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We study the set of strictly temporally periodic points in surjective cellular automata, i.e., the set
of those configurations which are temporally periodic for a given automaton but are not spatially
periodic. This set turns out to be residual for equicontinuous surjective cellular automata, dense for
almost equicontinuous surjective cellular automata, while it is empty for the positively expansive
ones. In the class of additive cellular automata, the set of strictly temporally periodic points can
be either dense or empty. The latter happens if and only if the cellular automaton is topologically
transitive.
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1 Introduction

Cellular Automata (CA) are a simple formal model for complex systems, i.e., those systems defined by a
multitude of simple objects which cooperate to build a (unexpected) complex global behavior by means
of local interactions. CA are used in many scientific fields ranging from biology to chemistry or from
physics to computer science (see for instance [23, 2, 13, 12, 27, 21]).

A cellular automaton is made of an infinite set of finite automata distributed over a regular lattice
(usually Zn, with n = 1 in this work). All automata are identical. Each automaton assumes a state,
chosen from a finite set, called the set of states or the alphabet. A configuration is a snapshot of all the
states of the automata. A local rule updates the state of an automaton on the basis of its current state and
those of a fixed set of neighboring automata. All the automata of the lattice are updated synchronously
and this global updating gives rise to a discrete dynamical system on the configuration space.

Several dynamical properties of CA have been studied during the last two decades (see for in-
stance [16, 15, 18, 19, 17] for recent results and an up-to-date bibliography). On the basis of the well-
known results from [24] and [3], one-dimensional CA can be classified from the most stable to the most
unstable behavior (dynamical complexity classification):

• equicontinuous CA;

• non equicontinuous CA admitting an equicontinuous configuration (pure almost equicontinuous
CA);
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• sensitive to the initial conditions but non topologically mixing CA;

• topologically transitive but non positively expansive CA;

• positively expansive CA.

Another significant information about the dynamical behavior of CA (and of general discrete dy-
namical systems) is given by temporally periodic configurations. If the set of the temporally periodic
configurations of a cellular automaton is dense, then the cellular automaton has dense periodic points
(DPO). Together with topological transitivity and sensitivity to the initial conditions, DPO is also a fun-
damental property of the popular Devaney’s definition of chaos for discrete dynamical systems [20]. In
the CA setting, DPO is shared by both the two classes of the surjective almost equicontinuous and closing
automata. One of the most challenging, long-standing open problem in CA concerns DPO: is it enjoyed
by all surjective CA [7, 4, 6, 5]? If the answer is affirmative, then chaotic behavior in CA reduces to
transitivity, due to the fact that transitive CA are both sensitive and surjective.

We can classify two distinct types of of temporally periodic configurations in CA: the temporally
periodic configurations that are also spatially periodic (jointly periodic points) and the ones that are not
(striclty temporally periodic points). In this paper we deal with the set of strictly temporally periodic
points in CA. Among all temporally periodic configurations, the strictly periodic configurations are the
ones that provide more information about the CA dynamical behavior. In fact, if surjective CA have
DPO, the set of jointly periodic configurations is dense for surjective CA in any class of dynamical
complexity [1]. This does not happen for the set of strictly temporally periodic configurations. Indeed,
for surjective CA belonging to a certain class, the size of this set turns out to be inversely related to the
dynamical complexity of that class. More precisely, in this paper we show that

• surjective equicontinuous CA exhibit a residual set of strictly temporally periodic configurations
(Proposition 3.2);

• for almost but non equicontinuous surjective CA the set of strictly temporally periodic configura-
tions is dense (Proposition 3.3);

• positively expansive CA admit no strictly temporally periodic configuration (Proposition 3.4).

We also study the set of strictly temporally periodic configurations for the class of additive CA, i.e., those
CA whose local rule is defined by an additive function. Despite their simplicity, which makes it possible
a detailed algebraic analysis, additive CA exhibit many of the complex features of general CA. In this
settings, we prove that (Proposition 4.7)

• the set of strictly temporally periodic configurations can be either empty or dense;

• the set of strictly temporally periodic configurations is empty if and only if the additive CA is
topologically transitive (or, equivalently, topologically mixing).

The paper is organized as follows. In Section 2 we introduce the basic notation and the general back-
ground on Cellular Automata. In Section 3 and Section 4 we prove our main results for general CA and
additive CA, respectively. Section 5 is devoted to the final remarks.

2 Basic Notions

In this section, we briefly recall standard definitions about CA as discrete dynamical systems. We begin
by introducing some general notation we will use throughout the rest of the paper.
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For all i, j ∈ Z with i ≤ j (resp., i < j), we use the notation [i, j] = {i, i + 1, . . . , j} (resp., [i, j) =
{i, i+ 1, . . . , j− 1}) to denote the interval of integers between i and j. Let us define N+ as the set of
positive integers. For any pair of integers n,m > 0, by n |m and n - m we denote the fact that n divides m
and n does not divide m, respectively.

Let A be a finite alphabet with at least two elements. A configuration is a function from Z to A. The
configuration set AZ is usually equipped with the metric d, defined as follows

d(x,y) =
1
2n where n = min{i≥ 0 : xi 6= yi or x−i 6= y−i} .

The set AZ is a compact, totally disconnected and perfect topological space (i.e., AZ is a Cantor space).
For any pair i, j ∈ Z, with i≤ j, and any configuration x ∈ AZ we denote by x[i, j] the word xi · · ·x j ∈

A j−i+1, i.e., the portion of x inside the interval [i, j]. In the previous notation, [i, j] can be replaced by
either [i, j), or [i,∞), or (−∞, i] with the obvious meaning. A cylinder of block u ∈ Ak at position i ∈ Z is
the set [u]i = {x ∈ AZ : x[i,i+k) = u}. Cylinders are clopen (closed and open) sets w.r.t. the metric d and
they form a basis for the topology induced by d.

The shift map σ : AZ→ AZ is defined as σ(x)i = xi+1, for any x ∈ AZ and i ∈ Z. The shift map is a
continuos and bijective function on AZ. The dynamical system (AZ,σ) is commonly called full shift.

One-dimensional CA. Formally, a one dimensional Cellular Automaton (CA) is a pair (AZ,F) where
F : AZ→ AZ is a continuous and σ -commuting function, i.e., F ◦σ = σ ◦F . Equivalently, by Hedlund’s
Theorem [22], a pair (AZ,F) is a CA if and only if there exist a natural r ∈ N and a map f : A2r+1→ A
such that,

∀x ∈ AZ, ∀i ∈ Z, F(x)i = f (xi−r, . . . ,xi+r) .

The function F is commonly called global rule of the CA. The natural r and the map f are commonly
called the radius and the local rule of the CA, respectively.

A CA with global rule F is right (resp., left) closing iff F(x) 6= F(y) for any pair x,y ∈ AZ of distinct
left (resp., right) asymptotic configurations, i.e., x(−∞,n] = y(−∞,n] (resp., x[n,∞) = y[n,∞)) for some n ∈ Z.
A CA is said to be closing if it is either left or right closing. Every closing CA is also surjective [22].

A rule f : A2r+1→ A is righmost (resp., leftmost) permutative iff ∀u ∈ A2r,∀β ∈ A,∃α ∈ A such that
f (uα) = β (resp., f (αu) = β ). A CA is said to be permutative if its local rule is either rightmost or
leftmost permutative. Permutative rules are closing.

A CA (AZ,F) is said to be right if its local rule f does not depend on the variables x−r, . . . ,x−1. In
that case, F can be naturally redefined as a function on AN and the pair (AN,F) is a one-sided CA, also
called the lifted version of the two-sided CA (AZ,F) [1].

The product of two CA (AZ,F) and (BZ,G) is the CA (AZ×BZ,F×G) defined as ∀(x,y)∈ AZ×BZ,
(F×G)(x,y) = (F(x),F(y)). The configuration space AZ×BZ is as usual endowed with the distance d∞

such that d∞(x,y)(x′,y′)) = max{d(x,x′),d(y,y′)} for every pair (x,y),(x′,y′) ∈ AZ×BZ.

Recall that two CA F and G over the alphabets A and B are topologically conjugated if there exists a
homeomorphism φ : AZ 7→ BZ such that G◦φ = φ ◦F . The CA F is a factor of the CA G if there exists
a continuous and surjective map φ : AZ 7→ BZ such that G ◦ φ = φ ◦F . For any right CA (AZ,F), the
one-sided lifted CA (AN,F) is a factor of it.

Additive CA. In this work we will focus in particular on the class of additive CA, i.e., CA based on
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an additive local rule defined over the ring Zm = {0,1, . . . ,m−1}. A function f : Z2r+1
m → Zm is said to

be additive if there exist coefficients a−r, . . . ,ar ∈ Zm such that it can be expressed as:

∀(x−r, . . . ,xr) ∈ Z2r+1
m , f (x−r, . . . ,xr) =

[
r

∑
i=−r

aixi

]
m

where [x]m is the integer x taken modulo s. A CA is additive if its local rule is additive. Clearly, the
product of two additive CA is still additive.

For any additive CA (ZZ
m,F) and any integer p ∈ [2,m) the pair (ZZ

p , [F ]p) is the additive CA where
[F ]p : ZZ

p → ZZ
p is defined as [F ]p(x) = [F(x)]p, for every x ∈ ZZ

p .

Dynamical Properties of CA. In this subsection we review the basic background and notation on
CA as dynamical systems.

Equicontinuous and Almost Equicontinuous CA. Let (AZ,F) be a CA. A configuration x ∈ AZ is an
equicontinuity point for F if ∀ε > 0 there exists δ > 0 such that for all y ∈ AZ, d(x,y) < δ implies that
d(Fn(y),Fn(x))< ε for all n ∈ N. The existence of an equicontinuity point is related to the existence of
a special word, called blocking word. A word u ∈ Ak is s-blocking (s ≤ k) for a CA F if there exists an
offset j ∈ [0,k− s] such that for any x,y ∈ [u]0 and any n ∈N, Fn(x)[ j, j+s) = Fn(y)[ j, j+s) . A word u ∈ Ak

is said to be blocking if it is s-blocking for some s ≤ k. F is said to be equicontinuous if ∀ε > 0 there
exists δ > 0 such that for all x,y ∈ AZ, d(x,y) < δ implies that ∀n ∈ N, d(Fn(x),Fn(y)) < ε , while it
is said to be almost equicontinuous if the set E of its equicontinuity points is residual (i.e., E contains a
countable intersection of dense open subsets). Recall that the CA F is equicontinuous if and only if there
exist two integers q ∈ N and p > 0 such that Fq = Fq+p. If F is both equicontinuous and surjective then
there exists an integer p > 0 such that F p(x) = x for all configurations x ∈ AZ.

Sensitive to Initial Conditions CA. Let (AZ,F) be a CA. The global function F is sensitive to initial
conditions (or simply sensitive) if there exists ε > 0 such that for any x ∈ AZ and any δ > 0 there is an
element y ∈ X such that d(y,x) < δ and d(Fn(y),Fn(x)) > ε for some n ∈ N. In [24], Kůrka proved
that a one-dimensional cellular automaton is almost equicontinuous iff it is non-sensitive iff it admits a
r-blocking word.

Topologically Transitive and Topologically Mixing CA. A cellular automaton (AZ,F) is (topologi-
cally) mixing if for any pair of non-empty open sets U,V ⊆ AZ there exists an integer n ∈ N such that
for any t ≥ n it holds that F t(U) ∩ V 6= /0, while it is topologically transitive if for any pair of non-
empty open sets U,V ⊆ AZ there exists an integer n ∈ N such that Fn(U)∩V 6= /0. Clearly, topological
mixing implies topological transitivity. For additive cellular automata, topological transitivity is equiv-
alent to topological mixing [9]. A weaker condition than topological transitivity is the following: a CA
(AZ,F) is non-wandering if for any non-empty open set U ⊆ AZ there exists an integer n ∈ N such that
Fn(U)∩U 6= /0. In CA settings, transitivity implies surjectivity which in its turn is equivalent to the
non-wandering condition [4].

Positively Expansive CA. A cellular automaton (AZ,F) is is positively expansive if there exists a con-
stant ε > 0 such that for any pair of distinct elements x,y ∈ AZ we have d(Fn(x),Fn(y)) ≥ ε for some
n ∈ N. Positively Expansive CA are left and right closing and topologically mixing, thus they are also
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surjective and sensitive [24, 3]. Another strong property of Positively Expansive CA is that they are
topologically conjugated to a one-sided full shift [26].

Periodic orbits of CA. In this subsection we introduce the basic notation and basic properties for the
different periodic orbits classes of CA.

Let (AZ,F) be a CA. A configuration x ∈ AZ is a temporally periodic point of (AZ,F) if there exists
an integer p > 0 such that F p(x) = x. A configuration x ∈ AZ is spatially periodic if x is periodic
for σ , i.e., σn(x) = x for some n ∈ N. A jointly periodic point is any configuration which is both
temporally and spatially periodic. We denote by SP(F) the set of all spatially periodic configurations
of (AZ,F), with T P(F) the set of all temporally periodic configurations, with JP(F) = SP(F)∩T P(F)
the set of all jointly periodic configurations, and with ST P(F) = T P(F) \ JP(F) the set of all strictly
temporally periodic configurations of F , i.e. those configurations that are temporally periodic but not
spatially periodic. Note that, given a CA (AZ,F), the set T P(F) is never empty. In particular, since
F(SP(F))⊆ SP(F), it happens that JP(F) is never empty.

We say that a CA has dense periodic orbits (DPO) or dense jointly periodic orbits (JDPO) if T P(F)
or JP(F) are dense, respectively. It is easy to obtain that surjectivity is a necessary condition for DPO or
JDPO. It is still an open question whether surjectivity is a sufficient condition for DPO or JDPO [6, 5].
Among the most relevant results about this open question, we recall that all closing CA [7] and all
surjective and almost equicontinuous CA [4] have JDPO [7]. In the case of additive CA, surjectivity
implies DPO [9].

3 Strictly temporally periodic points of surjective CA

In this section, we consider the set of strictly temporally periodic points, ST P(F), for general surjective
CA and we try to study its size in the different classes of increasing dynamical complexity.

In order to characterize the cardinality of the set of strictly temporally periodic points for Equicontin-
uous CA we need to show an easy property of spatially periodic configurations. The following Lemma
shows that, for every CA (AZ,F), its set of spatially periodic points SP(F) is meager, i.e. negligible.

Lemma 3.1 Let (AZ,F) be a CA. Then the set AZ \SP(F) is residual.

Proof. Recall that a residual set is the complement of a meager set and it can be equivalently defined
as the countable intersection of dense open sets. For every w ∈ A+, let Uw = AZ \{w∞}. Clearly, every
Uw is an open and dense subset. Since AZ \ S =

⋂
w∈A+ Uw and A+ is countable, then the set AZ \ S is

residual. ut

Thanks to Lemma 3.1 we can easily characterize the class of strictly temporally periodic orbits of
Equicontinuous CA.

Proposition 3.2 Let (AZ,F) be an Equicontinuous and surjective CA. Then, ST P(F) is residual.

Proof. By hypothesis, there exists an integer n > 0 such that every configuration x ∈ AZ is a temporally
periodic point such that Fn(x) = x. Thus, it holds that ST P(F) = AZ \ SP(F) and, by Lemma 3.1, it
immediately follows that ST P(F) is residual. ut

From Proposition 3.2, the class ST P(F) for Equicontinuous CA is the complement of a nowhere
dense set, thus it is dense in the configuration space. The property of being dense also holds for the
larger class of Almost Equicontinuous CA.
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Proposition 3.3 Let (AZ,F) be an Almost Equicontinuous and surjective CA. Then, ST P(F) is dense.

Proof. Choose arbitrarily a configuration x∈ AZ and an integer k ∈N. Since F is almost equicontinuous,
there exist some integers s,h ∈ N such that F admits an r-blocking word w ∈ As with offset h. Consider
now the configuration y =∞ wuw∞ ∈ [u]0, where u = x[−k,k] and without loss of generality we can assume
that u 6= w so that y is not spatially periodic. Since surjective CA are non-wandering, there exist an
integer t > 0 and a configuration z ∈ AZ such that z ∈ F t([wwuww]−k−2s)∩ [wwuww]−k−2s 6= /0. As z,
F t(z) and y belong to [wwuww]−k−2s and wwuww is a blocking word, it follows that

F t(y)[−k−2s+h,k+s+h+r) = F t(z)[−k−2s+h,k+s+h+r)

= z[−k−2s+h,k+s+h+r)

= y[−k−2s+h,k+s+h+r)

Furthermore, also the word ww is blocking. So, for any integer i ∈ Z and any configuration c ∈ [ww]i, it
holds that

F t(c)[i+h,i+s+h+r) = F t(y)[k+h,k+s+h+r)

= y[k+h,k+s+h+r)

= c[i+h,i+s+h+r)

Therefore, it follows that F t(y) = y. Hence, y is a temporally periodic point for F such that d(y,x)< 1
2k .

Thus, the set ST P(F) is dense. ut

The following Proposition shows that there is a class of CA whose set of strictly temporally periodic
orbits is empty. Recall that this property is never true for jointly periodic orbits, since every CA has at
least one configuration that is both spatially and temporally periodic.

Proposition 3.4 Let (AZ,F) be a positively expansive CA. Then ST P(F) is empty.

Proof. Let (AZ,F) be a positively expansive CA and let x ∈ AZ be any temporally periodic configuration
for F . Let t > 0 be an integer such that F t(x) = x. For the sake of argument, assume now that x∈ ST P(F),
i.e., x is not spatially periodic. Then, {σn(x)}n∈N is an infinite set of distinct strictly temporally periodic
points and in particular, since F is σ -commuting, for each σn(x) it holds that F t(σn(x)) = σn(x). By
the characterization of positively expansive CA from [26][Thm 3.12], there exists an alphabet B and
a homeomorphism φ : AZ→ BN such that the CA (AZ,F) is topologically conjugated via φ to the one-
sided full shift (BN,σ∗) where σ∗ is shift map defined on BN. Clearly, all φ(σn(x)) are distinct temporally
periodic points for σ∗ such that σ t

∗(φ(σ
n(x))) = φ(σn(x)). Since there are exactly |B|t points y∈BN such

that σ t
∗(y) = y but the set {φ(σn(x))}n∈N is infinite, we have obtained a contradiction. ut

While the existence of an equicontinuity point implies a dense set of strictly temporally periodic
orbits (Proposition 3.3), the converse is not true, as shown by the following Proposition.

Proposition 3.5 There is a sensitive CA (AZ,F) such that ST P(F) is dense.

Proof. We show that for any surjective almost equicontinuous CA (AZ,F) and any positively expansive
CA (BZ,G), the product CA (AZ×BZ,F ×G) is a sensitive to the initial conditions but non positively
expansive CA such that ST P(F ×G) is dense. Let (AZ,F) and (BZ,G) be a surjective almost equicon-
tinuous CA and a positively expansive CA, respectively. By definition, the product CA (AZ×BZ,F×G)
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turns out to be a sensitive to the initial conditions CA which is not positively expansive. We now show
that STP(F ×G) is dense in AZ × BZ. For any element (x,y) ∈ AZ × BZ and any integer k > 0, by
Proposition 3.3, there exists a configuration x′ ∈ ST P(F) such that d(x′,x)< 1

2k and, by Proposition 3.4,
there exists a configuration y′ ∈ JP(G) such that d(y′,y) < 1

2k . Therefore, (x′,y′) ∈ ST P(F ×G) and
d∞((x′,x),(y′,y))< 1

2k . Hence, ST P(F×G) is dense. ut

In summary, the previous result tells us that there exist classes of CA for which the set ST P(F) is
either dense (Proposition 3.2 and 3.3) or empty (Proposition 3.4). While the existence of an equiconti-
nuity point implies ST P(F) dense (Proposition 3.3), the converse is generally not true (Proposition 3.5).
At this point, the following two questions naturally arise.

Question 3.6 Does exist a CA (AZ,F) such that ST P(F) is neither empty nor dense?

Question 3.7 What is the largest class of sensitive CA where the set of strictly temporally periodic
points is empty? Is this class the one of topologically transitive CA? Or, if a CA (AZ,F) is transitive, can
ST P(F) be non empty?

4 Additive CA

In this section, we investigate the set of strictly temporally periodic points for additive Cellular Automata.
In this setting, we can provide an answer to the two questions raised in the previous section. In particular,
we show that for additive Cellular Automata the set of strictly temporally periodic points can be either
dense or empty. Moreover, we prove that it is empty if and only if the CA is topologically transitive.

We first need to review some very useful characterizations of additive CA. The first Theorem shows
that additive CA can be decomposed in the product of simpler additive CA, whose alphabet cardinalities
are powers of prime.

Theorem 4.1 [[14]] Let (ZZ
pq,F) be an additive CA such that gcd(p,q) = 1. Then, (ZZ

pq,F) is topologi-
cally conjugated to the additive (product) CA (ZZ

p ×ZZ
q , [F ]p× [F ]q).

As a consequence of the decomposition Theorem, if m = pn1
1 · · · p

nl
l is the prime factor decomposition of

m, an additive CA on Zm is topologically conjugated to the product of additive CA on Zpni
i

. So all the
properties which are preserved under product and under topological conjugacy are lifted from additive
CA on Zpk to Zm. The following Theorem provides a strong characterization of equicontinuous and
sensitive additive CA.

Theorem 4.2 [[25][11]] Let (ZZ
m,F) be an additive CA with local rule f : Z2r+1

m → Zm defined as
f (x−r, ...xr) = [Σr

i=−raixi]m. Then, the following statements are equivalent:

1. (ZZ
m,F) is sensitive to the initial conditions;

2. (ZZ
m,F) is not equicontinuous;

3. there exists a prime p ∈ N such that

p | m and p - gcd(a−r, ...,a−1,a1, ...,ar).

Note that from Theorem 4.2 it immediately follows that, differently from the general case, equicon-
tinuity/sensitivity is a dichotomy for additive CA. The following Theorem gives a characterization of
surjective additive CA in terms of coefficients of the local rule.
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Theorem 4.3 [[25]] Let (ZZ
m,F) be an additive CA with local rule f : Z2r+1

m →Zm defined as f (x−r, ...xr)=
[Σr

i=−raixi]m. Then, the following two statements are equivalent:

1. (ZZ
m,F) is surjective;

2. gcd(m,a−r, . . .ar) = 1.

The following Lemma expresses an other useful property for surjective additive CA and it will be used
in the sequel.

Lemma 4.4 [[14]] Let (ZZ
pk ,F) be a surjective additive CA with p prime and local rule f : Z2r+1

pk → Zpk

defined as f (x−r, ...xr) = [Σr
i=−raixi]pk . Set

L = min{ j : gcd(a j, p) = 1} and R = max{ j : gcd(a j, p) = 1}.

Then, there exists an integer h ≥ 1 such that the local rule of the CA (ZZ
pk ,Fh) can be expressed by the

additive map f h : ZhR−hL+1
pk → Zpk defined as

f h(xhL, ...,xhR) =
[
Σ

hR
i=hLbixi

]
pk

for coefficients bhL, . . . ,bhR ∈ Zpk such that gcd(bhL, p) = gcd(bhR, p) = 1.

Remark 4.5 Let L and R be defined in the Lemma 4.4. We want to stress that, by the surjectivity
condition on the coefficients expressed by the Theorem 4.3, both the integers L and R exist.

We are now ready to give a classification of the strictly temporally periodic orbits for surjective additive
CA whose alphabet cardinality is a power of prime.

Proposition 4.6 Let (ZZ
pk ,F) be a surjective additive CA with p prime and local rule f : Z2r+1

pk → Zpk

defined as f (x−r, ...xr) = [Σr
i=−raixi]pk . Then, exactly one of the following cases occurs:

1. (ZZ
pk ,F) is equicontinuous and ST P(F) is dense,

2. (ZZ
pk ,F) is positively expansive and ST P(F) is empty,

3. (ZZ
pk ,F) is topologically transitive but not positively expansive and ST P(F) is empty.

Proof. Define L = min{ j : gcd(a j, p) = 1} and R = max{ j : gcd(a j, p) = 1}. By surjectivity condition
from Theorem 4.3, L and R exist. By Lemma 4.4, there exists an integer h > 0 such that the local
rule f h of the additive CA (ZZ

pk ,Fh) can be expressed as f h(xhL, ...,xhR) =
[
ΣhR

i=hLbixi
]

pk for coefficients
bhL, . . . ,bhR ∈ Zpk such that gcd(bhL, p) = gcd(bhR, p) = 1. Condition gcd(bhL, p) = gcd(bhR, p) = 1
implies that f h is permutative both in the leftmost variable xhL and the rightmost variable xhR. There are
three possible disjoint cases:

a. L = R = 0. Then, the local rule f h becomes f h(xhL, ...,xhR) =
[
ΣhR

i=hLbixi
]

pk = [b0x0]pk , i.e. f h is
a permutation on {0, .., pk}, which implies that (ZZ

pk ,Fh) is equicontinuous. Immediately follows
that (ZZ

pk ,F) is equicontinuous and, by Proposition 3.2, ST P(F) is dense (case 1).

b. L < 0 < R. Since f h is permutative both in xhL and xhR, the additive CA (ZZ
pk ,Fh) is positively

expansive which implies that also the CA (ZZ
pk ,F) is positively expansive and, by Proposition 3.4,

ST P(F) = /0 (case 2).
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c. 0 < L≤ R or L≤ R < 0. Suppose that 0 < L≤ R (the case L≤ R < 0 is similar). So, the local rule
f h of Fh is one-sided and permutative in its rightmost position. Thus, the CA (ZZ

pk ,Fh) is topo-
logically mixing [8] but not positively expansive and, hence, (ZZ

pk ,F) is topologically transitive
but not positively expansive. On the other hand, the lifted CA (ZN

pk ,Fh) is positively expansive.
Therefore, by Proposition 3.4, it follows that ST P(Fh) = /0 for the lifted CA and then this condition
holds also for (ZZ

pk ,Fh). Since ST P(Fh) = ST P(F), we can conclude that (ZZ
pk ,F) is topologically

transitive and ST P(F) = /0 (case 3).
ut

By combining Proposition 4.6 and Theorem 4.1 we can obtain a complete classification of the strictly
temporally periodic orbits for surjective additive CA.

Proposition 4.7 Let (ZZ
m,F) be a surjective additive CA. The following statements are true:

1. ST P(F) is either dense or empty;

2. ST P(F) = /0 if and only if (ZZ
m,F) is transitive.

Proof. Let m = pn1
1 · · · p

nl
l be the prime factor decomposition of m. By Theorem 4.1, the cellular au-

tomaton (ZZ
m,F) is topologically conjugated to the product of l surjective additive CA (Zpni

i
, [F ]pni

i
). By

Proposition 4.6, each (Zpni
i
, [F ]pni

i
) can be either equicontinuous or topologically transitive. If some cel-

lular automaton (Zpni
i
, [F ]pni

i
) in the decomposition is equicontinuous, then, by Proposition 3.2, it holds

that ST P([F ]pni
i
) is dense in Zpni

i
. By topological conjugacy and since any surjective additive CA has

DPO [10, 9], it follows that ST P(F) has to be dense. Conversely, if the decomposition only contains
topologically transitive CA, then, by Proposition 4.6 and the fact that topological transitivity is preserved
under the product and topological conjugacy, it holds that ST P(F) is empty. Thus, statement 1. is true.

Furthermore, ST P(F) is empty if and only if ST P([F ]pni
i
) is also empty for each (Zpni

i
, [F ]pni

i
) in

the decomposition of (ZZ
m,F) and, by Proposition 4.6, this happens if and only if each (Zpni

i
, [F ]pni

i
) is

topologically transitive, i.e., (ZZ
m,F) is topologically transitive. Therefore, statement 2. is true. ut

5 Conclusions

In this paper, we have studied the set of strictly temporally periodic points of surjective CA and showed
that its size is inversely related to the dynamical complexity of the considered CA. In particular, this set
is residual or dense, for equicontinuous or almost equicontinuous CA, respectively, while it is empty in
the class of positively expansive CA (see Figure 1, for a summary). Since there exist strictly sensitive
to initial conditions CA with a non empty (and in particular dense) set of strictly temporally periodic
points the following questions naturally arise: is there a CA such that the set of strictly temporally
periodic orbits, ST P, is neither empty nor dense? What is the largest class of sensitive CA such that
ST P is empty? In more general terms, can we restate the definition of topological chaos for CA in terms
of strictly temporally periodic orbits? In particular, are CA with no strictly temporally periodic orbits
chaotic? At the present we have no formal proof for the general case, while we can provide an answer to
the above question for the class of additive CA. Indeed, we have proved that the set of strictly temporally
periodic points of additive CA is empty if and only if the cellular automaton is topologically transitive.
Thus, in the additive setting, empty ST P implies chaotic behavior.
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Figure 1: The size of the set ST P(F) for general CA (AZ,F) belonging to the various classes of dynam-
ical complexity. The situation simplifies in the case of additive CA.
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Poincaré, Probabilité et Statistiques, 36:569–582, 2000, doi:10.1016/S0246-0203(00)00141-2

[5] M. Boyle. Open problems in symbolic dynamics. Geometric and Probabilistic Structures in Dynamics,
Contemporary Mathematics, 469:69–118, 2008, .

[6] M. Boyle and L. Bryant. Jointly periodic points in cellular automata: computer explorations and conjectures.
Experimental Mathematics, 16:293–302, 2007, doi:10.1080/10586458.2007.10129005.

[7] M. Boyle and B. Kitchens. Periodic points for onto cellular automata. Indagationes Mathematicae, 10:483–
493, 1999, doi:10.1016/S0019-3577(00)87901-X.

[8] G. Cattaneo, A. Dennunzio, and L. Margara. Chaotic subshifts and related languages applications to one-
dimensional cellular automata. Fundamenta Informaticae, 52:39–80, 2002.

[9] G. Cattaneo, A. Dennunzio, and L. Margara. Solution of some conjectures about topological properties of
linear cellular automata. Theoretical Computer Science, 325:249–271, 2004, doi:10.1016/j.tcs.2004.06.008.

[10] G. Cattaneo, E. Formenti, G. Manzini, and L. Margara. Ergodicity, transitivity, and regularity for linear
cellular automata. Theoretical Computer Science, 233:147–164, 2000. A preliminary version of this pa-
per has been presented to the Symposium of Theoretical Computer Science (STACS’97), LNCS n. 1200,
doi:10.1016/S0304-3975(98)00005-X.

[11] J. Cervelle, A. Dennunzio, and E. Formenti. Chaotic behavior of cellular automata. In B. Meyers, editor,
Mathematical basis of cellular automata, Encyclopedia of Complexity and System Science. Springer Verlag,
2009, doi:10.1007/978-0-387-30440-3 65.

http://dx.doi.org/10.1016/j.tcs.2009.05.004
http://dx.doi.org/10.1016/S0022-5193(03)00244-3
http://dx.doi.org/10.1007/BF02760680
http://dx.doi.org/10.1016/S0246-0203(00)00141-2
http://dx.doi.org/10.1080/10586458.2007.10129005
http://dx.doi.org/10.1016/S0019-3577(00)87901-X
http://dx.doi.org/10.1016/j.tcs.2004.06.008
http://dx.doi.org/10.1016/S0304-3975(98)00005-X
http://dx.doi.org/10.1007/978-0-387-30440-3_65


A. Dennunzio, P. Di Lena & L. Margara 235

[12] P. Chaudhuri, D. Chowdhury, S. Nandi, and S. Chattopadhyay. Additive Cellular Automata Theory and
Applications, volume 1. IEEE Press, 1997.

[13] B. Chopard. Cellular automata and lattice boltzmann modeling of physical systems. In G. Rozenberg et al.,
editor, Handbook of Natural Computing: Theory, Experiments, and Applications. Springer, 2010.

[14] M. D’Amico, G. Manzini, and L. Margara. On computing the entropy of cellular automata. Theoretical
Computer Science, 290:1629–1646, 2003, doi:10.1016/S0304-3975(02)00071-3.

[15] A. Dennunzio and E. Formenti. Decidable properties of 2d cellular automata. In 12th Conference on De-
velopments in Language Theory (DLT 2008), volume 5257 of Lecture Notes in Computer Science, pages
264–275. Springer-Verlag, 2008, doi:10.1007/978-3-540-85780-8 21.
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