
E. Formenti (Ed.): AUTOMATA and JAC 2012 conferences
EPTCS 90, 2012, pp. 208–224, doi:10.4204/EPTCS.90.17

Intrinsic Simulations between Stochastic Cellular Automata

Pablo Arrighi
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Université de Lyon (IXXI), France

Guillaume Theyssier
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The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochas-
tic cellular automata in a unifying and composable manner. Armed with this formalism, we extend
the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic
and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a
simulation between two stochastic cellular automata, even though the intrinsic simulation relation
is shown to be undecidable in dimension two and higher. The key result behind this is the carac-
terization of equality of stochastic global maps by the existence of a coupling between the random
sources. We then prove that there is a universal non-deterministic cellular automaton, but no uni-
versal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal
partial universality.

1 Introduction

Motivations. Cellular Automata (CA) are a key tool in simulating natural phenomena. This is because
they constitute a privileged mathematical framework in which to cast the simulated phenomena, and
they describe a massively parallel architecture in which to implement the simulator. Often however, the
system that needs to be simulated is a noisy system. More embarrassingly even, it may happen that
the system that is used as a simulator is again a noisy system. The latter is uncommon if one thinks of
a classical computer as the simulator, but quite common for instance if one thinks of using a reduced
model of a system as a simulator for that system.
Fortunately when both the simulated system and the simulating system are noisy, it could happen that
both effects cancel out, i.e. that the noise of the simulator is made to coincide with that of the simulated.
In such a situation a model of noise is used to simulate another, and the simulation may even turn out to
be. . . exact. This paper attempts to give a formal answer to the question: When can it be said that a noisy
system is able to exactly simulate another?
This precise question has become crucial in the field of quantum simulation. Indeed, there are many
quantum phenomena which we need to simulate, and these in general are quite noisy. Moreover, only
quantum computers are able simulate them efficiently, but in the current state of experimental physics
these are also quite noisy. Could it be that noisy quantum computers may serve to simulate a noisy
quantum systems? The same remark applies to Natural Computing in general. Still, the question is
challenging enough in the classical setting.

Challenges and results. The first problem that one comes across is that stochastic CA have only re-
ceived little attention from the theoretical community. When they have been considered, only proba-
bilistic CA (PCA) consisting in a probabilistic function uniformly applied to a configuration have been
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studied [21, 8, 6, 3, 19, 7]. However [2] exhibits several examples (such as the Parity example which
we use later) which cannot be realized as PCA, in spite of the fact that they require only local random
correlation and hence fit naturally in the CA framework. Moreover [2] shows that the composition of
two PCA is not always a PCA. The lack of composablity of a model is an obstacle for defining intrinsic
simulation, because the notion must be defined up to grouping in space and in time. In [2] a composable
model is suggested, but it lacks formalization.
In this paper we propose a simple formalism to deal with general stochastic CA. The formalism relies on
considering a CA F(c,s) fed, besides the current configuration c, with a new fresh independent uniform
random configuration s at every time step. This allows any kind of local correlations and includes in
particular all the examples of [2]. As in turns out, the definition also captures deterministic and non-
deterministic CA (non-deterministic CA are obtained by ignoring the probability distribution over the
random configuration). More importantly, this formalism allows us to extend the notions of simulation
developed for the deterministic setting [4, 5], to the non-deterministic and stochastic settings. The choice
of making explicit the random source in the formalism has turned out to be crucial to tackle the second
problem, as it allows a precise analysis of the influence of randomness, in terms of simulation power.
Indeed the second problem that one comes across is that the question of whether two such stochastic CA
are equal in terms of probability distributions is highly non-trivial. In particular, we show that testing if
two stochastic CA define the same random map is undecidable in dimension 2 and higher (Theorem 1).
Still, we provide in section 4 an explicit tool (the coupling of the random sources of two stochastic CA)
that allows to prove (or disprove) the equality of their probability distributions. More precisely, we show
that the existence of such a coupling is strictly equivalent to the equality of the distribution of the random
maps of two stochastic CA (Theorem 2).
The choice of making expicit the random source allows us to show some no-go results. Any stochastic
CA may only simulate stochastic CA with a compatible random source (where compatibility is expressed
as a simple arithmetic equation, Theorem 4). It follows that there is no universal stochastic CA (Corol-
lary 1). Still, we show that there is a universal CA for the non-deterministic dynamics (Theorem 5), and
we are able to provide a universal stochastic CA for every class of compatible random source (Theo-
rem 6).

Plan. Section 2 recalls the vital minimum about probability theory. Section 3 states our formalism.
Section 4 gives tools to prove (or disprove) equality of stochastic global functions. Section 5 extends
the notions of intrinsic simulations to the non-deterministic and stochastic settings. Section 6 provides
the no-go results in the stochastic setting, the universality constructions. Section 7 concludes this article
with a list of open questions.

2 Standard Definitions

Even if this article focuses mainly on one-dimensional CA for the sake of simplicity, it extends naturally
to higher dimensions.

For any finite set A we consider the symbolic space AZ. For any c∈ AZ and z∈Z we denote by cz the
value of c at point z. AZ is endowed with the Cantor topology (infinite product of the discrete topology
on each copy of A) which is compact and metric (see [11] for details). A basis of this topology is given
by cylinders which are actually clopen sets: given some finite word u and some position z, the cylinder
[u]z is the set [u]z = {c ∈ AZ : ∀x,0 6 x < |u|−1,cz+x = ux}.

We denote by M (AZ) the set of Borel probability measures on AZ. By Carathéodory extension
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theorem, Borel probability measures are characterized by their value on cylinders. Concretely, a measure
is given by a function µ from cylinders to the real interval [0,1] such that µ(AZ) = 1 and

∀u ∈ Q∗,∀z ∈ Z, µ([u]z) = ∑
a∈A

µ([ua]z) = ∑
a∈A

µ([au]z−1)

We denote by νA the uniform measure over AZ (s.t. νA([u]z) = 1
|A||u| ). We shall denote it as ν when

the underlying alphabet A is clear from the context.
We endow the set M (AZ) with the compact topology given by the following distance:

D(µ1,µ2) = ∑n>0 2−n ·maxu∈A2n+1

∣∣µ1([u]−n)−µ2([u]−n)
∣∣. See [17] for a review of works on cellular

automata from the measure-theoretic point of view.

3 Stochastic Cellular Automata

Non-deterministic and stochastic cellular automata are captured by the same syntactical object given in
the following definition. They differ only by the way we look at the associated global behavior. Moreover
deterministic CA are a particular case of stochastic CA and can also be defined in the same formalism.

3.1 The Syntactical Object

Definition 1. A stochastic cellular automaton A = (Q,R,V,V ′, f ) consists in:
• a finite set of states Q

• a finite set R called the random symbols

• two finite subsets of Z: V = {v1, . . . ,vr} and V ′ = {v′1, . . . ,v′r′}, called the neighborhoods; r and r′

are the sizes of the neighborhoods and ρ = maxv∈V∪V ′ |v| is the radius of the neighborhoods.

• a local transition function f : Qr×Rr′ → Q
A function c ∈ QZ is called a configuration; c j is called the state of the cell j in configuration c. A
function s ∈ RZ is called a R-configuration.

In the particular case where V ′ = {0} (i.e., where each cell uses its own random symbol only), we
say that A is a plain probabilistic cellular automaton (PlainPCA for short).
Definition 2 (Explicit Global Function). To this local description, we associate the explicit
global function F : QZ × RZ → QZ defined for any configuration c and R-configuration s by:
F(c,s)z = f

(
(cz+v1 , . . . ,cz+vr),(sz+v′1

, . . . ,sz+v′r′
)
)
. Given a sequence

(
st
)

t of R-configurations and an ini-
tial configuration c, we define the associated space-time diagram as the bi-infinite matrix

(
ct

z
)

t>0,z∈Z
where ct ∈ QZ is defined by c0 = c and ct+1 = F(ct ,st). We also define for any t > 1 the t th iterate of the
explicit global function F t : QZ×

(
RZ)t → QZ by F0(c) = c for all configuration c and

F t+1(c,s1, . . . ,st+1) = F
(
F t(c,s1, . . . ,st),st+1)

so that ct = F t(c,s1, . . . ,st).
In this paper, we adopt the convention that local functions are denoted by a lowercase letter (typically

f ) and explicit global functions by the corresponding capital letter (typically F). Moreover, we will often
define CA through their explicit global function since details about neighborhoods often do not matter in
this paper.

The explicit global function capture all possible actions of the automaton on configurations. This
function allows to derive three kinds of dynamics: deterministic, non-deterministic and stochastic.
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3.2 Deterministic and Non-Deterministic Dynamics

Deterministic. The deterministic global function DF : QZ→ QZ of A = (Q,R,V,V ′, f ) is defined by
DF(c) = F(c,0Z) where 0 is a distinguished element of R. A is said to be deterministic if its local
transition function f does not depend on its second argument (the random symbols).

Non-Deterministic. The non-deterministic global function NF : QZ→P(QZ) of A is defined for
any configuration c ∈ QZ by NF(c) = {F(c,s) : s ∈ RZ}.

Dynamics. The deterministic dynamics of A is given by the sequence of iterates (D t
F)t>0. Similarly

the non-deterministic dynamics of A is given by the iterates N t
F : QZ→P(QZ) defined by N 0

F (c) =
{c} and N t+1

F (c) =
⋃

c′∈N t
F (c)

NF(c′).

3.3 Stochastic Dynamics

The stochastic point of view consists in taking the R-component as a source of randomness. More
precisely, the explicit global function F is fed at each time step with a random uniform and independent
R-configuration. This defines a stochastic process for which we are then interested in the distribution of
states across space and time. By Carathéodory extension theorem, this distribution is fully determined
by the probabilities of the events of the form “starting from c, the word u occurs at position z after t steps
of the process”. Formally, for t = 1, this event is the set:

E c,[u]z =
{

s ∈ RZ : F(c,s) ∈ [u]z
}
.

In order to evaluate the probability of this event, we use the locality of the explicit global func-
tion F . The event “F(c,s) ∈ [u]z” only depends of the cells of s from position a = z−ρ to position
b = z+ρ + |u|−1. Therefore, if J = {v ∈ Rb−a : F(c, [v]a)⊆ [u]z}, then E c,[u]z = ∪v∈J[v]a and hence
E c,[u]z is a measurable set of probability: νR(E c,[u]z) = ∑v∈J νR([v]a) = |J|/|R|b−a (recall that νR is the
uniform measure over RZ).

More generally to any CA A we associate its stochastic global function SF : QZ→M (QZ) defined
for any configuration c ∈ Q∗ by: ∀u ∈ QZ,∀z ∈ Z,(

SF(c)
)
([u]z) = νR(E c,[u]z) = the probability of event E c,[u]z .

Example. For instance, consider the stochastic function Parity that maps every configuration c over
the alphabet {0,1,#} to a random configuration in which every {0,1}-word of length ` delimited by two
consecutive # in c is replaced by a random independent uniform word of length ` with even parity. This
cannot be realized by a PlainPCA. Still, one can realize the stochastic function Parity as a stochastic CA
by means of a local transition function f of the above type, as follows. Given the configuration c and a
uniform random {0,1}-configuration s, f (c−1,c0,c1,s−1,s0) is: # if c0 = #; else s0 if c−1 = #; else s−1
if c1 = #; and (s−1 + s0 mod 2) otherwise. One can easily check that this local correlation ensures that
every word delimited by two consecutive # is indeed mapped to a uniform independent random word of
even parity.
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Dynamics. As opposed to the deterministic and non-deterministic setting, defining an iterate of this
map is a not so trivial task. There are two approaches: defining directly the measure after t steps or
extending the map SF to a map from M (QZ) to itself. Both rely crucially on the continuity of F . In
particular, we want to make sure that the definition of the measure after t steps matches t iterations of
the one-step map, and hence, is independent of the explicit mechanics of F but depends only on the map
SF defined by F .

The easiest one to present is the first approach. For any t > 1, the event E t
c,[u]z that the word u appears

at position z at time t from configuration c consists in the set of all t-uples of random configurations
(s1, . . . ,st) yieldings u at position z from c, i.e.:

E t
c,[u]z =

{
(s1, . . . ,st) ∈

(
RZ)t : F t(c,s1, . . . ,st) ∈ [u]z

}
As before E t

c,[u]z is a measurable set in
(
RZ)t because it is a product of finite unions of cylinders by the

locality of F . We therefore define S t
F : QZ→M (QZ), the iterate of the stochastic global function, by:(

S t
F(c)

)
([u]z) = νRt (E t

c,[u]z) = the probability of event E t
c,[u]z

where νRt denotes the uniform measure on the product space
(
RZ)t . For similar reasons as above, S t

F(c)
is a well-defined probability measure.

The following key technical fact ensures that two automata define the same distribution over time as
soon as their one-step distributions match.

Fact 1. Let A and B be two stochastic CA with the same set of states Q (and possibility different random
alphabet) and of explicit global functions F and G respectively. If SF = SG then for all t > 1 we have
S t

F = S t
G

Proof. Consider a CA of stochastic global function F . Consider a word u and a position z. Let φ : QZ→
P(RZ) be function that associates to a configuration c the event E c,[u]z . φ(c) is entirely determined by
the states of the cells from positions a = z− ρ to b = z+ |u|+ ρ in c (locality of F). Therefore φ is
constant over every cylinder [v]a with v ∈ Qb−a. If we distinguish some cv ∈ [v]a for every v ∈ Qb−a, we
obtain by definition of F t and continuity of F :

E t+1
c,[u]z

=
⋃

v∈Qb−a

(
E t

c,[v]a×E cv,[u]z

)
.

Then, since sets
(
E t

c,[v]a

)
v∈Qb−a are pairwise disjoint (because F is deterministic and cylinders [v]a are

pairwise disjoint), we have(
S t+1

F (c)
)
([u]z) = νRt+1(E t+1

c,[u]z
) = ∑

v∈Qb−a

νRt+1

(
E t

c,[v]a×E cv,[u]z

)
= ∑

v∈Qb−a

νRt (E t
c,[v]a) ·νR(E cv,[u]z)

= ∑
v∈Qb−a

(
S t

F(c)
)
([v]a) ·

(
SF(cv)

)
([u]z)

The value of St
F(c) over cylinders can thus be expressed recursively as a function of a finite number of

values SF over a finite number of cylinders. It follows that if for some pair of CA A and B with explicit
global functions F and G we have SF = SG, then S t

F = S t
G for all t.
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In our setting one can recover the non-deterministic dynamics from the stochastic dynamics of a
given stochastic CA. This heavily relies on the continuity of explicit global functions and compacity of
symbolic spaces.

Fact 2. Given two CA with same set of states and explicit global functions FA and FB, if SFA = SFB then
NFA = NFB .

Proof. Given some stochastic CA of explicit global function F , some configuration c and some cylinder
[u]z we have

NF(c)∩ [u]z 6=∅⇔ E c,[u]z 6=∅⇔
(
SF(c)

)
([u]z)> 0

by definition of NF and SF . Since NF(c) is a closed set (continuity of F) it is determined by the set
of cylinders intersecting it (compacity of the space). Hence NF(c) is determined by SF(c). The lemma
follows.

4 Equality of random maps: undecidability and explicit tools

An undecidable task for dimension 2 and higher. In the classical deterministic case, it is easy to de-
termine whether two CA have the same global function. Equivalently determining whether two stochas-
tic CA, as syntactical objects, have the same explicit global functions F and G is easy. However, given
two stochastic CA which have possibly different explicit global function F and G, it still happen that
NF = NG or SF = SG, and determining whether this is the case turns out to be a difficult problem. In
fact, Theorem 1 states that these two decision problems are at least as difficult as the surjectivity problem
of classical CA, which is undecidable in dimension 2 and higher [10].

Theorem 1. Let PN (resp. PS) be the problem of deciding whether two given stochastic CA have
the same non-deterministic (resp. stochastic) global function. The surjectivity problem of classical
deterministic CA is reducible to both PN and PS.

Proof. Consider a classical CA F : QZ→ QZ and define µF as the image by F of the uniform measure
µ0 on QZ:

µF([u]z) = ν
(
F−1([u]z)

)
It is well-known that F is surjective if and only if µF = ν (this result is true in any dimension, the proof
for dimension 1 is in [9] and follows from [12] for higher dimensions, but we recommend [17] for a
modern exposition in any dimension).

Now let us define the stochastic CA A = (Q,Q,V,V ′,g) such that G(c,s) = F(s). With this defini-
tion, A is such that, for all c, SG(c) = µF . Hence, SG(c) is the uniform measure for any c if and only
if F is surjective. We have also NG(c) = QZ for all c if and only if G is surjective. The theorem follows
since A is recursively defined from F .

Explicit tools for (dis)proving equality. Even if testing the equality of the non-deterministic or
stochastic dynamics of two stochastic CA is undecidable for dimension 2 and higher, Theorem 2 states
that equality, when it holds, can always be certified in terms of a stochastic coupling. Indeed the stochas-
tic coupling, by matching their two source of randomness, serves as a witness of the equality of the
stochastic CA. This provides us with a very useful technique, because the existence of such a coupling
is easy to prove or disprove in many concrete examples. Again the result heavily relies on the continuity
of the explicit global function F .

Let us first recall the standard notion of coupling.
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Definition 3. Let µ1 ∈ M (QZ
1 ) and µ2 ∈ M (QZ

2 ). A coupling of µ1 and µ2 is a mea-
sure γ ∈ M (QZ

1 ×QZ
2 ) such that for any measurable sets E 1 and E 2, γ(E 1×QZ

2 ) = µ1(E 1) and
γ(QZ

1 ×E 2) = µ2(E 2).

Concretely, a coupling couples two measures so that each is recovered when the other is ignored.
The motivation in defining a coupling is to bound the two distributions in order to prove that they induce
the same kind of behavior: for instance, one can easily couple the two uniform measures over {1,2} and
{1,2,3,4} so that with probability 1, both numbers will have the same parity (γ gives a probability 1/4
to each pair (1,1), (2,2), (1,3) and (2,4) and 0 to the others). This demonstrates that the parity function
is identically distributed in both cases.

Theorem 2 states that the dynamics of two stochastic CA are identical if and only if their is a coupling
of their random configurations so that their stochastic global functions become almost surely identical.
This is one of our main results.

Definition 4. Two stochastic cellular automata, A1 = (Q,R1,V1,V ′1, f1) and A2 = (Q,R2,V2,V ′2, f2), with
the same set of states Q are coupled on configuration c ∈ QZ by a measure γ ∈M (RZ

1 ×RZ
2 ) if

1. γ is a coupling of the uniform measures on RZ
1 and RZ

2 ;

2. γ
(
{(s1,s2) ∈ RZ

1 ×RZ
2 : F1(c,s1) = F2(c,s2)}

)
= 1, i.e. F1 and F2 produce almost surely the same

image when fed with the γ-coupled random sources.

Note that the set of pairs (s1,s2) defined above is measurable because it is closed (F1 and F2 are
continuous).

Theorem 2. Two stochastic CA with the same set of states have the same stochastic global function if
and only if, on each configuration c, they are coupled by some measure γc (which depends on c).

Outline of the proof. We fix a configuration c. By continuity of the explicit global functions, we construct
a sequence of partial couplings (γn

c ) matching the random configurations of finite support of radius n.
We then extract the coupling γc from (γn

c ) by compacity of M (RZ
A×RZ

B).

Proof. Details. First, if A1 = (Q,R1,V1,V ′1, f1) and A2 = (Q,R2,V2,V ′2, f2) are coupled by γc on config-
uration c ∈ QZ, consider for any cylinder [u]z the sets

E 1 = {s ∈ RZ
1 : F1(c,s) ∈ [u]z}

E 2 = {s ∈ RZ
2 : F2(c,s) ∈ [u]z}

X = {(s1,s2) ∈ RZ
1 ×RZ

2 : F1(c,s1) = F2(c,s2)}

Then, by the property of the coupling by γc, we have(
SF1(c)

)
([u]z) = ν1(E 1) = γc(E 1×RZ

2 )

where ν1 is the uniform measure on RZ
1 . But γc(E 1×RZ

2 ) = γc
(
(E 1×RZ

2 )∩X
)

since γc(X) = 1. Sym-
metrically we have (

SF2(c)
)
([u]z) = γc

(
(RZ

1 ×E 2)∩X
)
.

But, by definition of sets E 1, E 2 and X , we have RZ
1 ×E 2∩X = E 1×RZ

2 ∩X . We conclude that SF1 =
SF2 . For the other direction of the theorem, suppose SF1 =SF2 and fix some configuration c. We denote
by µ the measure SF1(c) = SF2(c). Without loss of generality we can suppose that A1 and A2 have
same raidii ρ: ρ1 = ρ2 = ρ . We construct a sequence (γn) of measures from which we can extract a limit
point (by compacity of the space of measures) which is a valid coupling of A1 and A2 on configuration
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c. To simplify the proof we focus on centered cylinders: for any word w of odd length, we denote by
[w] = [w]zw where zw =− |w|−1

2 . Let’s fix n. For any word u ∈ Q2n+1 we define:

S1
u = {s ∈ RZ

1 : F1(c,s) ∈ [u]}
S2

u = {s ∈ RZ
2 : F2(c,s) ∈ [u]}

F1 and F2 being of radius ρ we can write Si
u as a finite union of centered cylinders of length 2(n+ρ)+1:

Si
u =

⋃
v∈Pi

u

[v]

where Pi
u ⊆ R2(n+ρ)+1

i . Define the following partition Ii
u of the real interval [0,1) by:

Ii
u(v) =

[
rank(v)

#Pi
u

;
rank(v)+1

#Pi
u

[
where rank(v) ∈ {0, . . . ,#Pi

u− 1} is the rank of v in some arbitrarily chosen total ordering of Pi
u (the

lexicographical order for instance). Since the sets Pi
u form a partition of R2(n+ρ)+1

i when u ranges over
all words of Q2n+1, we have for any v ∈ R2(n+ρ)+1

i :

|Ii
u(v)|=

1
#Pi

u
=

νi([v])
µ([u])

(recall that νi stands for the uniform measure over RZ
i ). Now, for every v1 ∈ R2(n+ρ)+1

1 and
v2 ∈ R2(n+ρ)+1

2 , we construct γn as:

γ
n([v1], [v2]) =

{
|I1

u (v
1)∩ I2

u (v
2)| ·µQ([u]) if ∃u s.t. vi ∈ Pi

u for both i = 1,2
0 otherwise.

Furthermore, if 0i is a distinguished element of Ri, we extend the definition of γn to any pair v1 ∈ R2m+1
1

and v2 ∈ R2m+1
2 with m > n+ρ by:

γ
n([v1], [v2]) =

{
γn([w1], [w2]) if vi = 0m−n−ρ

i wi0m−n−ρ

i for i = 1,2
0 else.

By σ -additivity γn is thus defined on any cylinder and by extension theorem is a well-defined measure.
Now by construction, we have for any v1 ∈ R2(n+ρ)+1:

γ
n([v1],RZ

2 ) = |I1
u (v

1)| ·µQ([u])

for some u such that v1 ∈ P1
u . Hence, γn([v1],RZ

2 ) = ν1([v1]). By σ -additivity of γn and µ , this equality
holds for any v1 ∈ R2m+1 with m 6 n+ρ . Symmetrically we have γn(RZ

1 , [v
2]) = µU2([v

2]) for any v1 ∈
R2m+1. Moreover, by definition, γn([v1], [v2]) = 0 if there is no u such that vi ∈ Pi

u for i = 1,2. We deduce
that the set:

Xn =
⋃

u∈Q2n+1

S1
u×S2

u

has measure 1. More precisely, since Xn+1 ⊆ Xn, for any m 6 n, γn(Xm) = 1.
To conclude the proof, let γ be any limit point of the sequence (γn)n. By the definition of the distance on
the space of measures, we have:
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1. ∀m,∀w ∈ R2m+1
1 ,γ([w],RZ

2 ) = ν1([w]) and symmetrically for the R2 component, hence γ is a cou-
pling of uniform measure on RZ

1 and RZ
2 ;

2. ∀n,γ(Xn) = 1 hence γ(∩nXn) = 1 where⋂
n

Xn = X = {(s1,s2) ∈ RZ
1 ×RZ

2 : F1(c,s1) = F2(c,s2)}

We deduce that A1 and A2 are coupled on c by measure γ .

Notice that the proof of this theorem is non-constructive (recall that equality of stochastic global
maps is undecidable in dimension 2 and higher). Moreover, it is easy to get convinced on a simple
example that the coupling must depend on the configuration. Consider the two following automata with
states Q = R = {0,1} and neighborhoods V = V ′ = {0}: A with explicit global function F(c,s) =
s and B with explicit global function G(c′,s′) = c′ + s′ mod 2. Clearly, both A and B define the
same blank noise CA and the coupling proving this fact is defined for all z ∈ Z and all a,b ∈ {0,1} by
γc([a]z, [b]z) = 1/2 if and only if a = b+ cz mod 2, and = 0 otherwise. This coupling demonstrates
indeed that γc

(
{(s,s′) : F(c,s) = G(c,s′)}

)
= 1 yielding that the dynamics are identical; but note that γc

must depend on c.

5 Intrinsic Simulations

The purpose of this section is to give a precise meaning to the sentence “A is able to simulate B” or
equivalently “A contains the behavior of B”.

Our approach follows a series of works on simulations between classical deterministic CA [18, 13,
20, 4, 5]. We are going to define simulation pre-orders on stochastic CA which extend the simulation
pre-orders defined over classical deterministic CA in [5]. Precisely, we want the new pre-order to be ex-
actly the classical pre-order when restricted to deterministic CA. For general background and motivation
behind this simulation pre-order approach we refer to [4, 5]. Intrinsic simulation has also been brought
to deterministic quantum CA in [1].

In each case (the deterministic, the non-deterministic, and the stochastic global functions), we will
define simulation as an equality of dynamics up to some local transformations.

5.1 Transformations

The transformations we consider are natural stochastic extensions of the transformation defined in [4, 5]
for the classical deterministic CA. These transformations can be divided into two categories: trimming
operations which allow to trim unwanted parts off the dynamics, and rescaling transformations which
augment the set of states and/or the neighborhoods.

5.1.1 Trimming operations

They are based on three ingredients: 1) renaming states; 2) restricting to a stable subset of states; and
3) merging compatible states. These ingredients are synthetized into two definitions (state renaming is
implicit in both definitions).

Definition 5. Let A = (Q,R,V,V ′, f ) be a stochastic CA.
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• if i : Q′→Q is an injective function such that Y = (i(Q′))Z is F-stable (i.e. F(Y,RZ)⊆Y ) then the
i-restriction of A is the stochastic CA:

iA = (Q′,R,V,V ′, i f )

where i f is the local function associated with the explicit global function iF such that, ∀c ∈ I,
∀s ∈ RZ, iF(c,s) = I−1 ◦F(I(c),s) where I : Q′Z→ QZ denotes the cell-by-cell extension of i;

• if π : Q→Q′ is surjective and F-compatible (s.t. Π◦F(c,s) = Π◦F(c′,s) for all s and all c,c′ such
that Π(c) = Π(c′), where Π : QZ→ Q′Z is the cell-by-cell extension of π), then the π-projection
of A is the stochastic CA:

πA = (Q′,R,V,V ′,π f )

where π f is the local function associated with the explicit global function πF such that πF(c′,s) =
Π◦F(c,s) where c is any configuration in Π−1(c′).

If i : Q′→ Q and π : Q′→ Q′′ verify the required stability and compatibility conditions, we denote
by π

i A the π-projection of the i-restriction of A .
Definition 6. Let A1 = (Q1,R1,V1,V ′1, f1) and A2 = (Q2,R2,V2,V ′2, f2) be two arbitrary stochastic CA.
We define the following relations:

• A1
S
v A2, A1 is a stochastic subautomaton of A2, if there is some i-restriction of A2 such that

SF1 = SiF2;

• A1
S
EA2, A1 is a stochastic factor of A2, if there is some π-projection of A2 such that SF1 =Sπ F2;

Similarly, we define
N
v and

N
E (for non-deterministic global maps) and

D
v and

D
E (for deterministic global

maps). We also define the three relations
D
Ev,

N
Ev and

S
Ev using projections of restrictions. For instance:

A1
S
EvA2 if there are i and π such that SF1 = Sπ

i F2 .

5.1.2 Rescaling transformations.

The transformations defined so far only allow to derive a finite number of CA from a given CA (up to
renaming of the states) and thus induce only a finite number of dynamics. In particular, the size of the set
of states, and the size of the neighborhood, can only decrease. Following the approach taken for classical
deterministic CA, we now consider rescaling transformations, which allow to increase the set of states,
the neighborhood, etc. Rescaling transformations consist in: composing with a fixed translation, packing
cells into fixed-size blocks, and iterating the rule a fixed number of times. Notice that since stochastic
CA are composable, they are stable under rescaling operations, whereas PlainPCA are not.

The translation σk (for k ∈ Z) is the deterministic CA whose deterministic global function verifies:
∀c,∀z,Dσk(c)z = cz+k.

Given any finite set S and any m > 1, we define the bijective packing map bm : SZ→
(
Sm
)Z by

bm(c)z = (cmz,cmz+1, . . . ,cmz+m−1) for all c and z.
Definition 7. Let A = (Q,R,V,V ′, f ) be any stochastic CA. Let m, t > 1 and k ∈ Z. The rescaling of
A with parameters (m, t,k) is the stochastic CA A 〈m,t,k〉 =

(
Qm,(Rm)t ,V+,V ′+, f 〈m,t,k〉) whose explicit

global function F〈m,t,k〉 is defined by:

F〈m,t,k〉(c,s) = bm ◦σk ◦F t(b−1
m (c),b−1

m (s1), . . . ,b−1
m (st))

where s1, . . . ,st ∈ (Rm)Z are the t components of s (s.t. si
j = (s j)i), and V+,V ′+ the modified neighbour-

hoods following bm.
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5.2 Simulation Pre-Orders

We can now define the general simulation relations.

Definition 8. For each local relation < among the nine relations of Definition 6, we define the associated
simulation relation 4 by

A1 4 A2⇔∃m1,m2, t1, t2,k1,k2,A1
〈m1,t1,k1〉 < A2

〈m2,t2,k2〉

We therefore define nine simulation relations 4S
i , 4S

π , 4S
m, 4N

i , 4N
π , 4N

m, 4D
i , 4D

π and 4D
m, where the sub-

script denotes the kind of local relation used (injection, πππrojection or mixed) and the superscript denotes
the kind of global functions which are compared (Stochastic, Non-deterministic or Deterministic).

Lemma 1. A restriction (resp. projection) of a restriction (resp. projection) of some stochastic CA A is
a restriction (resp. projection) of A . Moreover, any restriction of a projection of A is the projection of
some restriction of A .

Proof. This is a straightforward generalization of the corresponding result in the classical deterministic
settings. A detailed proof for the deterministic case appears in Theorem 2.1 of [5]. All arguments given
in the proof are easily adaptable to our setting.

The lemma above implies that any sequence of admissible restrictions and projections can be ex-
pressed as the projection of some restriction.

From Lemma 1 it follows that all local relations defined are transitive and reflexive. Moreover,

the deterministic relations
D
v and

D
E are exactly the same as those defined in the classical setting of

deterministic CA [5].

Fact 3. All simulation relations 4S
i , 4S

π , 4S
m, 4N

i , 4N
π , 4N

m, 4D
i , 4D

π , 4D
m are pre-orders.

Proof. It is sufficient to verify that for any local comparison relation <:

1. < is compatible with rescalings, i.e.

A1 <A2⇒A1
〈m,t,k〉<A2

〈m,t,k〉

2. rescalings are commutative with respect to <, i.e.

A1
〈m,t,k〉〈m

′,t ′,k′〉
<A1

〈m′,t ′,k′〉〈m,t,k〉

Both properties are straightforward from the definitions. Then, the transitivity of any simulation relation
follows from the transitivity of the corresponding local comparison relation <.

Each stochastic pre-order is a refinement of the corresponding non-deterministic pre-order as shown
by the following fact (straightforward corollary of Fact 2).

Fact 4. If A14S
i A2 then A14N

i A2. The same is true for pre-orders 4S
π , 4S

m and the corresponding
(non-)deterministic pre-orders.

Note that for any simulation relation 4, A1 4 A2 means that two global functions are equal where
one is obtained by applying only space-time-diagram-preserving rescaling transformations to A1 (the
simulated CA) and the other is obtained by applying both rescaling transformations and trimming oper-
ations to A2 (the simulator).
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5.3 Classifications of Stochastic Cellular Automata

Simulation pre-orders can be seen as a tool to classify the behaviors of CA [4, 5]. They can be used to
formalize in a more precise way the empirical classes defined historically through experimentations. We
now give some results on the structure induced on stochastic CA by this classification.

Ideals. Some classes of stochastic CA may only simulate CA of their own class. This is the case of the
deterministic CA and also of the class of the noisy CA which are the CA F such that NF(c) = QZ for
all c.

Fact 5. Let 4 be any non-deterministic or stochastic pre-order. Let A1 and A2 be stochastic CA such
that A1 4 A2. If A2 is deterministic (resp. noisy) then A1 is deterministic (resp. noisy).

Proof. By Fact 4 it is sufficient to prove this for non-deterministic simulations. The property that the
explicit global function is deterministic or noisy (i.e. surjective on each configuration) is preserved by
rescaling transformation. Hence it is sufficient to check that being deterministic or noisy is preserved by
restriction and projection. This is straightforward for projection (because a projection is an onto map).
Determinism is clearly preserved by restriction. Moreover, a noisy stochastic CA does not admit any
non-trivial restriction because no subset of states is stable under iteration. Hence, the restriction of a
noisy CA is necessarily itself (up to renaming of states) or the trivial CA with only one state. Both are
noisy and the fact follows.

Simulation of stochastic CA by a PlainPCA. Even if some stochastic CA cannot be expressed as a
PlainPCA (because of potential local random correlation), each can be simulated by a particular Plain-
PCA. Each step is simulated by two steps: 1) each cell first copies its random symbol in its state so that
2) its neighbors read in its state its random symbol to complete the transition.

Theorem 3. For any stochastic CA A = (Q,R,V,V ′, fA) there is a PlainPCA B such that A 4S
i B.

Proof. The idea is to simulate one step of A by two steps of B:

1. generate a random symbol locally and copy it to a component of states;

2. simulate a stochastic transition of A reading states only and ignoring random symbols.

Formally, let B = (QB,R,V,V ′, fB) where QB = Q∪Q×R and fB is any local function such that the
associated explicit global function FB verifies:

1. for any c ∈ QZ ⊆ QZ
B and any s ∈ RZ,

(
FB(c,s)

)
z = (cz,sz)

2. for any c ∈ (Q×R)Z ⊆ QZ
B and any s ∈ RZ, FB(c,s) = FA(πQ(c),πR(c)) where πQ and πR are cell-

by-cell projections on Q and R respectively.

It is straightforward to check that A
S
vB2 with the restriction induced by the identity injection

i : QZ→ QZ ⊆ QZ
B .

Note that the restriction is essential in the above construction since the behavior is not specified (and
no correct behavior can be specified) on configurations where states of type Q and states of type Q×R
are mixed. In particular it is false that the stochastic CA is the square of the PlainPCA; it is a restriction
of that.

Still, one could think that we might achieve a simpler simulation by taking QB = Q×R and doing
the two steps simultaneously so that FB(c,s) would be the cell by cell product of FA(πQ(c),πR(c)) and
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s. But this does not work: for such a B there is generally no restriction nor projection nor combination
of both able to reproduce the stochastic global function of A . Indeed, if some c and s1,s2 are such that
FA(c,s1) 6= FA(c,s2) there is no valid way to define a corresponding configuration for c in FB because the
Q-component of states in FB depends only on the previous deterministic configuration, not on the random
configuration. Then, one might see this impossibility as an argument against our formalism of simulation.
Of course, many extensions of our definitions might be considered to allow more simulations between
stochastic CA. However, we think that the random component of the simulated CA should never be used
to determine which deterministic configuration of the simulator CA corresponds to which deterministic
configuration of the simulated CA. Doing so would be like predicting the noise of a system to prepare
the state of another system. In particular, we do not see any reasonable formal setting where FB defined
as above would be able to simulate FA. FA and FB might look like two syntactical variants of essentially
the same object, but, as stochastic dynamical systems, they are very different. For instance, not every
configuration can be reached from any configuration in FB whereas FA could have this property (i.e. be a
noisy stochastic CA).

We believe that a better understanding of the relationship between stochastic CA and PlainPCA
should go through the following questions: is there a PlainPCA in any equivalence class induced by the
pre-order 4S

i ? is any stochastic CA 4S
π -simulated by some PlainPCA?

6 Universality

The quest for universal CA is as old as the model itself. Intrinsic universality has also a long story as
reported in [15]. Our formalism of simulation allows to open the quest to stochastic cellular automata.

Indeed, one of the main by-product of each simulation pre-order defined above is a notion of intrinsic
universality. Formally, given some simulation pre-order 4, a stochastic CA A is 4-universal if for any
stochastic CA B we have B 4 A . When considering deterministic pre-orders, we recover the notions
of universality already studied in literature for classical deterministic CA [14, 16, 5].

6.1 Negative results

When considering non-deterministic or stochastic global functions, the random symbols are hidden. Still,
the choice of the set of random symbols plays an important role in the global functions we can possibly
obtain. We denote by PF(n) the set of the prime factors of n. By extension, for a stochastic CA A with
set of random symbols R, we denote by PF(A ) the set PF(|R|). We have the following result:

Lemma 2. Let A1 = (Q,R1,V1,V ′1, f1) and A2 = (Q,R2,V2,V ′2, f2) be two stochastic CA with same set
of states. If they are not deterministic and SF1 = SF2 then PF(A1)∩PF(A2) 6=∅.

Proof. If A1 is not deterministic, then there must exist some configuration c∈QZ and two configurations
y 6= y′ such that {y,y′} ⊆NF1(c). So there are two disjoint cylinders [u]z ∩ [u′]z = ∅ with y ∈ [u]z and
y′ ∈ [u′]z. Therefore 0 <

(
SF(c)

)
([u]z)< 1. Besides, by definition of SF , we have

(
SF1(c)

)
([u]z) = ν1(E

1
c,[u]z) =

p
q
< 1

for some relatively prime numbers p and q (recall that ν1 is the uniform measure over RZ
1 and that

E 1
c,[u]z = {s ∈ RZ

1 : F1(c,s) ∈ [u]z}). Moreover PF(q)⊆ PF(|R1|) = PF(A1) since E 1
c,[u]z is a finite union
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of cylinders and since the ν1-measure of any cylinder is a rational of the form a
|R1|b

for some integers
a,b > 1. Now, by hypothesis, we have also(

SF2(c)
)
([u]z) =

p
q

and by a similar argument as above we deduce that PF(q)⊆PF(A2). The lemma follows since PF(q) 6=
∅ (because p

q < 1).

From Lemma 2 it follows, surprisingly perhaps, that the random symbols of a stochastic CA limit its
simulation power to stochastic CA that have compatible random symbols.

Theorem 4. Let 4 be any stochastic simulation pre-order, and A1 and A2 two stochastic CA which are
not deterministic. If A1 4 A2 then PF(A1)∩PF(A2) 6=∅.

Proof. Trimming operations (restrictions and projections) do not modify the set of random symbols.
Rescaling transformations modify the set of random symbols in the following way: R 7→ Rn for some
integer n. Therefore such transformations preserve the set of prime factors PF(A ) of the considered
CA A . Moreover, rescaling transformations do not affect determinism: the rescaled version of a CA
which is not deterministic cannot be deterministic. Hence, the relation A1 4 A2 implies an equality of
stochastic global functions of two CA which have the same prime factors as A1 and A2 and one of which
is not deterministic. Therefore none of them is deterministic and the theorem follows from lemma 2.

The consequence in terms of universality is immediate and breaks our hopes for a stochastic univer-
sality construction.

Corollary 1. Let 4 be any stochastic simulation pre-order. There is no 4-universal stochastic CA.

6.2 Positive results

Still, the negative result of Corollary 1 leaves open the possibility of partial universality constructions.
We will now describe how to construct a stochastic CA which is 4N

i -universal (hence also 4N
m-universal;

however note that the existence of a 4N
π - or even of a 4D

π -universal is still open), and then draw the
consequences.
Since we are not concerned with size optimization, we will use simple construction techniques using
parallel Turing heads and table lookup as described for classical deterministic CA in [15]. More precisely,
we construct a stochastic CA U = (QU ,Ru,VU ,V ′U , fU) able to 4N

i -simulate any stochastic CA A =
(Q,R,V,V ′, f ) with no rescaling transformation on A and no shift in the rescaling of U . Therefore each
cell of A will be simulated by a block of m cells of U and each step of A will be simulated by t steps
of U (t and m depend on A and are to be determined later).
The blocks of m cells have the following structure (the restriction in the pre-order handles the trimming
of any invalid block):

SYNC transition table Q-state R-symbol Q-states of neighbors R-symbols of neighbors

where each part uses a fixed alphabet (independent of Q and R) and only the width of each part may
depend on A . To each such block is attached a Turing head which will repeat cyclically a sequence of
4 steps (sub-routines) described below. On a complete configuration made of such blocks there will be
infinitely many such heads (one per block) executing these steps in parallel. Execution is synchronized
at the end of each step (SYNC part) and such that two Turing heads never collide. Precisely, for some
steps (2 and 4) the moves of all heads are rigorously identical (hence synchronous and without head
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collision). For some other steps (1 and 3), the sequence of moves of each head depend on the content of
its corresponding block but these steps are always such that the head don’t go outside the block (hence
no risk of head collision) and they are synchronized at the end by the SYNC part which implements a
small time countdown initialized to the maximum time needed to complete the step in the worst case.
The parts holding R-symbols are initially empty (uniformly equal to some symbol) for each block. The
4 steps are as follows:

1. generate a string representing a random R-symbol in the R-symbol part using (possibly several)
random RU -symbols present in that part of the block;

2. copy the R-symbol part to the appropriate position in the R-symbols of neighbors part of each
neighboring block. Do the same for Q-state;

3. using information about Q-states and R-symbols in the block, find the corresponding entry in the
transition table and update the Q-states part of the block accordingly;

4. clean R-symbol and R-symbols of neighbors parts (i.e. write some uniform symbol everywhere).

This construction scheme is very similar to the one used for classical deterministic CA but two points
are important in our context:

• step 4 is here to ensure that each configuration of A has a canonical corresponding configuration of
U made of blocks where the parts holding R-symbols is clean; (step 4 is required for the existence
of the injection i)

• depending on the way we generate strings representing a R-symbols from strings of RU -symbols
in step 1, we will obtain or not a uniform distribution over R (recall Theorem 4).

In the general case, we can always fix (by the means of the injection i) a width large enough for parts
containing the R-symbols so that all R-symbols can be obtained (but with possibly different probabilities).
We therefore obtain a universality result for non-deterministic simulations.

Theorem 5. Let 4 be either 4N
i or 4N

m. There exists a 4-universal CA.

Note that this 4-universal CA is a PlainPCA, and we obtain thus a stronger version of the simulation
mentioned in Section 5.3 page 219.

Now, if we are in a case where PF(A )⊆ PF(U) then it is possible to choose a generation process
in step 1 such that each R-symbol is generated with the same probability. We therefore obtain an optimal
partial universality construction for stochastic simulations.

Theorem 6. Let 4 be either 4S
i or 4S

m. For any finite set P of prime numbers, there is a stochastic CA
UP such that for any stochastic CA A : PF(A )⊆ P⇒A 4 UP. Moreover UP is a PlainPCA.

7 Open Problems

Intrinsic simulations has been proven to be a powerful tool to hierarchize behaviors in the deterministic
world. In particular, the notion universal CA allows to formalize the concept of “most complex” CA
as the ones concentrating “all the possible behaviors” within a given class [4, 5].The formalism and the
notion of intrinsic simulation developed here for stochastic CA, enables us to export this classification
tool to the stochastic world. In particular, it would be interesting to see whether our partial universality
construction relates to experimentally observed classes, as in [19]. At the more theoretical level and
amongst all the concrete questions raised by this article, the following ones are of particular interest:

• Is there for any stochastic A , a PlainPCA B which is 4S
i -equivalent to A ?
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• Is there for any stochastic A , a PlainPCA B such that A 4S
πB?

• Are there 4N
π -universal cellular automata?

• Are universal CA the same for pre-order 4N
i and 4N

π ?

Our setting can also be generalized by taking any Bernouilli measure on the R-component (instead
of the uniform measure). We believe that positive and negative results about universality essentially still
hold but under a different form.

As noticed by an anonymous referee, there is an easy algorithm to decide whether to 1D CA have the
same non-deterministic global function. We are currently working on an adaptation to decide equality of
global stochastic functions.
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