Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

Amar Hadzihasanovic
Diana Kessler

We present a computational implementation of diagrammatic sets, a model of higher-dimensional diagram rewriting that is "topologically sound": diagrams admit a functorial interpretation as homotopies in cell complexes. This has potential applications both in the formalisation of higher algebra and category theory and in computational algebraic topology. We describe data structures for well-formed shapes of diagrams of arbitrary dimensions and provide a solution to their isomorphism problem in time O(n^3 log n). On top of this, we define a type theory for rewriting in diagrammatic sets and provide a semantic characterisation of its syntactic category. All data structures and algorithms are implemented in the Python library rewalt, which also supports various visualisations of diagrams.

In Jade Master and Martha Lewis: Proceedings Fifth International Conference on Applied Category Theory (ACT 2022), Glasgow, United Kingdom, 18-22 July 2022, Electronic Proceedings in Theoretical Computer Science 380, pp. 111–127.
Published: 7th August 2023.

ArXived at: https://dx.doi.org/10.4204/EPTCS.380.7 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org