason about, and partial functions were
not dealt with at all.

In his dissertation work, Krauss [6] took a different tack. Instead of instantiating a pre-proved re-
cursion theorem, a construction is done fresh for each function submitted. The approach uses inductive
definitions to construct the graph and the domain of the function. The specified function itself is obtained
once the graph is (automatically) shown to be functional, and then the constrained induction theorem and
recursion equations are derived. The package also comes with support for automated termination proofs.

A nice overview—as of 2006–of support in Type Theory implementations for recursive definitions is
given in [2]. The technical contribution in the paper is based on inductively defining the graph, similar
to (and contemporaneous with) Krauss’ approach, although it did not deal with nested recursion.

ACL2 for a long time only supported total functions, but Manolios and Moore [7] discovered that
tail-recursions are consistent to admit into ACL2. Based onthat work, the first author of the present
paper created an ACL2 macro that maps arbitrary recursive specifications into CPS (continuation-passing
style) and then transforms the CPS result down to first order,obtaining a tail-recursive model of the
original function, from which the desired equations and proof principles can be derived [4]. Similar to
Krauss’ work, a separate domain predicate is defined, thus separating the definition of a function and its
termination proof. The implementation was, however, complex and performed somewhat inefficiently.

52 A Step-Indexing Approach to Partial Functions

The general approach taken in TFL [9], namely to instantiatea pre-proved recursion theorem, com-
presses much of the model-building work into one theorem that can be instantiated and manipulated to
deliver the desired result. It remains to be seen whether a similarly useful recursion theorem can be
generated for partial functions, whereby the domain of the function is explicitly included. This could be
a potential application of encapsulate and functional instantiation in ACL2.

Finally, none of the work we are aware of deals with the issue of execution of partial functions in
theorem provers.

7 Future Work

The ability to admit partial functions and to delay proofs oftermination is a useful feature. Thedef::total
macro already provides support for proving the terminationof partial functions admitted withdef::ung.
Total functions, however, can be executed in ACL2 more efficiently than partial functions. The ability
to add an executable body to an encapsulated function symbolor to replace an existing executable body
has been recently added to ACL2 (viadefattach). A useful extension ofdef::total would be the ability
to attach a more efficient (total) executable body to the original partial function symbol.

Ideally def::ung would be a seamless replacement fordefun. While the current package attempts
this, certain aspects of function admission in ACL2 are out of our control. For example, while it is
possible to assign theorems to the rule class:definition, it is not possible to control the names of runic
designators. We cannot, for example, change the runic designator used bydefun and we cannot assign
the runic designator(:definition foo) to a theorem whose name is notfoo. Without such ability it is
impossible for a user to mimic fully the behavior of built-inmacros such asdefun. The clever use of
add-macro-alias (as indefun-inline), however, might strengthen the desired illusion.

Single threaded objects and multi-value returns are alwaysan issue for macros that generate or ma-
nipulate function definitions. They are particularly bothersome because they do not readily admit generic
solutions, going so far as to infect even such constructs as encapsulation. Thedef::ung macro does not
currently support either construct.

Early experiments suggest that the monadic approach (Approach K), while requiring more extensive
surgery to the body of the function definition, may substantially improve execution speed by execut-
ing the domain computation in parallel with the function computation. The primary drawback of this
approach is that, for optimal efficiency, it requires the useof multiple-value returns – a construct not
currently supported in the framework. Nonetheless, this approach may ultimately be required in order to
provide general support for single-threaded objects sincethe domain computation in such functions will
likely involve predicates over an evolving single-threaded state.

Care has been taken to automate, control, and streamline theproof process behinddef::ung. All of
the proofs performed by the macro are schematic, meaning that they follow the same line of reasoning
with every invocation. Unfortunately, it is often difficultto keep ACL2 on the script. For example, ACL2
will always replace symbols with nil if it knows that the symbol is null. Unfortunately, even such simple
transformations can break our schematic proofs. ACL2 also has difficulty manipulating large single-
threaded function definitions and it is nearly impossible tokeep ACL2 from performing beta reduction.
As a result,def::ung can be much slower and more brittle than we would like. To address such issues,
we are exploring the possibility of using clause processorsto isolate and insulate the proof process from
the whims of ACL2.

However, the ultimate solution might be to simply incorporate a partial function definition capability
directly into the ACL2 core. While the definitions generatedby def::ung have been verified to be sound

D. Greve & K. Slind 53

on a variety of examples, it is unclear to the authors how one might verify the soundness of the approach
once and for all.

8 Conclusions

We have developed a new ACL2 package for partial function definition, with particular emphasis on
efficient execution of partial functions. A long-term goal of ours has been to move programming notions
as much as possible into logic, so that our chosen logic environments allow the full comfort of program-
ming with the usual idioms and techniques while also providing direct and unfettered use of the theorem
prover to establish properties. An important part of that goal is efficient execution of formal models
while maintaining a strong connection between the functionas an entity being reasoned about and the
function as an entity being executed. The package discussedin this paper supports programming as an
activity that can be done inside a theorem prover without sacrificing execution speed or burdening the
programmer with onerous termination proofs.

Acknowledgments

It is a pleasure to acknowledge Matt Kaufmann’s major contributions to this research. Many of the ideas
presented here have been learned from discussions with Mattand in extended sessions at the terminal
with him.

References

[1] Andrew W. Appel & David McAllester (2001):An indexed model of recursive types for foundational proof-
carrying code. ACM Trans. Program. Lang. Syst.23(5), pp. 657–683, doi:10.1145/504709.504712.

[2] Gilles Barthe, Julien Forest, David Pichardie & Vlad Rusu (2006):Defining and Reasoning About Recursive
Functions: A Practical Tool for the Coq Proof Assistant. In Masami Hagiya & Philip Wadler, editors:Func-
tional and Logic Programming, Lecture Notes in Computer Science3945, Springer Berlin Heidelberg, pp.
114–129, doi:10.1007/117374149.

[3] Robert S. Boyer & J Strother Moore (1997):Automated reasoning and its applications, chapter Mechanized
formal reasoning about programs and computing machines, pp. 147–176. MIT Press, Cambridge, MA, USA.
Available athttp://dl.acm.org/citation.cfm?id=271101.271126.

[4] David Greve (2009):Assuming termination. In: Proceedings of the Eighth International Workshop on
the ACL2 Theorem Prover and its Applications, ACL2 ’09, ACM, New York, NY, USA, pp. 114–122,
doi:10.1145/1637837.1637856.

[5] Matt Kaufmann & J. Strother Moore (2001):Structured Theory Development for a Mechanized Logic. J.
Autom. Reason.26(2), pp. 161–203, doi:10.1023/A:1026517200045.

[6] Alexander Krauss (2010):Partial and Nested Recursive Function Definitions in Higher-order Logic. J. Autom.
Reason.44(4), pp. 303–336, doi:10.1007/s10817-009-9157-2.

[7] Panagiotis Manolios & J. Strother Moore (2003):Partial Functions in ACL2. J. Autom. Reason.31(2), pp.
107–127, doi:10.1023/B:JARS.0000009505.07087.34.

[8] Eugenio Moggi (1991): Notions of computation and monads. Inf. Comput. 93(1), pp. 55–92,
doi:10.1016/0890-5401(91)90052-4.

[9] Konrad Slind (1999):Reasoning about Terminating Functional Programs. Ph.D. thesis, Institut für Informatik,
Technische Universität München.

http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1007/11737414_9
http://dl.acm.org/citation.cfm?id=271101.271126
http://dx.doi.org/10.1145/1637837.1637856
http://dx.doi.org/10.1023/A:1026517200045
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.1023/B:JARS.0000009505.07087.34
http://dx.doi.org/10.1016/0890-5401(91)90052-4

	1 Introduction
	2 Illustrative Example
	3 Base formalization
	4 Executable versions
	5 Implementation
	6 Related work
	7 Future Work
	8 Conclusions

