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Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role
in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals
(discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the
aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings
obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if
and only if the digitized vector spaces are computable.

1 Introduction

A tiling is a covering of a given space by interior-disjoint compacts called tiles. The shape of tiles yields
constraints on the way tiles can locally be arranged – one speaks about local rules (think, e.g., of the
bumps and dents of a jigsaw puzzle). Additional local rules can also be set by arbitrarily specifying
how tiles can be neighboor (tiles can also be available in different colors in order to allow them playing
different roles).

Tilings have been studied in computer sciences in the early 60’s by the logician Hao Wang, who set
the so-called domino problem ([14]): can one decide whether a given finite set of tiles can form a tiling
of the plane (each tile can be used several times)? His student Robert Berger proved the undecidability
of this problem ([1]). The two key ingredients of the proof are, first, the simulation of Turing computa-
tions by tilings of the plane and, second, the existence of aperiodic tile sets, that are finite tile sets which
do tile the plane but only in a non-periodic fashion (Berger explicitly described the first ever such tile set).

The interest in aperiodic tilings (i.e., tilings by aperiodic tile sets) spreaded beyond computer sciences
two decades later, when new non-periodic crystals soon called quasicrystals were incidentally discovered
by the chemist Dan Shechtman ([11]). The connection with aperiodic tilings was indeed quickly done,
with tiles and local rules respectively modelling atom clusters and finite range energetic interactions.
The issue that now concerns theoretical physicists is the classification of all the possible quasicrystalline
structure, in the spirit of the Bravais-Fedorov classification of crystalline structures.

A promising approach is the one opened by Leonid Levitov in [9]. He considered non-periodic planar
tilings, that are digitizations of irrational vector spaces, and searched algebraic conditions on vector space
parameters for the existence of local rules. This approach led to numerous results ([2, 5, 6, 7, 8, 12, 13]),
but no complete characterization of aperiodic planar tilings has yet been obtained.

The aim of this paper is to move a step forward in the above approach by enriching geometric meth-
ods with calculability, in the spirit of the first works on aperiodic tile sets. Our main result (Theorem 1,
below) is that a planar tiling admits local rules if and only if it is a digitization of a vector space whose
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parameters are computable.

Our result thus provides a complete characterization – at least if we do not care about parameters as
the size of tile sets or the precision of digitizations. Of course, these parameters are important w.r.t. the
quasicrystal modelization. In particular, the tile sets obtained via the Levitov approach are much smaller
than the huge ones that we get by simulating computations of Turing machines (the planar tilings ob-
tained in the former case are however restricted to algebraic parameters, versus computable parameters
in the latter case). The quest for sharper classifications of aperiodic planar tilings thus remains open,
with our result nevertheless limiting the horizon of any such classification.

The rest of the paper is organized as follows. In Section 2, we introduce the formalism which
allows us to state us our main result, Theorem 1. Section 3 shows that one cannot expect to go beyond
computability with local rules. The following sections are devoted to prove that local rules allow to
indeed reach the computability barrier. Specifically, Section 4 introduces quasi-Sturmian words, which
are particular non-periodic words whose letters are indexed by Z. Local rules cannot characterize such
words, but Section 5 shows that they can characterize the set of two-dimensional words (letters indexed
by Z2) whose lines are quasi-Sturmian words. The key ingredient is a result simultaneously obtained by
[3] and [4]. We then show in Section 6 how to transfer this result onto planar tilings which are digitization
of planes in R3, and we finally extend this to any planar tiling in Sec. 7.

2 Formalization

n→ d tilings
Let ~v1, . . . ,~vn be pairwise non-colinear vectors of Rd , n > d > 0. A n→ d tile is, up to translation, a

parallelotope generated by d of the~vi’s, i.e., the linear combinations with coefficient in [0,1] of d of the
~vi’s. Then, a n→ d tiling is a face-to-face tiling of Rd by n→ d tiles, i.e., a covering of Rd by n→ d
tiles which can intersect only on full faces of dimension less than d.

Lift
Let ~e1, . . . ,~en be the canonical basis of Rn. Given a n→ d tiling, we first arbitrarily map one of its

vertex to~0 ∈ Rn, then we map each tile generated by ~vi1 , . . . ,~vid onto the d-dimensional face of a unit
hypercube of Zn generated by~ei1 , . . . ,~eid , with two tiles adjacent along an edge~vi being mapped onto two
faces adjacent along an edge ~ei. This defines, up to the choice of the initial vertex, the lift of the tiling.
This is a digital d-dimensional manifold in Rn, whence d and n−d are respectively called the dimension
and the codimension of the tiling.

Computable planar tilings
A n→ d tiling is said to be planar if there are a d-dimensional vector subspace V ⊂Rn and a positive

integer w such that this tiling can be lifted into the slice V +[0,w)n. The space V is called the slope of
the tiling and the smallest suitable w its width (both are uniquely defined). A planar tiling is said to be
computable if its slope is computable, i.e., admits a basis of vectors with computable coordinates that is
to say they can be computed to within any desired precision by a Turing machine.

Local rules
A planar n→ d tiling of slope V is said to admit local rules if, when n→ d tiles are available in colors
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chosen among a given finite set, the way two colored tiles can intersect can be thoroughly specified so
that the allowed colored tilings form a non-empty set of colored planar n→ d tilings of slope V and uni-
formly bounded width w. In other words, the slope V is characterized by finitely many rules governing
the way tiles locally match, with colors allowing each tile to play different roles. In [9], local rules are
said to be strong if w = 1, weak otherwise.

We are now in a position to state our main result:

Theorem 1 A planar tiling admits local rules if and only if it is computable.

3 The Computability barrier

Consider Rn endowed with the norm ||~v||∞ which gives the maximum of the absolute value of the coor-
dinates of~v. Let S = {~x ∈ Rn : ||x||∞ = 1}, for two d-dimensional vector spaces V and W of Rn, we can
define the distance

d̃(V,W ) = max
{

sup
~v∈S∩V

inf
~w∈W
||~v−~w||∞ ; sup

~w∈S∩W
inf
~v∈V
||~v−~w||∞

}
.

Since V and W have the same dimension, then the maximum in the expression above is always attained
by both expressions simultaneously. The set of d-dimensional vector spaces is compact by this distance.
Moreover if we know the computable basis of V and W then d̃(V,W ) is also computable. With this for-
malism one obtains an equivalent definition of computable vector spaces: V is computable if there exists
a Turing machine such that on the input n ∈ N it gives a rational basis of a vector space Wn such that
d̃(V,Wn)≤ 1

n .

We here show the easiest part of Theorem 1:

Proposition 1 If a planar tiling admits local rules, then it is computable.

Proof. Consider a planar n→ d tiling of slope V and width w which admits local rules and take Pr the
set of all the diameter r patterns centred on~0 of colored tilings allowed by these local rules (this takes
exponential but finite time in r). Let Xr be the set of d-dimensional vector spaces which admit a basis
given by d vectors associated at a border vertex in the lift of a pattern of Pr. The set Xr is finite, moreover
there exists W ∈Xr such that d̃(W,V )≤ w

r . Since for sufficiently large r all vector spaces of Xr are near
of V (if not by compacity one obtains one other slope for the n→ d tiling), to obtain an approximation
of V with an error bound ε , we take the first r > 2w

ε
such that for all W1,W2 ∈Xr one has d̃(W1,W2)<

ε

2 .
In this case, for all W ∈Xr one has d̃(V,W )< ε so all basis of norm one of W are an approximation of
a basis of V. Thus V is a computable vector space. ut

4 Quasi-Sturmian words

Consider the set {0,1}Z of bi-infinite words over the alphabet {0,1} endowed with the metric d defined,
for any u and v, by

d(u,v) := sup
p≤q
||u(p)u(p+1) . . .u(q)|0−|v(p)v(p+1) . . .v(q)|0| ,
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where |w|0 denote the number of occurences of the letter 0 in the finite word w. In other terms, the
distance between two words is the maximum balance between their finite factors which begin and start
at the same positions.

Define the Sturmian word sρ,α ∈ {0,1}Z of slope α ∈ [0,1] and intercept ρ by

sρ,α(n) = 0 ⇔ (ρ +nα) mod 1 ∈ [0,1−α).

Sturmian words have been extensively studied (see, e.g., [10] for a detailed account). In particular, they
can be seen as 2→ 1 planar tilings of width 1 (the digitized vector space is here a line of slope α , and
the tiles are letters 0 and 1). Classic properties of Sturmian words easily yield:

Proposition 2 Sturmian words with equal slopes are at distance at most one.

Proof. Two sturmian words u and v with equal slopes are known to have the same finite factors. Any
two factors of respectively u and v which begin and start at the same positions are thus also factors of u
only - at different position but with the same number of letters. This yields the bound

d(u,v)≤ sup
p,q,r
||u(p)u(p+1) . . .u(p+ r)|0−|u(q)u(q+1) . . .u(q+ r)|0| .

This bound is known to be at most one for Sturmian words (and only them). ut

The words at distance at most one from a Sturmian word of slope α are however not all Sturmian.
We call them quasi-Sturmian (of slope α). They can be seen as 2→ 1 planar tilings of width 2. The easy
following proposition will be useful to link Sturmian and quasi-Sturmian words:

Proposition 3 Two words in {0,1}Z are at distance at most one if and only if each can be obtained from
the other by performing letter replacements 0→ 1 or 1→ 0, without two consecutive replacements of
the same type.

Proof. Let u and v in {0,1}Z at distance at most one. Performing on u replacements at each position i
where u(i) 6= v(i) yields v. If two consecutive replacements, say at position p and q, have the same type,
then the balance between u(p) . . .u(q) and v(p) . . .v(q) is two, hence d(u,v) ≥ 2. The type of replace-
ments thus necessarily alternates.
Conversely, assume that v∈ {0,1}Z is obtained from u∈ {0,1}Z by performing replacements whose type
alternates. Given p ≤ q, consider the number of replacements between positions p and q: the balance
between u(p) . . .u(q) and v(p) . . .v(q) is 0 if this number is even, 1 otherwise, hence d(u,v)≤ 1. ut

Since the replacements to transform u in v alternate, their sequence can be encoded by w ∈ {0,1}Z:
reading 01 (resp. 10) at position i means that a replacement 0→ 1 (resp 1→ 0) occurs at position i. Such
a word w is moreover unique, except if u = v in which case both w = 0Z and w = 1Z suit. This coding
will be used in the proof of Prop. 4. Figures 1 and 2 illustrate this.

5 A Sofic subshift

The main result of [3, 4] is phrased in terms of symbolic dynamics. Let us first recall this formalism,
which is convenient to keep, and then explain the correspondance with tilings. Given a finite alphabet
A , a configuration is a word indexed by Zn. Consider a set of finite patterns F , the subshift of forbidden
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00 0 00 00 0 00 0 00 00 0 00 00 0 00 0 00 00 0 00 0 0

0 0 00 0 0 00 0 00 0 00 0 00 0 00 00 0 00 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1: Two (factors of) bi-infinite words with emphasized replacements (first two lines). The corre-
sponding coding (last line).

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 00 0 00 00 0 00 0 00 00 0 00 0 00 00 0 00 00 0 00 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00 0 00 00 0 00 0 00 00 0 00 00 0 00 0 00 00 0 00 0 0

Figure 2: Two (factors of) Sturmian words with the same slope and emphasized replacements (first two
lines). The corresponding coding (last line).

patterns F is the set of configurations where no pattern in F appears. A subshift S is said to have finite
type if there is a finite set of forbidden patterns. A subshift S is said to be sofic if there is a subshift of
finite type S′ and a map from the alphabet of S′ to the alphabet of S, called factor map, which maps S′

onto S. Last, a subshift is said to be effective if its forbidden patterns can be enumerated by a Turing
machine. In terms of tilings, a configuration can be seen as a tiling of Rn by tiles which are colored unit
hypercubes. Forbidden patterns then correspond to local rules, and the factor map simply correspond
to a map on colors of tiles. We are now in a position to use the result of [3, 4]. It is (constructively)
proven that any effective d-dimensional subshift can be obtained as the projective subaction of a (d+1)-
dimensional sofic subshift, that is, the projection onto d given coordinates.

First, let Zα be the two-dimensional subshift whose configurations are obtained by copying on each
row a given Sturmian word of slope α:

Zα =
{

u ∈ {0,1}Z2
, ∃ρ ∈ R, ∀m ∈ Z, u(m, ·) = sα,ρ

}
.

When α is computable, we compute the word sα,0 until to obtain n+ 1 distinct factors of size n, thus
the finite patterns of sα,ρ are recursively enumerated. It follows that the projective subaction of Zα is
effective, thus Zα is sofic when α is computable by [3, 4]. Say, e.g., that Zα is the projection onto the
first coordinate of a finite type subshift Z̃α of ({0,1}×B), for some finite alphabet B.

Then, extend Zα by the subshift Z′α whose elements have rows at distance at most one from the
Sturmian word of slope α and intercept 0:

Z′α :=
{

u ∈ {0,1}Z2
, ∀m ∈ Z, d(u(m, ·),sα,0)≤ 1

}
.

Prop. 2 indeed yields Zα ⊂ Z′α and that the choice of the intercept - here 0 - has no importance. Let us
constructively prove:

Proposition 4 The subshift Z′α is sofic when α is computable.

Proof. Let πi1,...,ik denotes the projection on the i1-th,. . . ,ik-th coordinates. Let Z̃′α be the subshift of
({0,1}×B×{0,1})Z2

such that u ∈ Z̃′α if and only if π12(u) ∈ Z̃α and, for any (m,n) ∈ Z2:

π3(u(m,n))< π3(u(m,n+1)) ⇒ π1(u(m,n)) = 0,
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π3(u(m,n))> π3(u(m,n+1)) ⇒ π1(u(m,n)) = 1.

Clearly, Z̃′α has finite type when so does Z̃α . Now, we claim that the factor map π defined as follows
maps Z̃′α onto Z′α :

π(u)(m,n) =
{

π1(u(m,n)) if π3(u(m,n)) = π3(u(m,n+1)),
1−π1(u(m,n)) otherwise.

Let ũ∈ Z̃′α and fix m∈Z. By definition of Z̃′α and Z̃α , π1(ũ(m, ·)) = sα,ρ . One thus also has π(ũ(m, ·)) =
sα,ρ , except at each position n such that the two bits π3(ũ(m,n)) and π3(ũ(m,n+1)) differ. At these posi-
tions, π(ũ(m, ·)) is obtained by performing on sα,ρ a replacement of type π3(ũ(m,n))→ π3(ũ(m,n+1)).
The type of these replacements alternate - as the bit runs do - and Prop. 3 yields d(π(ũ(m, ·)),sα,ρ)≤ 1.
This shows that π(ũ) is in Z′α . Hence, π(Z̃′α)⊂ Z′α .

Conversely, let u ∈ Z′α . Fix m ∈ Z and choose ṽ ∈ Z̃α such that π1(ṽ(m, ·)) = sα,0. By definition,
d(u(m, ·),sα,0) ≤ 1, so we can consider wm the coding of the replacements which transform sα,0 into
u(m, ·) (see end of Section 4). Consider ũ ∈ ({0,1}×B×{0,1})Z2

defined by ũ(m, i) = (ṽ(m, i),wm(i)).
The way π has been defined yields ũ ∈ Z̃′α and π(ũ) = u. Hence, Z′α ⊂ π(Z̃′α). ut

Let us mention that the two-dimensionality plays a fundamental role in the result obtained in [3, 4],
hence in the soficity of Zα . It is thus also fundamental in the proof of Prop. 4, although lines seems to
be there only independantly considered. The interplay between the lines of Z̃′α is indeed “hidden” in the
alphabet B and in the forbidden patterns of Z̃α .

6 Dimension two and codimension one

Consider a computable 3→ 2 planar tiling defined over vectors~v1,~v2 and~v3. Its slope can be defined by
its normal vector, say (1,α,β ), which is computable.
As mentioned above, any sofic subshift can be seen as tilings by a given tile set and local rules. Here, it
is convenient to model local rules by coloring edges of tiles and assuming that two tiles can be adjacent
only on edges which have the same color (this is actually the definition used in [14]). Let thus τα and
τβ be such tile sets, with moreover label 0 or 1 on tiles, such that the tilings by τα and τβ respectively
correspond, when considering only labels, to Z′α and Z′

β
.

Let us derive from τα a tile set τ ′α as follows (see Fig. 3):

• each tile in τα with label 0 is sheared along ~v3 to give in τ ′α a rhombus tile defined by ~v2 and ~v3
(edge colors are unmodified);

• each tile in τα with label 1 is sheared along ~v3 to give in τ ′α a rhombus tile defined by ~v1 and ~v3
(edge colors are unmodified);

• a rhombus tile defined by~v1 and~v2 is in τ ′α if and only if its edges have colors which appears on
~v1- or ~v2-edges of square tiles of τα , with the restriction that two edges meeting at ~v1 or ~v2 must
have the same color (transfer tile).

The idea behind the definition of τ ′α is simple. Let us call ~vi-ribbon of a 3→ 2 tiling a maximal
sequence of tiles, with two consecutive tiles being adjacent along an edge~vi. Then, one easily sees that
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Figure 3: The~vi’s (left), the shearing of tiles in τα (center) and the transfer tiles (right).
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Figure 4: A part of an element in Z′α (left) and its embedding into the~v3-ribbons of a 3→ 2 tiling (right,
with thick lines drawn on “transfer” tiles indicating the way tile decorations travel between neighbor
~v3-ribbons.)

τ ′α forms the 3→ 2 tilings whose ~v3-ribbons embed configurations in Z′α , with the transfer tiles just
carrying colors between ribbons (see Fig. 4).

By proceeding similarly up to a circular permutation on the ~vi’s, one derives from τβ a tile set τ ′
β

which forms the 3→ 2 tilings whose~v2-ribbons embed configurations in Z′
β

. Let us finally define the tile
set τ ′

α,β as the cartesian product of τ ′α and τ ′
β

, that is, to each pair of identically shaped tiles in τ ′α × τ ′
β

corresponds a tile in τ ′
α,β which has the same shape, with each edge having a color which encodes the

colors of the pair of corresponding edges in τ ′α and τ ′
β

. The tilings of τ ′
α,β are thus the 3→ 2 tilings

which embed Z′α on their ~v3-ribbons and Z′
β

on their ~v2-ribbons. This allows only planar 3→ 2 tilings
of slope (1,α,β ) and width at most 4 (this can be seen by decomposing any path between two points
in a~v3-ribbon followed by a~v2-ribbon). This moreover allows at least the planar 3→ 2 tilings of slope
(1,α,β ) and width 1. We thus (constructively) proved:

Proposition 5 Any computable planar 3→ 2 tiling admits local rules.

7 Higher dimensions and codimensions

The last step to prove Th. 1 is to extend Prop. 5 to n→ d tilings. Although technical, this last step
requires no new ideas.

For higher codimensions, we proceed by induction. Our induction hypothesis is that any effective
planar n→ 2 tiling admits weak local rules. This holds for n = 3 according to the previous section. Let
now T be an effective planar (n+1)→ 2 tiling. For any basis vector~ei, we project the lift of T along
~ei to get the lift of an effective planar n→ 2 tiling, say Ti. By assumption, Ti admits local rules: let τi

be a tile set whose tilings are at distance at most w from Ti. We complete τi by adding the tiles with
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a ~vi-edge (that is, the tiles which disappeared from T by projecting along ~ei), with each of these tiles
having no decoration on its ~vi-edges, and on the other edges a unique decoration that could be any of
those appearing on an edge of a tile in τi. These new tiles thus just transfer decorations between the tiles
of Ti (see Fig. 5 for n+1 = 4). Last, we define the tile set τ as the cartesian product of all the τi’s (as we
did for τα and τβ in the previous section). This allows only n+1→ 2 tilings at distance at most w′ from
T - in particular T itself. This shows that T admits local rules.

Figure 5: A 4→ 2 tiling by shaded τi tiles and white additional tiles, with~vi being here horizontal. The
white tiles simply transfer horizontally the decorations of the shaded tiles. By contracting each~vi-edges
to a point, the white ribbons disappear: we get a 3→ 2 tiling by τi, at distance at most w′ from Ti.

For higher dimensions, we also proceed by induction. Our induction hypothesis is, for a fixed n, that
any effective planar n→ d tiling, d < n, admits local rules. This holds for d = 2 according to the above
paragraph. Let now T be an effective planar n→ (d +1) tiling, with d +1 < n. Fix i ∈ {1, . . . ,n}. For
two tiles T and T ′ of T , write T ∼ T ′ if these tiles share a ~vi-edge and let ' be the transitive closure
of the relation ∼. Denote by (Tk)k∈Z the equivalence classes of ', such that, for any k, Tk and Tk+1
can be connected by a path which does not cross any other equivalence class (the Tk’s play the role
of ~vi-ribbons in the previous section). By contracting all the ~vi-edges of a Tk (flattening), one gets a
planar n→ d tiling. Its slope moreover depends only on the slope of T , and in particular it is effective.
This allows to see T as a sequence of “stacked” parallel effective planar n→ d tilings (namely the
flattened Tk’s), with the remaining tiles containing no~vi-edge. By induction, there exists a finite tile set
τi whose tilings are at bounded distance w from any of the flattened Tk’s (since they are all parallel). It
is straighforward to “unflatten” τi to get a tile set τ̃i whose tilings are at bounded distance w from any of
the Tk’s. We complete τ̃i by adding the tiles without~vi-edge (that is, the tiles lying between the stacked
Tk’s), with decorations being just transferred between consecutive Tk’s along the direction ~vi (as done
in the previous section to transfer decorations between consecutive ~vi-ribbons). The last step is (as in
the previous section again) to define the cartesian product τ of the tile sets τ̃i, i = 1, . . . ,d: its tilings are
those at bounded distance w from T - in particular T itself. This shows that T admits local rules.
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