
E. Formenti (Ed.): AUTOMATA and JAC 2012 conferences
EPTCS 90, 2012, pp. 194–207, doi:10.4204/EPTCS.90.16

c© M. Kutrib, A. Malcher

Transductions Computed by
One-Dimensional Cellular Automata

Martin Kutrib and Andreas Malcher
Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
{kutrib,malcher}@informatik.uni-giessen.de

Cellular automata are investigated towards their ability to compute transductions, that is, to trans-
form inputs into outputs. The families of transductions computed are classified with regard to the
time allowed to process the input and to compute the output. Since there is a particular interest
in fast transductions, we mainly focus on the time complexities real time and linear time. We first
investigate the computational capabilities of cellular automaton transducers by comparing them to
iterative array transducers, that is, we compare parallel input/output mode to sequential input/output
mode of massively parallel machines. By direct simulations, it turns out that the parallel mode is
not weaker than the sequential one. Moreover, with regard to certain time complexities cellular au-
tomaton transducers are even more powerful than iterative arrays. In the second part of the paper,
the model in question is compared with the sequential devices single-valued finite state transducers
and deterministic pushdown transducers. It turns out that both models can be simulated by cellular
automaton transducers faster than by iterative array transducers.

1 Introduction

Cellular automata have widely been investigated as a massively parallel computation model. In con-
nection with the problems to recognize syntactical patterns, or in our terms formal languages, cellular
automata have been considered in [7, 8] for the first time. Over the years substantial progress has been
achieved in this field but there are still some basic open problems with deep relations to other fields (see,
for example, [5]). The results comprise the relations between parallel and sequential input mode, the im-
pact of two-way and one-way inter-cell communication, the relation between different time complexities
such as real time, linear time, or arbitrary time, the capabilities with respect to accept linguistic language
families such as regular and context-free languages, closure properties, and decidability questions.

Computational models are not only interesting from the viewpoint of recognizing some input, but
also from the viewpoint of transforming an input into an output. For example, a parser for a formal
language should not only return the information whether or not the input word can be parsed, but also
the parse tree in the positive case. Here, two things are important: first the information whether the
input is accepted, i.e., whether the input can be parsed, and second the production of the output, i.e., the
construction of a parse tree if the word can be parsed. If the word cannot be parsed, the output is no
interest. This motivation led to the investigation of models such as finite state transducers or pushdown
transducers which are classical finite automata or pushdown automata where each transition is associated
with some output. If an input is accepted, the result of the transduction is the output of the transitions in
the order they have been applied. Both models have been studied in detail (see, for example, [1, 2]), and
many applications such as in the context of parsing are known.

Parallel transducers have been investigated in [3, 6]. In the first paper, one-way linear iterative arrays
are introduced. In this model, the input is supplied to the leftmost cell, and the output is emitted at the

http://dx.doi.org/10.4204/EPTCS.90.16

M. Kutrib, A. Malcher 195

rightmost cell. In between there are as many cells as the input is long, the information flow is one-way,
from left to right, and the output does not depend on the fact whether or not the input is accepted. In
the latter paper, iterative array transducers are introduced, where the leftmost cell receives the input and
emits the output. For the computational capacity of such devices, the time complexities for processing
the input as well as for computing the output are crucial. It turned out that iterative array transducers
with time complexity (real-time, real-time) are less powerful than those working in (real-time, linear-
time). In turn, the latter are less powerful than iterative array transducers with time complexity (linear-
time, linear-time). Moreover, it has been shown that deterministic finite state transducers as well as
certain deterministic pushdown transducers can be simulated by iterative arrays with time complexity
(real-time, real-time), whereas nondeterministic single-valued finite state transducers are simulated by
iterative arrays in (real-time, linear-time).

Here, we complement these results with investigations of the computational capacity of cellular au-
tomaton transducers compared with iterative arrays and sequential devices. The detailed definitions and
two examples are given in Section 2. The results on the computational capacities compared with itera-
tive array transducers are obtained in Section 3. First, we present a construction which shows that any
iterative array transducer can be simulated by some cellular automaton transducer preserving the time
complexity as long as the time complexity is ‘fair’. Together with the example of a transduction not
computed by any iterative array in real time, we obtain as a consequence that cellular automaton trans-
ducers are more powerful than iterative array transducer with respect to the time complexities (real-time,
real-time) and (real-time, linear-time). For the combination (linear-time, linear-time) both devices are
shown to be equally powerful. In Section 4, we compare the model in question with sequential machines.
In particular, it is shown they can simulate single-valued finite state transducers and deterministic push-
down transducers faster than iterative arrays. The former are simulated in (real-time, real-time) whereas
the latter are simulated in (real-time, linear-time).

2 Preliminaries and Definitions

We denote the rational numbers by Q, and the non-negative integers by N. For the empty word we
write λ , the reversal of a word w is denoted by wR, and for the length of w we write |w|. For the number
of occurrences of a symbol a in w we use the notation |w|a. The set of all words over the alphabet A
whose lengths are at most j ≥ 0 is denoted by A≤ j. We write ⊆ for set inclusion, and ⊂ for strict set
inclusion. In order to avoid technical overloading in writing, two languages L and L′ are considered to
be equal, if they differ at most by the empty word, that is, L\{λ}= L′ \{λ}.

A (one-dimensional) two-way cellular automaton transducer is a linear array of identical determin-
istic finite state machines, sometimes called cells, where each cell except the two outermost ones is
connected to its both nearest neighbors. We identify the cells by positive integers. The transition of a
cell depends on its current state and the current states of its neighbors, where the outermost cells receive
information associated with a boundary symbol on their free input lines. The cells work synchronously
at discrete time steps.

The input/output mode for cellular automaton transducers is called parallel. One can suppose that
all cells fetch their input symbol during a pre-initial step. Here we assume that each cell is additionally
equipped with an output register that is initially empty and can be filled once by the cell. When all output
registers have been filled, the transduction is completed.

Definition 1 A cellular automaton transducer (CAT) is a system 〈S,F,A,B,#,δ 〉, where

196 Cellular Automaton Transducers

1. S is the finite, nonempty set of cell states,

2. F ⊆ S is the set of accepting states,

3. A⊆ S is the nonempty set of input symbols,

4. B is the finite set of output symbols not including the special symbol ⊥,

5. # /∈ S is the permanent boundary symbol, and

6. δ : (S∪{#})×S× (S∪{#})→ S× (B∗∪{⊥}) is the local transition function.

A configuration of a cellular automaton transducer M = 〈S,F,A,B,#,δ 〉 at time t ≥ 0 is a descrip-
tion of its global state, which can formally be described by two mappings ct : {1,2, . . . ,n} → S and
ot : {1,2, . . . ,n}→ B∗∪{⊥}, for n ≥ 1, which map the single cells to their current states and to their
output emitted, where ⊥ means no output so far. The operation starts at time 0 in a so-called initial con-
figuration, which is defined by the given input w = a1a2 · · ·an ∈ A+, and no outputs. We set c(w)0 (i) = ai

and o0(i) = ⊥, for 1 ≤ i ≤ n. Successor configurations are computed according to the global transition
function ∆. For convenience, we write δs for the projection on the first component of δ , that is, the suc-
cessor state, and δo for the projection on the second component, that is, the output emitted. Let (ct ,ot),
t ≥ 0, be a configuration with n≥ 2, then its successor (ct+1,ot+1) is as follows.

ct+1(i) =

δs(ct(i−1),ct(i),ct(i+1)) if i ∈ {2,3, . . . ,n−1}
δs(#,ct(1),ct(2)) if i = 1
δs(ct(n−1),ct(n),#) if i = n

For n = 1, the next state of the sole cell is δs(#,ct(1),#). For ot we obtain

ot+1(i) =

ot(i) if ot(i) 6=⊥
δo(ct(i−1),ct(i),ct(i+1)) if ot(i) =⊥ and i ∈ {2,3, . . . ,n−1}
δo(#,ct(1),ct(2)) if ot(i) =⊥ and i = 1
δo(ct(n−1),ct(n),#) if ot(i) =⊥ and i = n

and, thus, ∆ is induced by δ . As usual we extend ∆ to sequences of configurations and denote it by ∆∗.
That is, ∆0 is the identity, ∆t = ∆(∆t−1), 1≤ t, and ∆∗ =

⋃
0≤t ∆t . Thus, (ct ,ot) ∈ ∆∗(c,o) indicates that

it is possible for M to go from the configuration (c,o) to the configuration (ct ,ot) in a sequence of zero
or more steps.

An input w is accepted by a CAT if at some time step during the course of its computation the
leftmost cell enters an accepting state. Transducer M transforms input words w ∈ A+ into output words
v ∈ B∗. For a successful transformation M has to accept the input, otherwise the output is not recorded.
Moreover, each cell has to emit an output:

M(w) = v,

if w is accepted by M, (ct ,ot) ∈ ∆∗(c(w)0 ,o0), ot(i) 6= ⊥, 1 ≤ i ≤ |w|, and v = ot(1)ot(2) · · ·ot(|w|). The
transduction realized by M, denoted by T (M), is the set of pairs (w,v) ∈ A+×B∗ such that M(w) = v.

Let ti, to :N→N be two mappings. If for all (w,v)∈ T (M), the input w is accepted after at most ti(|w|)
time steps, and ot(i) 6= ⊥, 1 ≤ i ≤ |w|, after at most to(|w|) time steps, then M is said to be of time
complexity (ti, to) and we write CATti,to . The family of transductions realized by CATti,to is denoted by

M. Kutrib, A. Malcher 197

T (CATti,to). If ti or to is the identity function n, we call it real time and write rt. If ti(n) or to(n) is of the
form k ·n, for some k ∈Q, k ≥ 1, we call it linear time and write lt.

If we build the projection on the first components of T (M), then the cellular automaton transducer
degenerates to a cellular automaton acceptor (CA). The projection on the first components is denoted
by L(M).

In order to clarify the notation we give two examples. The first example shows that CAT can copy
their input in real time. The second example shows that CAT can sort a binary input in real time.

Example 2 The transduction {(w,ww) | w ∈ {a,b}+ } belongs to the family T (CATrt,rt). The basic
idea is to use one register to shift the input from left to right and another register to shift the input from
right to left. Additionally, two signals are started at both ends which cause the cells to emit the correct
output (see Figure 1).

More detailed, let w = a1a2 · · ·an be the input and n be even. In the first time step, cell 1 emits
a1a2 and cell n emits an−1an. In the next time step, cell 2 emits a3a4 and cell n− 1 emits an−3an−2.
This is possible since the necessary information has been shifted to the corresponding cells and their
neighborhood. Generalizing this observation to 1 ≤ i ≤ n

2 , we obtain that cell i emits a2i−1a2i and cell
n− i+1 emits an−2i+1an−2i+2 at time i. If n is odd, the construction is similar. Now cells i and n− i+1
emit a2i−1a2i and an−2i+1an−2i+2 at time i, for 1≤ i≤ b n

2c. Finally, cell dn
2e emits ana1 at time step dn

2e.
�

a7 a8 a1 a2

a5 a6 a1 a7 a2 a8 a3 a4

a3 a4 a1 a5 a2 a6 a3 a7 a4 a8 a5 a6

a1 a2 a1 a3 a2 a4 a3 a5 a4 a6 a5 a7 a6 a8 a7 a8

#

t

a1 a2 a3 a4 a5 a6 a7 a8 #

Figure 1: Schematic computation of a CATrt,rt copying input a1a2 · · ·a8. The step at which a cell has
emitted its output is highlighted.

Example 3 Here, we consider the transduction {(w,a|w|ab|w|b) | w ∈ {a,b}+ } and show that it is com-
puted by a CATrt,rt . The basic idea is that any two neighboring cells where the left cell carries a b and
the right cell carries an a switch their contents. By this local transpositions, all a’s will eventually be in
the left part of the array whereas all b’s will be in the right part (see Figure 2).

Clearly, on any input of length n the correct sorting has been achieved after at most n time steps.
There is one problem to be solved: since the transpositions are only local, a cell cannot know whether its
current content is final and has to be emitted. We can cope with the problem by synchronizing all cells
at time n. The synchronization is realized by the well-known Firing Squad Synchronization Problem
(FSSP), that is implemented on an additional track. In the first time step, two instances of the FSSP
are started, one in the leftmost cell and the other one in the rightmost cell. First, let n be even. When
the leading signals of both instances meet in the center at cells n

2 and n
2 +1, they are reflected and cells

1,2, . . . , n
2 and cells n

2 +1, n
2 +2, . . . ,n are treated as two separate instances of the FSSP. Since each FSSP

can be set up to synchronize m cells in time 2m, we obtain that n
2 cells are synchronized in time n. Since

both FSSP work in parallel, we obtain that all cells are synchronized at time step n. The remaining case
where n is odd is handled similarly. �

198 Cellular Automaton Transducers

a a a a b b b b

a a a b a b b b

a a b a b a b b

a b a b a b a b

#

t

b a b a a b b a #

Figure 2: Schematic computation of a CATrt,rt sorting an input babaabba by local transpositions. The
final synchronization is not depicted.

3 Computational Capacity of Cellular Automaton Transducers

This section is devoted to the computational capacity of cellular automaton transducers compared with
the power of iterative array transducers as studied in [6]. While CAT are arrays of finite state machines
working in parallel input/output mode, iterative array transducers receive the input and emit the output
sequentially by the leftmost cell, the so-called communication cell.

Basically, an iterative array transducer (IAT) is a linear array of deterministic finite state machines,
where each cell except the leftmost one is connected to its both nearest neighbors. The distinguished
leftmost cell is the communication cell that is connected to its neighbor to the right and to the input/output
supply (see Figure 3). Initially, all cells are in the so-called quiescent state. At each time step the
communication cell reads an input symbol and writes a possibly empty string of output symbols. To
this end, we have different local transition functions. All cells but the communication cell change their
state depending on their current state and the current states of their neighbors. The state transition and
output of the communication cell depends on its current state, the current state of its neighbor, and on the
current input symbol (or if the whole input has been consumed on a special end-of-input symbol). As for
cellular automaton transducers, the cells work synchronously at discrete time steps.

· · ·s0 s0 s0 s0 · · ·
a1a2a3 · · · an!

b1b2b3 · · · bm

Figure 3: An iterative array transducer.

For details of later constructions, we provide the definition more formally. An iterative array trans-
ducer (IAT) is a system 〈S,F,A,B,C,s0,δ ,δ0〉, where S is the finite, nonempty set of cell states, F ⊆ S
is the set of accepting states, A is the finite set of input symbols, B is the finite set of output symbols,
C /∈ A is the end-of-input symbol, s0 ∈ S is the quiescent state, δ : S3 → S is the total local transition
function for non-communication cells satisfying δ (s0,s0,s0) = s0, and δ0 : (A∪{C})× S2 → B∗× S is
the partial local transition function for the communication cell. The IAT halts when the transition func-
tion δ0 is not defined for the current configuration. Similar as for CAT, an input w is accepted when
the communication cell enters an accepting state at some time t during the computation. The pair (w,v)
belongs to the transduction computed by the IAT if w is accepted, the communication cell halts, and v
is the total output emitted during the computation. The mappings ti and to for the time complexities are

M. Kutrib, A. Malcher 199

defined analogously to CATti,to . If ti or to is the function n+1, we call it real time and write rt. If ti(n) or
to(n) is of the form k ·n, for some k ∈Q, k ≥ 1, we call it linear time and write lt.

Any transduction computed by a cellular automaton can be divided into two tasks. One is the ac-
ceptance of the input, the other one the transformation of the input into the output. Both tasks have to
end successfully in order to obtain a valid computation. On the one hand, this allows to modularize con-
structions of cellular automaton transducers as both parts can be implemented independently on different
tracks. On the other hand, this implies that a language, which is not accepted by any cellular automaton
in time ti, cannot be the projection on the first components of any transduction belonging to any class
T (CATti,to). Unfortunately, it is a long-standing open problem whether there are languages accepted by
two-way cellular automata in arbitrary, that is, exponential time but cannot be accepted in real time (see,
for example, [5]). However, the same observation applies to transductions computed by iterative arrays.
So, we obtain the following theorem.

Theorem 4 Let to : N→ N, n ≤ to(n), be a time complexity. Then there exists a language belonging to
T (CATrt,rt), but not to T (IATrt,to).

Proof The language

L = {&xk& · · ·&x1$y1& · · ·&yk& | k ≥ 1,xR
i = yizi and xi,yi,zi ∈ {a,b}∗ }

is not accepted by any real-time IA [5]. However, it is linear context free. Since all linear context-free
languages are accepted by one-way cellular automata in real time [7], the transduction {(w,a|w|) | w ∈ L}
is a witness for the assertion. �

The previous theorem shows that there are transductions which cannot be computed by any iterative
array that has to accept the input in real time. In fact, the limitation arises from the limitation to accept
languages. This raises the question whether there are witness transductions whose projections on the first
components are accepted by real-time iterative arrays, that is, the limitation is a limitation to transform
the input in time. The next example answers the question for real time in the affirmative.

Example 5 In [6] it has been shown that the transduction {(w,wR) | w ∈ {a,b}∗ } does not belong to the
family T (IATrt,rt). However, it can be computed by a CATrt,rt M as follows. Transducer M performs
two tasks on different tracks in parallel. The first one is to synchronize the cells in real time as has been
shown in Example 3. The second task is to reverse the input in real time. So, when the cells fire they
emit their current input symbol in order to complete the transduction.

The second task is computed by a cellular automaton M′ = 〈S,F,A,B,#,δ 〉 that itself uses two tracks
which are implemented by the state set S = (A∪{λ})2 (see Figure 4). Let (p1,q1), (p2,q2), and (p3,q3)
be arbitrary states from S. Then

δ (#,(p1,q1),#) = (q1, p1),
δ (#,(p1,q1),(p2,q2)) = (p2, p1),
δ ((p1,q1),(p2,q2),#) = (q2,q1), and

δ ((p1,q1),(p2,q2),(p3,q3)) = (p3,q1)

shift the contents of the upper track to the left and the contents of the lower track to the right. Symbols
arriving at the left end are copied to the lower track, and symbols arriving at the right end are copied to
the upper track. In this way the input circulates. If M′ is started with w∈ A+ on its upper track and empty
lower track, then the reversal of w is written on the lower track after in |w| time steps, that is, when the
FSSP of the first task fires. �

200 Cellular Automaton Transducers

t

#
a b a a b

#

#
b a a b
a

#

#
a a b

b a
#

#
a b
a b a

#

#
b
a a b a

#

#
b a a b a

#

Figure 4: Space-time diagram of a two-way cellular automaton reversing its input.

Theorem 4 left open whether there is a proper inclusion between the transduction families or whether
they are incomparable. Though real-time two-way cellular automata accept a strictly larger family of lan-
guages than real-time iterative arrays, we cannot conclude that there is an inclusion between the trans-
duction families. The reason is that iterative arrays receive their input sequentially to the communication
cell and emit the output sequentially by the communication cell as well. So, when the last input symbol
is read by the leftmost IAT cell, the last output is emitted also by the leftmost cell. However, for CAT
this last output has to be at the right of the remaining output. Therefore, the usual simulation of an IA by
a CA where the leftmost CA cell simulates the communication cell and the input is successively shifted
to the left does not work. Nevertheless, the next result shows that the simulation is possible as long as
‘fair’ time complexities are considered. Clearly, an iterative array transducer can emit an output up to
the time complexity to, while in a cellular automaton transducer each cell can emit only one output. So,
any time complexity to larger than linear time yields a trivial transduction computed by an IAT but not
by any CAT and, from this point of view, is ‘unfair’.

Theorem 6 Let ti, to : N→ N be two mappings so that ti(n) ≤ k1 · n, to(n) ≤ k2 · n, for two constants
1≤ k1,k2. Then any transduction belonging to T (IATti,to) is computed by some CATti,to .

Proof Let M = 〈S,F,A,B,C,s0,δ ,δ0〉 be an IATti,to . By standard techniques M can be modified such
that a cell never reenters the quiescent state after having left it, and that never more than n cells are non-
quiescent on inputs of length n until the transduction is completed. The former property can be achieved
by introducing a new state to which non-quiescent cells change instead of the quiescent state. The latter
property is obtained by grouping max{k1,k2} cells into one.

As mentioned above, the transduction computed by M can be divided into two tasks running on
different tracks. Since any language accepted by a ti-time iterative array is known to be accepted by a
ti-time two-way cellular automaton as well, it remains to be shown how to simulate the transformation
of the input into the output by a CAT M′ = 〈S′,F ′,A,B,#,δ ′〉.

Assume for a moment that k2 = 1, that is, to is real time. Basically, the idea of the simulation (of the
second task) is as follows (see Figures 5 and 6). Every cell of M′ has five registers. In the first and second
register, cells of M are simulated. So, they initially carry the quiescent state of M. At the beginning, the
leftmost cell of M′ simulates the communication cell of M for two time steps. Then the second cell of

M. Kutrib, A. Malcher 201

M′ simulates the communication cell for another two time steps, and so on. When cell i simulates the
communication cell, then the concatenation of the first two registers of cells i, i− 1, . . . ,1 represent the
states of the cells 1,2, . . . ,2i−1 or 1,2, . . . ,2i of M. In order to provide the necessary input symbols for
the simulation of the communication cell, on the third track M′ shifts its input to the left at every other
time step. To this end, a modulo two counter is maintained in the fourth registers. When the end-of-input
symbol meets the simulation of the communication cell in cell dn/2e, the simulation of M is completed.
To conclude the idea of the construction the output has to be described. In the right half of the automaton,
each cell passed through by the end-of-input symbol emits λ . In the left half, each cell emits its output
when it has simulated two steps of the communication cell. The output is the concatenation of the two
outputs generated by the communication cell. To this end, the first output has to be remembered for one
time step in the fifth register. Dependent on the parity of the length of the input, the last output possibly
has to be emitted by a cell having simulated only one step of the communication cell. So, the output of
the IAT is simulated in the left half of the CAT while the right half actually emits the empty word.

Formally, the construction is as follows (see Figures 5 and 6).

S′ = S×S× (A∪{C})×{0,1}×B≤ j,

where j is the length of the longest output emitted in one step by the communication cell of M, and C is
the end-of-input symbol of the IAT. On input w= a1a2 · · ·an ∈An, cell i is initially in state (s0,s0,ai,0,λ).

· · ·

p1 p2 p3

q1 q2 q3

i1 i2 i3
d1 d2 d3d1 d2 d3

λ λ λ

· · · #

Figure 5: Structure of CAT registers and denotation of their contents. Here all fifth registers are empty.

A cell that detects that its left neighbor has just filled the first two registers, starts to simulate the
communication cell for two time steps. Similarly, so does the leftmost cell at initial time. As before,
δ0,s (δs) denotes the first component of the value of δ0 (δ), while δ0,o (δo) denotes the second component.
So, for p1, p2,q1 6= s0, we define

δ
′(#,(s0,s0, i2,0,λ),(s0,s0, i3,0,λ)) = ((δ0,s(i2,s0,s0),s0, i2,1,δ0,o(i2,s0,s0)),λ),

δ
′(#,(p2,s0, i2,1,β),(s0,s0, i3,1,λ)) =

((δs(p2,s0,s0),δ0,s(i3, p2,s0), i3,0,λ),βδ0,o(i3, p2,s0)),

δ
′((p1,q1, i1,0,λ),(s0,s0, i2,0,λ),(s0,s0, i3,0,λ)) = ((δ0,s(i2,q1, p1),s0, i2,1,δ0,o(i2,q1, p1)),λ),

δ
′((p1,q1, i1,1,λ),(p2,s0, i2,1,β),(s0,s0, i3,1,λ)) =

((δs(p2,q1, p1),δ0,s(i3, p2,q1), i3,0,λ),βδ0,o(i3, p2,q1)).

A cell that already has simulated two steps of the communication cell continues to simulate cells of the
IAT by applying the following transitions, where p1,q1, p2,q2 6= s0:

δ
′(#,(p2,q2, i2,d2,λ),(p3,q3, i3,d3,λ)) =

((δs(p2,s0,s0),δs(q2, p2,s0), i2+d2 ,1−d2,λ),λ),

δ
′((p1,q1, i1,d1,λ),(p2,q2, i2,d2,λ),(p3,q3, i3,d3,λ)) =

((δs(p2,q1, p1),δs(q2, p2,q1), i2+d2 ,1−d2,λ),λ).

202 Cellular Automaton Transducers

...

am+1 →
um ← r1 r2 r3 · · · rm s0 s0 s0 · · ·

IAT:

...

am+2 →
um+1 ← r′

1 r′
2 r′

3 · · · r′
m r′

m+1 s0 s0 · · ·

...

#

rm

rm−1

am
2

+1

0

λ

r4

r3

am−1

0

λ

r2

r1

am

0

λ

s0

s0

am+1

0

λ

s0

s0

an

0

λ

s0

s0

!

0

λ

· · · · · · · · · #

CAT:

...

#

r′
m+1

r′
m

am
2

+1

1

λ

r′
5

r′
4

am−1

1

λ

r′
3

r′
2

am

1

λ

r′
1

s0

am+1

1

um

s0

s0

an

1

λ

s0

s0

!

1

λ

· · · · · · · · · #

Figure 6: Principle of a CAT simulating an IAT. The input is a1a2 · · ·an and m is even. Depicted are the
two consecutive configurations at time steps m and m+1 for the IAT and for the CAT.

Finally, the cells that did not simulate a step of the communication cell behave according to the following
transitions, where p1 6= s0:

δ
′((p1,s0, i1,1,λ),(s0,s0, i2,1,λ),(s0,s0, i3,1,λ)) = ((s0,s0, i3,0,λ),λ),

δ
′((s0,s0, i1,0,λ),(s0,s0, i2,0,λ),(s0,s0, i3,0,λ)) = ((s0,s0, i2,1,λ),λ),

δ
′((p1,s0, i1,1,λ),(s0,s0, i2,1,λ),#) = ((s0,s0,C,0,λ),λ),

δ
′((s0,s0, i1,0,λ),(s0,s0, i2,0,λ),#) = ((s0,s0, i2,1,λ),λ).

This concludes the construction for the assumption k2 = 1, that is, for to(n) = n. Now let constant k2 be at
least two. In this case, the simulation is slightly modified as follows. Each cell simulates successively k2
steps of the communication cell. In order to provide the correct input symbols the input is shifted to
the left k2− 1 times within k2 steps. To this end, a modulo k2 counter is maintained. The simulation is
completed when the rightmost cell (cell n) of the CAT has finished to simulate the communication cell.
Clearly, at that time k2 · n steps have been simulated. Similar to the construction above, a cell emits its
output after having finished to simulate the communication cell, and the output is the concatenation of
the outputs computed during these k2 steps. �

M. Kutrib, A. Malcher 203

So, for the time complexities real time and linear time, the parallel input/output mode is not weaker
than the sequential one. In fact, Theorems 4 and 6 imply that the former is strictly stronger for (rt,rt)
and (rt, lt):

Corollary 7 The family T (IATrt,rt) is strictly included in T (CATrt,rt), and T (IATrt,lt) is strictly in-
cluded in T (CATrt,lt).

Since the families of languages accepted by two-way cellular automata and iterative arrays in lin-
ear time are known to be identical, the questions for the precise relations between T (IATlt,rt) and
T (CATlt,rt) or between T (IATlt,lt) and T (CATlt,lt) raise immediately.

Proposition 8 The family T (IATlt,rt) is strictly included in T (CATlt,rt).

Proof The inclusion T (IATlt,rt) ⊆ T (CATlt,rt) follows again by Theorem 6. Moreover, if the trans-
duction {(w,wR) | w ∈ {a,b}∗ } would be computable by some IATlt,rt , then it would be computed by an
IATrt,rt , since the trivial input to be accepted is {a,b}∗. However, by Example 5 this language separates
the families T (IATrt,rt) and T (CATrt,rt) and, thus, it separates T (IATlt,rt) and T (CATlt,rt). �

For the last time complexity in question (lt, lt) we obtain a different situation. The parallel and
sequential input/output modes are equally powerful.

Theorem 9 The families T (IATlt,lt) and T (CATlt,lt) are identical.

Proof The inclusion T (IATlt,lt)⊆T (CATlt,lt) follows once more by Theorem 6.
Conversely, an IATlt,lt can simulate a CATlt,lt as follows. In a first phase, it reads the input and

stores it successively in its cells. In a second phase, the iterative array transducer starts a FSSP in the
communication cell, that synchronizes the n cells within 2n− 2 time steps. Finally, all cells start the
simulation of the CAT at the same time. Clearly, the iterative array transducer obeys linear time bounds
if the cellular automaton transducer does. �

The previous result can be generalized to arbitrary time complexities beyond linear time as long as
the iterative arrays use linear space only. For space complexities beyond linear space, clearly, iterative
arrays are stronger than cellular automata, since the latter are linearly space bounded by definition.

4 Comparison with Finite State Transducers and Pushdown Transducers

Here, we turn to compare cellular automaton transducers with finite state transducers (FST) and push-
down transducers (PDT). These devices are in essence finite automata and pushdown automata, where
each transition is associated with a possibly empty output word (see [1]). In their most general form,
FST and PDT are nondeterministic devices, that is, the partial transition function of an FST maps from
S× (A∪{λ}) into the finite subsets of S×B∗. As above, S denotes the state set and A the input alpha-
bet. The partial transition function of a PDT maps from S× (A∪ {λ})×G into the finite subsets of
S×B∗×G∗, where G denotes the pushdown alphabet. Since a nondeterministic transducer may trans-
form an input into different outputs, which is impossible for deterministic CAT, in the sequel we only
study deterministic, unambiguous, and single valued devices.

An FST M is called single valued (SFST) if for all (w1,v1),(w2,v2)∈ T (M) either (w1,v1) = (w2,v2)
or w1 6= w2. An SFST is said to be unambiguous (UFST) if for all (w,v) ∈ T (M) there is a unique
computation transforming w into v. Finally, a UFST is deterministic (DFST) if any computation is

204 Cellular Automaton Transducers

deterministic. It has been shown in [9] that every single-valued finite state transducer can be simulated
by an unambiguous one. Furthermore, it is known (see, for example, [9]) that

T (DFST)⊂T (UFST) = T (SFST).

The notions of single-valued PDT (SPDT), unambiguous PDT (UPDT), and deterministic PDT
(DPDT) are defined analogously. Additionally, a UPDT is called real-time deterministic (DPDTλ) if
it is not allowed to move on empty input. The following proper hierarchy is known: (see, for exam-
ple, [6])

T (DPDTλ)⊂T (DPDT)⊂T (UPDT)⊂T (SPDT).

In [6] it has been shown that any DFST can be simulated by some IATrt,rt , and any SFST can be
simulated by some IATrt,lt . Here, we prove that both devices can be simulated by some CAT as well.
Interestingly, the device with parallel input/output mode can compute the transductions fast, in particular
in real time, which is in contrast to the devices with sequential input/output mode.

Lemma 10 The families T (DFST) and T (SFST) are strictly included in T (CATrt,rt).

Proof We consider the transduction {(w,wR) | u∈ {a,b}∗ } of Example 5 which belongs to T (CATrt,rt),
but clearly cannot be computed by any finite state transducer. Next, we describe how a CATrt,rt can
simulate an SFST. Trivially, this construction applies to DFST as well. The idea of the simulation is
similar to the construction for IATrt,lt given in [6]. However, here we can reduce the time complexity
and, thus, have to cope with the problem of speeding up the computation to real time.

Let M = 〈S,F,A,B,s0,δ 〉 be an unambiguous SFST. Due to a result in [9] we may assume without
loss of generality that M does not move on empty input. First, from M a nondeterministic finite automa-
ton MNFA = 〈S,F,A,s0,δ

′〉 is extracted that accepts L(M). Then, automaton MNFA is converted into an
equivalent deterministic finite automaton MDFA by the powerset construction.

Now we turn to the construction of a CATrt,rt M′ which simulates M. Transducer M′ has several
tracks. The input is stored in the first register and, additionally, its second register is used to shift the
input to the left in every time step. In the third register of the leftmost cell the deterministic finite
automaton MDFA is simulated which receives its input on the second track. Now M′ accepts if and only
if MDFA accepts the input w at time |w|.

The second task of M′ is to compute the output. For this purpose, the unique accepting computation
of MNFA has to be identified among all computations on w. As a first step, automaton MNFA is converted
into an equivalent right linear grammar GNFA with axiom X . The productions of GNFA have three different
forms:

1. X → a[q′] for all transitions q′ ∈ δ ′(s0,a) with a ∈ A,

2. [q]→ a[q′] for all transitions q′ ∈ δ ′(q,a) with q ∈ S,a ∈ A,

3. [q]→ a for all transitions q′ ∈ δ ′(q,a) with q ∈ S, q′ ∈ F , and a ∈ A.

So, every production in GNFA corresponds to a transition rule in MNFA and M and, thus, corresponds to
an output u ∈ B∗.

Let w = a1a2 · · ·an. We consider sets V1,V2, . . . ,Vn of nonterminals from GNFA so that Y ∈Vi, if and
only if there is a derivation Y ⇒∗ aiai+1 · · ·an in GNFA. Set Vn includes exactly all nonterminals Y for
which the production Y → an belongs to GNFA. In general, for 1 ≤ i < n, the set Vi includes exactly all
nonterminals Y for which the production Y → aiZ belongs to GNFA and Z ∈ Vi+1. Clearly, set Vi can be
computed from ai and Vi+1.

M. Kutrib, A. Malcher 205

Let us assume for a moment that n is even. The next construction step is to set up M′ so that
V1,V2, . . . ,Vn are computed in the cells n

2 +1, n
2 +2, . . . ,n within n

2 time steps. To this end, on an additional
track the input is shifted to the right in every time step. Moreover, in the first step the rightmost cell
computes the sets Vn−1 and Vn with the knowledge of an−1 and an. In the next time step, cell n− 1
computes the sets Vn−3 and Vn−2 with the knowledge of an−3, an−2, Vn−1, and Vn. In general, cell n− i+1
computes the sets Vn−2(i−1)−1 and Vn−2(i−1) in time step i with the knowledge of an−2(i−1)−1, an−2(i−1),
Vn−2(i−1)+1, and Vn−2(i−1)+2. Additionally, the symbols an−2(i−1)−1 and an−2(i−1) are stored in another
two registers. Thus, at time step n

2 the sets V1 and V2 are computed in cell n
2 + 1. (see Figure 7 for an

example). The case when n is odd is handled similarly. Then, the sets V1,V2, . . . ,Vn are computed in the
cells dn

2e,dn
2e+1, . . . ,n within dn

2e time steps.
From the sets Vi now the unique accepting computation path of M is extracted. Clearly, w ∈ L(GNFA)

if and only if X ∈ V1. Moreover, there is only one production of the form X → a1Z1 in V1. Otherwise
the accepting path would not be unique. For the same reason there is only one production of the form
Z1→ a2Z2 in V2, and so on. Let us again assume for a moment that n is even, and let the unique sequence
of productions that derive w be p1, p2, . . . , pn. At time step n

2 + 1, the cells n
2 and n

2 + 1 determine the
productions p1 and p2. This is possible, since both cells can identify themselves in time step n

2 +1, and
all necessary information is available in the cells and their neighborhoods. Additionally, the productions
computed are sent to the left on an additional track. Furthermore, in cell n

2 + 1 a signal R is sent to the
right. In the next time step, cell n

2 + 1 determines p3 and by signal R cell n
2 + 2 is caused to determine

p4. Both productions are subsequently shifted to the left. In general, R arrives at cell n
2 + i at time step

n
2 + i and causes cell n

2 + i− 1 to determine p2i−1 and cell n
2 + i to determine p2i. Again, all necessary

information is available in the cells and their neighborhoods. The case when n is odd can be handled
similarly again. In this case, the productions p1, p2, . . . , pn are computed in the same way in the cells
dn

2e−1,dn
2e, . . . ,n and similarly are sent to the left.

By construction, production pi reaches cell i at time step n, for 1≤ i≤ n. At this moment, the output
ui ∈ B∗ associated with the transition rule that led to the definition of the production has to be emitted
in cell i. So, it remains to be ensured that all cells are synchronized at time step n. As is described in
Example 3, this can be achieved by simulating an FSSP on another track.

Altogether, we obtain that M′ simulates M, accepts and emits the output in real time. Thus, SFST M
is simulated by a CATrt,rt . �

The next result follows from known results on IATrt,rt and the simulation of IAT by CAT as presented
in Section 3. It is worth mentioning that T (SFST) and T (DPDTλ) are incomparable [6]. Here, we
obtain that both classes are included in T (CATrt,rt).

Lemma 11 The family T (DPDTλ) is strictly included in T (CATrt,rt).

Proof The assertion follows from the fact that T (DPDTλ) is strictly included in T (IATrt,rt) ([6]) and
that T (IATrt,rt) is strictly included in T (CATrt,rt) due to Corollary 7. �

Finally, we will show that any DPDT can be simulated by some CATrt,lt . This is again an improve-
ment in comparison with IAT. It has been shown in [6] that any DPDT can be simulated by some IATlt,lt
which in turn can be simulated by some CATlt,lt owing to Theorem 9. Here, we obtain that the simulation
can already be achieved by some CATrt,lt .

Lemma 12 The family T (DPDT) is strictly included in T (CATrt,lt).

206 Cellular Automaton Transducers

p1 p2 p3 p4 p5 p6 p7 p8

p1 p2 p3 p4 p5 p6
a7 a8

V7 V8
#

p1 p2 p3 p4
a5 a6

V5 V6

a7 a8

V7 V8
#

p1 p2
a3 a4

V3 V4

a5 a6

V5 V6

a7 a8

V7 V8
#

#,a4
a1 a2

V1 V2

a3 a4

V3 V4

a5 a6

V5 V6

a7 a8

V7 V8
#

#,a3 a1,a4 a2,a5
a3 a4

V3 V4

a5 a6

V5 V6

a7 a8

V7 V8
#

#,a2 a1,a3 a2,a4 a3,a5 a4,a6
a5 a6

V5 V6

a7 a8

V7 V8
#

#,a1 a1,a2 a2,a3 a3,a4 a4,a5 a5,a6 a6,a7
a7 a8

V7 V8
#

#

t

a1 a2 a3 a4 a5 a6 a7 a8 #

Figure 7: Schematic computation of a CATrt,rt simulating an SFST on input a1a2 · · ·a8. In the first four
time steps, the sets V1,V2, . . . ,V8 are computed in cells 5, 6, 7, and 8. Thus, an accepting path has been
stored in the last four cells which is extracted in the last four time steps and the corresponding output of
the transitions is distributed to the correct cells. The simulation of MDFA and the synchronization is not
depicted.

Proof The transduction T = {(ww,wc|w|) | w ∈ {a,b}+ } cannot be computed by any pushdown trans-
ducer, since the language {ww | w ∈ {a,b}+ } is not context free.

On the other hand, transduction T can be computed by a CATrt,rt and, thus, by a CATrt,lt . To this
end, as in Example 3 two instances of the FSSP are initiated at both ends of the array that cause each cell
to fire at time n. Firing of a cell in the left half means to emit the original input symbol and firing in the
second half means to emit symbol c. Since the language {ww | w ∈ {a,b}+ } is accepted by a real-time
CA this shows T ∈T (CATrt,rt).

Given a deterministic pushdown transducer M with state set S and pushdown store alphabet G, we
next construct a CATrt,lt M′ simulating M.

There is a constant k1 ≥ 0 such that M cannot push more than k1 pushdown symbols in one time step,
and M can pop at most one pushdown symbol in one time step. Moreover, there is a constant k2 ≤ |S| · |G|
such that M cannot perform more than k2 subsequent moves on empty input. From these facts follows
that M works in linear time. Let k = max{k1,k2}.

Basically, the CATrt,lt M′ computes five tasks on different tracks. On the first track, a deterministic
pushdown automaton is simulated in real time that accepts the language L(M). The details of such a
simulation can be found in [4].

It remains to be shown how M′ computes the output of M. The second track is used as follows. The
leftmost cell simulates the state transitions of M while on request the other cells shift the input to the
left, thus, providing the input for the leftmost cell. In detail, when the simulation of M consumes an
input symbol, a signal is sent to the right which causes the cells to shift the input one position to the left.
Otherwise, when M simulates a transition on empty input no signal is sent.

The pushdown store of M is simulated on the third track. In [4] it has been shown how to simulate
the data structure pushdown store without loss of time. Since here at most k symbols are pushed in one
time step, the simulation can be realized by grouping k pushdown symbols together.

On the fourth track, a data structure queue is implemented as is also shown in [4]. The leftmost cell

M. Kutrib, A. Malcher 207

stores transitions simulated on the second track into this queue. Since at most k consecutive transitions
are on empty input, grouping at most k + 1 transitions into one symbol to be stored ensures that any
symbol in the queue represents at least one transition consuming an input symbol. So, at most as many
symbols are stored as the input is long. Since M works in linear time, it is not difficult to see that all
these tasks are simulated by M′ in linear time as well.

The final task is to emit the output. After acceptance of the input, on the fifth track a signal is
started from the leftmost cell to the right which provides sufficient time so that all symbols are properly
stored in the queue. Having reached the rightmost cell, the signal changes its direction and moves
back to the leftmost cell. On its way it causes each cell passed through to emit u1u2 · · ·um ∈ B∗, if it
stores (p1, p2, . . . , pm) in its fourth register (the queue register), where ui is the output associated with
transition pi, 1 ≤ i ≤ m. If the fourth register is empty, the cell emits λ . When the signal arrives at the
leftmost cell again, the transduction is completed in linear time. �

References
[1] Alfred V. Aho & Jeffrey D. Ullman (1972): The Theory of Parsing, Translation, and Compiling. I: Parsing,

Prentice-Hall.
[2] Jean Berstel (1979): Transductions and Context-Free-Languages. Teubner.
[3] Oscar H. Ibarra, Tao Jiang & Hui Wang (1991): Parallel Parsing on a One-Way Linear Array of Finite-State

Machines. Theoret. Comput. Sci. 85, pp. 53–74, doi:10.1007/3-540-52048-1 51.
[4] Martin Kutrib (2008): Cellular Automata – A Computational Point of View. In: New Developments in Formal

Languages and Applications, Chapter 6, Springer, pp. 183–227, doi:10.1007/978-3-540-78291-9 6.
[5] Martin Kutrib (2009): Cellular Automata and Language Theory. In: Encyclopedia of Complexity and System

Science, Springer, pp. 800–823, doi:10.1007/978-0-387-30440-3 54.
[6] Martin Kutrib & Andreas Malcher (2010): Transductions Computed by Iterative Arrays. In: Symposium on

Cellular Automata – Journées Automates Cellulaires (JAC 2010), TUCS Lecture Notes 13, Turku Center for
Computer Science, pp. 156–167.

[7] Alvy Ray Smith III (1970): Cellular Automata and Formal Languages. In: Symposium on Switching and
Automata Theory (SWAT 1970), IEEE, pp. 216–224, doi:10.1109/SWAT.1970.4.

[8] Alvy Ray Smith III (1972): Real-Time Language Recognition by One-Dimensional Cellular Automata. J.
Comput. System Sci. 6, pp. 233–253, doi:10.1016/S0022-0000(72)80004-7.

[9] Andreas Weber & Reinhard Klemm (1995): Economy of Description for Single-Valued Transducers. Inform.
Comput. 118, pp. 327–340, doi:10.1006/inco.1995.1071.

http://dx.doi.org/10.1007/3-540-52048-1_51
http://dx.doi.org/10.1007/978-3-540-78291-9_6
http://dx.doi.org/10.1007/978-0-387-30440-3_54
http://dx.doi.org/10.1109/SWAT.1970.4
http://dx.doi.org/10.1016/S0022-0000(72)80004-7
http://dx.doi.org/10.1006/inco.1995.1071

	1 Introduction
	2 Preliminaries and Definitions
	3 Computational Capacity of Cellular Automaton Transducers
	4 Comparison with Finite State Transducers and Pushdown Transducers

