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1 Introduction

In the classical theory of cellular automata (CA), the universe is the gridZd of integer points of the
Euclideand-dimensional space. The state of every cell in the grid ranges in a finite nonempty setA. A
configuration is an element ofAZ

d
, that is, a mapf : Zd → A that describes the state of every cell. A

cellular automaton is a mapτ : AZ
d
→ AZ

d
that changes a configuration by simultaneously updating the

state of each cell according to a fixed local rule, i.e., a rulethat only considers the states of the neighbors
of this cell.

In this setting, an important role is played by one-dimensional CA (d = 1) and many results holding
in this case no longer hold in the multi-dimensional case (d ≥ 2). Another framework that has been
extensively studied is that of (one-dimensional) one-sided CA (i.e., those defined onAN).

Provided that the universe remains discrete and homogeneous, CA can be considered in a much
more general setting, in which the grid is replaced by the Cayley graph of a finitely generated group or
semigroupG. Notice that the gridZd is the Cayley graph of the free abelian group of rankd. It is well
known thatAG is a compact metric space, and there is a natural right actionof G on AG, called the shift
action. CA are characterized as the continuous self-mappings ofAG that commute with this action.

In this paper we study topological properties of CA onAΣ∗
, whereΣ∗ is the free monoid of finite rank

|Σ|. This generalizes the case of one-sided CA (where|Σ|= 1). The Cayley graph ofΣ∗ is a regular|Σ|-ary
rooted tree. This setting was recently studied in [2, 3, 4, 10]. Notice that topological properties of CA
acting on configurations spaces different fromAZ

d
have already been studied, namely in the framework

of sand automata (see [12]).
A property that holds only in the one-dimensional case concerns expansivity. Indeed, there do not

exist multidimensional CA that are positively expansive [21], whilst one-dimensional CA and also one-
sided CA can have this property [5, 6]. We prove that there do not exist CA onAΣ∗

that are positively
expansive for|Σ| ≥ 2.

For one-dimensional CA (including the one-sided case), onecan define left-permutivity and right-
permutivity. We extend the definition of left-permutivity to CA on AΣ∗

and we refer to this property
as permutivity. Actually, due to the non-linearity ofΣ∗, the definition of right-permutivity cannot be
naturally extended. We prove that permutive CA are surjective and preinjective. Despite the fact that the
surjectivity and the preinjectivity of a CA onAZ

d
are equivalent in any dimensiond, we show an example
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of a surjective CA onAΣ∗
which is not preinjective. On the other hand, we prove that preinjectivity implies

surjectivity.
We extend the notion of right-clonsingness of a CA in our setting, and we prove that it implies

preinjectivity.
In [6], Blanchard and Maass prove that right-closing one-sided CA are open. We extend their proof

to our class of CA of radius one, but we believe that the resultholds true in general.
At the end of the paper we provide some concluding remarks andwe briefly discuss the perspectives

of future work.
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2 Definitions and background

2.1 The rooted treeΣ∗

For a positive integerk, we denote byΣ the set{0,1, . . . ,k−1}. Let n∈ N be a nonnegative integer. We
denote byΣn the set of allwords v= σ1σ2 · · ·σn of length n(whereσi ∈ Σ for i = 1,2, . . . ,n) overΣ. In
particular,ε ∈ Σ0 indicates the only word of length 0, called theempty word. Forn≥ 1, we denote by∆n

the set
⋃n−1

i=0 Σi (that is, the set of all words of length≤ n−1). Notice that|∆n|=
kn−1
k−1 .

The concatenationof two wordsv= σ1σ2 · · ·σn ∈ Σn andv′ = σ ′
1σ ′

2 · · ·σ ′
m ∈ Σm is the wordvv′ =

σ1σ2 · · ·σnσ ′
1σ ′

2 · · ·σ ′
m ∈ Σm+n. Then the setΣ∗ =

⋃

n∈N Σn, equipped with the multiplication given by
concatenation, is a monoid whose identity element isε . It is called thefree monoidover the setΣ.

From the graph theoretical point of view, we considerΣ∗ as the vertex set of the regulark-ary rooted
tree, wherek= |Σ|. The empty wordε is its root, and for every vertexv∈ Σ∗ the verticesvσ ∈ Σ∗ (with
σ ∈ Σ) are called thechildren of v. Every vertex is connected to each of its children by a non-labeled
edge.

2.2 Configurations and shift spaces

Let A be a nonempty finite set, called thealphabet. The elements ofA are calledletters. Thespace of
configurationsof Σ∗ over the alphabetA is the setAΣ∗

of all maps f : Σ∗ → A. When equipped with the
prodiscrete topology(that is, with the product topology where each factorA of AΣ∗

= ∏v∈Σ∗ A is endowed
with the discrete topology) the configuration space is a compact, totally disconnected, metrizable space.
Also, the free monoidΣ∗ has a right action onAΣ∗

defined as follows: for everyv∈ Σ∗ and f ∈ AΣ∗
the

configurationf v ∈ AΣ∗
is defined by setting

f v(v′) = f (vv′),

for all v′ ∈ Σ∗. This action, called theshift action, is continuous with respect to the prodiscrete topology.
Recall that a sub-basis for the prodiscrete topology onAΣ∗

consists of theelementary cylinders

C (v,a) = { f ∈ AΣ∗
: f (v) = a},
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wherev ∈ Σ∗ anda ∈ A. In what follows,C (a) is an abbreviation forC (ε ,a). A cylinder is a finite
intersection of elementary cylinders. IfM ⊂ Σ∗ is finite andp: M → A is a map, we denote byC (p) the
cylinder determined byp.

A neighborhood basis of a configurationf ∈ AΣ∗
is given by the sets

N ( f ,n) = {g∈ AΣ∗
: g|∆n = f |∆n},

wheren≥ 1 (as usual, forM ⊂ Σ∗, we denote byf |M the restriction off to M).
If f1, f2 ∈ AΣ∗

are two different configurations, we define the distance

dist( f1, f2) =
1
n
,

wheren= min{n∈ N : f1 6= f2 on ∆n}. If f1 = f2, we set their distance equal to zero. Notice that the
topology induced by this metric is just the product topology.

Definition 1 (Subshift). A subsetX ⊂ AΣ∗
is called asubshift(or tree shift, or simplyshift) provided that

X is closed (with respect to the prodiscrete topology) andshift-invariant (that is, f v ∈ X for all f ∈ X and
v∈ Σ∗). In particularAΣ∗

is a tree shift and it is called thefull (tree) shift.

2.3 Forbidden blocks and shifts of finite type

Definition 2 (Pattern and block). Let M ⊂ Σ∗ be a finite set. Apattern is a mapp: M → A. The set
M is called thesupportof p and it is denoted by supp(p). We denote byAM the set of all patterns with
supportM. For anyn≥ 1, ablock is a patternp: ∆n → A. The integern is called thesizeof the block.
The set of all blocks is denoted byB(AΣ∗

).

If X is a subset ofAΣ∗
andM ⊂ Σ∗ is finite, the set of patterns{ f |M : f ∈ X} is denoted byXM.

For n ≥ 1, the notationXn is an abbreviation forX∆n (that is, the set of all blocks of sizen which are
restrictions to∆n of some configuration inX). We denote byB(X) the set of all blocks ofX (that is,
B(X) =

⋃

n≥1Xn).
Given a blockp ∈ B(AΣ∗

) and a configurationf ∈ AΣ∗
, we say thatp appearsin f if there exists

v∈ Σ∗ such that( f v)|supp(p) = p. If p does not appear inf , we say thatf avoids p. Let F be a set of
blocks. We denote byX(F ) the set of configurations inAΣ∗

avoiding simultaneously all the blocks inF ,
in symbols

X(F ) = { f ∈ AΣ∗
: ( f v)|∆n /∈ F , for all v∈ Σ∗ andn≥ 1}.

If |Σ| = 1 we have a one-dimensional setting in whichΣ∗ is identified withN. Indeed, ifΣ = {0},
we associaten∈ N with 0n ∈ Σn, where 0n denotes the word 0· · ·0

︸ ︷︷ ︸

n

. In this case, a configurationf ∈ AN

can be identified with the (right) infinite wordw = a0a1 · · · over the alphabetA wherea0 = f (ε) and
an = f (0n) for all n≥ 1. Analogously, a block of sizen can be identified with an element ofAn, that is
a word of lengthn over the alphabetA. Indeed the set∆n = {ε ,0,00, . . . ,0n−1} ⊂ Σ∗ is identified with
{0,1,2, . . . ,n−1} ⊂ N.

By analogy with the one-dimensional case (see for example [18, Theorem 6.1.21]), we have the
following combinatorial characterization of subshifts.

Proposition 3. A subset X⊂ AΣ∗
is a subshift if and only if there exists a setF ⊂ B(AΣ∗

) of blocks such
that X= X(F ).
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Let X ⊂ AΣ∗
be a subshift. A setF of blocks as in Proposition 3 is called adefining set of forbidden

blocksfor X. If one can find a finite defining set of forbidden blocks forX, the subshiftX is calledof
finite type.
Remark4. The blocks of a subshift determine the subshift. Indeed, given two subshiftsX,Y ⊂ AΣ∗

, we
haveX = X(B(AΣ∗

)\B(X)), so thatX =Y ⇐⇒ B(X) = B(Y).

2.4 Cellular automata

Definition 5 (Cellular automaton). A mapτ : AΣ∗
→ AΣ∗

is called acellular automaton(CA for short)
if there exist an integerr ≥ 1 and a mapµ : A∆r+1 → A such that

τ( f )(v) = µ(( f v)|∆r+1)

for all f ∈ AΣ∗
andv∈ Σ∗. The integerr is called theradiusof τ , andµ is the associatedlocal defining

map.

The following is a topological characterization of cellular automata. For a proof in the one-dimensional
case, see [18, Theorem 6.2.9]. See also [9, Theorem 1.8.1] and [13, Proposition 1.2.4], for a more general
setting.

Theorem 6 (Curtis-Hedlund-Lyndon). A mapτ : AΣ∗
→ AΣ∗

is a cellular automaton if and only if
it is continuous (with respect to the prodiscrete topology)and commutes with the shift action (that is,
(τ( f ))v = τ( f v) for all f ∈ AΣ∗

and v∈ Σ∗).

Example7. Let A= {0,1} andr = 1. The local defining mapµ : A∆2 → A is defined by

µ(p) =

{

0 if p(ε) = p(0) = p(1) = 0

1 otherwise

for eachp∈ A∆2. In other words,µ sends a patternp ∈ A∆2 in 0 if and only if all the elements of the
pattern are 0’s. An illustration of the behavior of the CAτ defined byµ is depicted in Figure 1.
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Figure 1: The image underτ of a configurationf ∈ Σ∗.

Remark8. Given a cellular automatonτ : AΣ∗
→ AΣ∗

, it immediately follows from Theorem 6 and the
compactness ofAΣ∗

, that the imageτ(AΣ∗
)⊂ AΣ∗

is a subshift ofAΣ∗
.

3 Expansiveness

In this section we prove that there is no positively expansive CA onAΣ∗
if k= |Σ| ≥ 2. For this, we follow

the proof given by Shereshevsky [21] (see also [22]) for CA defined onZd with d ≥ 2.
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Definition 9 (Positive expansiveness).A CA τ : AΣ∗
→ AΣ∗

is positively expansiveif there existsN ≥ 1
such that for anyf1, f2 ∈ AΣ∗

one hasf1 6= f2 =⇒ τ t( f1)|∆N 6= τ t( f2)|∆N , for somet ≥ 0.

Remark10. The definition of positive expansiveness can be reformulated as follows: there existsN ≥ 1
such that for anyf1, f2 one hasf1 6= f2 =⇒ dist(τ t( f1),τ t( f2))≥ 1

N , for somet ≥ 0.

Definition 11 (Entropy of a CA). Let τ be a cellular automaton. We define

P(τ ,n, t) = {( f |∆n,τ( f )|∆n, . . . ,τ
t−1( f )|∆n) : f ∈ AΣ∗

}.

Obviously,P(τ ,n, t) ⊂ A∆n ×·· ·×A∆n

︸ ︷︷ ︸

t

and an immediate consequence of this fact is that|P(τ ,n, t)| ≤

|A||∆n|t . We defineh(τ ,n) = limsupt→∞
log|P(τ ,n,t)|

t . Theentropy ofτ is defined by

h(τ) = lim
n→∞

h(τ ,n) = sup
n≥1

h(τ ,n).

Lemma 12. Letτ be an expansive CA with constant N. Then there exists t≥ 1 such that for every n≥ 0
and f1, f2 ∈ AΣ∗

one has

τ i( f1)|∆N+n = τ i( f2)|∆N+n∀
t
i=0 =⇒ f1|∆N+n+1 = f2|∆N+n+1.

Proof. First we prove our statement forn= 0, that is, we prove that there existst ≥ 1 such that for every
f1, f2 ∈ AΣ∗

one has
τ i( f1)|∆N = τ i( f2)|∆N∀

t
i=0 =⇒ f1|∆N+1 = f2|∆N+1. (3.1)

Suppose the contrary. For eacht ≥ 1 there existf (t)1 , f (t)2 ∈ AΣ∗
such that

τ i( f (t)1 )|∆N = τ i( f (t)2 )|∆N∀
t
i=0

and
f (t)1 |∆N+1 6= f (t)2 |∆N+1.

As AΣ∗
is compact, consider two suitable subsequences( f (th)1 )h∈N and( f (th)2 )h∈N of ( f (t)1 )t∈N and( f (t)2 )t∈N

converging tof1 and f2 respectively. Forh large enough, we havef1|∆N+1 = f (th)1 |∆N+1 and f2|∆N+1 =

f (th)2 |∆N+1, thus f1|∆N+1 6= f2|∆N+1. Sinceτ is continuous, we have thatτ t( f (th)1 )→ τ t( f1) andτ t( f (th)2 )→

τ t( f2), for eacht ≥ 0. Oncet has been fixed, it holds, forh large enough,τ t( f (th)1 )|∆N = τ t( f1)|∆N ,

τ t( f (th)2 )|∆N = τ t( f2)|∆N and t ≤ th. Thus, τ t( f (th)1 )|∆N = τ t( f (th)2 )|∆N and thenτ t( f1)|∆N = τ t( f2)|∆N ,
contradicting the expansiveness ofτ . Hence (3.1) holds for a suitablet ≥ 1.

To prove our statement in general, suppose thatt ≥ 1 is as in (3.1). Letn ≥ 0 be an integer and
let f1, f2 ∈ AΣ∗

be two configurations such thatτ i( f1)|∆N+n = τ i( f2)|∆N+n∀
t
i=0. Fix w∈ ∆n+1. For every

w′ ∈ ∆N we have thatww′ ∈ ∆N+n andτ i( f w
1 )(w

′) = τ i( f1)(ww′) = τ i( f2)(ww′) = τ i( f w
2 )(w

′)∀t
i=0. That

is, τ i( f w
1 )|∆N = τ i( f w

2 )|∆N∀
t
i=0. By (3.1), we have thatf w

1 |∆N+1 = f w
2 |∆N+1. The wordw ∈ ∆n+1 having

been chosen arbitrarily, we have thatf1|∆N+n+1 = f2|∆N+n+1

Lemma 13. Letτ be an expansive CA with constant N and t≥ 1 as in Lemma 12. Then for every n≥ 1
and f1, f2 ∈ AΣ∗

one has

τ i( f1)|∆N = τ i( f2)|∆N∀
nt
i=0 =⇒ f1|∆N+n = f2|∆N+n.
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Proof. By Lemma 12, fromτ i( f1)|∆N = τ i( f2)|∆N∀
nt
i=0, we haveτ i( f1)|∆N+1 = τ i( f2)|∆N+1∀

(n−1)t
i=0 . Again,

applying Lemma 12, we haveτ i( f1)|∆N+2 = τ i( f2)|∆N+2∀
(n−2)t
i=0 . By iterating this argument, the claim

follows.

A consequence of Lemma 13 is the following.

Corollary 14. Letτ be an expansive CA with constant N and t≥ 1 as in Lemma 12. Then for every n≥ 1

|A||∆N+n| ≤ |P(τ ,N,nt+1)|.

Theorem 15. For |Σ| ≥ 2, there do not exist expansive CA on AΣ∗
.

Proof. Suppose thatτ is expansive with constantN, and lett ≥ 1 be as in Lemma 12. By Corollary 14, we
have that|A||∆N+n| ≤ |P(τ ,N,nt+1)| for everyn≥ 1. Moreover, by definition, we have|P(τ ,n, t)| ≤
|A||∆n|t for eachn≥ 1 andt ≥ 0. In particular|P(τ ,N,nt+1)| ≤ |A||∆N|(nt+1). This implies|A||∆N+n| ≤

|A||∆N|(nt+1), that is, kN+n−1
k−1 ≤ (kN−1)

k−1 (nt+ 1) (wherek = |Σ|). This is a contradiction becausen can be
chosen arbitrarily large.

4 Permutivity, preinjectivity and surjectivity

In what follows,τ : AΣ∗
→ AΣ∗

denotes a CA defined by a local mapµ : A∆r+1 → A. We always suppose
thatr ≥ 1.

Fix n ≥ 1. For a patternp: ∆n \ {ε} → A and a lettera ∈ A, we denote bya⊳ p the block onA∆n

coinciding withp on ∆n\{ε} and sendingε to a.

Definition 16 (Permutivity). A CA τ of radiusr ≥ 1 ispermutiveif for every patternp: ∆r+1\{ε}→ A
and every lettera∈ A, there exists a uniquea′ ∈ A such thatµ(a′ ⊳ p) = a.

In other words,τ is permutive if for everyp∈A∆r+1\{ε} the functionµ((·)⊳ p) : A→A is a permutation
of the alphabetA.

Proposition 17. Permutive CA are surjective.

Proof. Let f ∈AΣ∗
be a configuration. For everyn≥ 1 there exists a configurationfn such thatτ( fn)|∆n =

f |∆n. For this, it is sufficient to arbitrarily fix the levels from the (n+ 1)-th to the(n+ r)-th in the
configurationfn and fill it in backward by permutivity.

This implies that limn→∞ τ( fn) = f . SinceAΣ∗
is compact, there exists a subsequence( fnh)h∈N of

( fn)n∈N converging to someg∈ AΣ∗
. Thus, limh→∞ τ( fnh) = τ(g) and thenτ(g) = f .

Definition 18 (Diamond). Let τ be a CA and letp∈ A∆r be a block. Adiamond ofτ (based on p)is a
pair of different blocks having the same support of sizen> 2r +2 coinciding withp on ∆r and onv∆r

for each vertexv of lengthn− r, and having the same image underµ .

Remark19. Letτ be a CA andp∈A∆r a block. Ifp1, p2 ∈A∆n are two blocks (withn> 2r+2) coinciding
with p on∆r and onv∆r for each vertexv of lengthn− r, we can construct two configurationsf1, f2 ∈ AΣ∗

such thatfi repeatspi , i = 1,2, infinitely many times. Note thatf1 = f2 if and only if p1 = p2, and
τ( f1) = τ( f2) if and only if µ(p1) = µ(p2).

Definition 20 (Preinjectivity). A CA τ is preinjectiveif it has no diamonds.

Proposition 21. Permutive CA are preinjective.
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Proof. Let τ be a permutive CA. Fori = 1,2, let pi and fi be as in Remark 19. Suppose thatf1 6= f2 are
different configurations. Then there existsv∈ Σ∗ such thatf1(v) 6= f2(v) and f1|v∆r+1\{v} = f2|v∆r+1\{v}.
Equivalently, we have thatf v

1(ε) 6= f v
2(ε) and f v

1|∆r+1\{ε} = f v
2 |∆r+1\{ε}. Sinceτ is permutive, we have

µ(( f v
1)|∆r+1) 6= µ(( f v

2)|∆r+1). Hence

τ( f1)(v) = µ(( f v
1)|∆r+1) 6= µ(( f v

2)|∆r+1) = τ( f2)(v),

and thusτ( f1) 6= τ( f2) andµ(p1) 6= µ(p2). This implies thatτ has no diamonds.

4.1 An example of a surjective CA which is not preinjective

Let A= {0,1} andr = 1. Consider the CAτ whose local defining mapµ : A∆2 → A defined by

µ(p) = p(0)+ p(1) mod 2.

Figure 2(a) displays a generic configurationf , and Figure 2(b) a preimage off .
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(b) A preimage off .

Figure 2: An example of surjective CA.

The CAτ is not preinjective: Consider the patternsp1, p2 ∈ A∆3 such thatp1(v) = 0= p2(v) for each
v /∈ {0,1} and f1(0) = f1(1) = 0= 1− f2(0) = 1− f2(1) (see Figure 3). Clearly, we haveµ(p1) = µ(p2).
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Figure 3: A diamond ofτ .

4.2 The Garden of Eden theorem

As it is well-known, preinjectivity and surjectivity are equivalent for CA overAN or even more generally
overAZ

d
. This is the statement of theGarden of Eden theoremproved by Moore [19] and Myhill [20].

In this section we focus on the the implication “preinjectivity =⇒ surjectivity”. In the case ofZ it
can be proved for a wide class of subshifts using arguments involving the entropy (see [14]). In [17,
Proposition 5.26], Kůrka provides a direct proof using thefollowing fact: if τ is not surjective, then there
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exists a wordv∈ An such that the preimage setµ−1(v) has cardinalityξ > |A|r (wherer is the radius of
τ). With this latter result at hand, fixw∈ An+r such thatw∈ µ−1(v). For eachm≥ 1 define the sets

Mm = {w w1 · · ·wm w : wi ∈ µ−1(v)} and M
′
m = {v v1 v · · ·v vm+1 v : vi ∈ Ar}.

One hasµ(Mm)⊂ M ′
m, |Mm|= ξ m and|M ′

m|= Ar(m+1). Sinceξ > |A|r , one hasξ m> |A|r(m+1) for m
large enough. This implies that distinct elements ofMm have the same image, i.e., there exists at least
one diamond.

We prove now that the same arguments apply in our general case. In particular the following propo-
sition is an easy generalization of a theorem by Kůrka [17, Theorem 5.21] (see also [15]).

Proposition 22. Let τ be a CA of radius r≥ 1. If for every n≥ 1 and every block q∈ A∆n the preimage
setµ−1(q) has cardinality|A||∆n+r |−|∆n|, thenτ is surjective.

Proof. Let f ∈ AΣ∗
be a configuration. Forn≥ 1 set

Xn = {g∈ AΣ∗
: g|∆n+r

µ
−→ f |∆n}.

ThenXn = τ−1(C ( f |∆n)), that is the preimage of the cylinder determined by the blockf |∆n . By hypothesis,
Xn is nonempty and it is closed sinceτ is continuous. MoreoverXn+1 ⊂ Xn for every n ≥ 1. By
compactness, there existsg∈

⋂

n≥1Xn and obviouslyτ(g) = f . Thus,τ is surjective.

Corollary 23. Letτ be a CA of radius r≥ 1. If τ is not surjective then there exist an integer n≥ 1 and a
block q∈ A∆n such that|µ−1(q)|> |A||∆n+r |−|∆n|.

Proof. Suppose thatτ is not surjective. By Proposition 22, we have that there exist an integern≥ 1 and a
blockq∈A∆n such that|µ−1(q)| 6= |A||∆n+r |−|∆n|. Notice that, oncenhas been fixed,

⋃

q∈A∆n µ−1(q) =A∆n+r

and then

∑
q∈A∆n

|µ−1(q)| = |A||∆n+r |.

Thus the mean number of preimages of a blockq∈ A∆n is |A||∆n+r |−|∆n| and if |µ−1(q)| < |A||∆n+r |−|∆n|,
there must existq′ ∈ A∆n such that|µ−1(q′)|> |A||∆n+r |−|∆n|.

Theorem 24. Preinjective CA are surjective.

Proof. Apply the argument of Kůrka illustrated above. Suppose that a CA τ is not surjective. By
virtue of Corollary 23, there exists a patternq ∈ A∆n such that the preimage setµ−1(q) has cardi-

nality ξ > |A||∆n+r |−|∆n| = |A|
kn+r−kn

k−1 . Fix p ∈ A∆n+r such thatp ∈ µ−1(q). The setsMm and M ′
m

are defined analogously and one hasµ(Mm) ⊂ M ′
m. In this case we have|Mm| = ξ

(kn+r )m+1−1
kn+r−1

−1 and

|M ′
m|= |A|

(kn+r )m+1−1
kn+r−1

kn+r−kn
k−1 =

(

|A|
kn+r−kn

k−1

) (kn+r )m+1−1
kn+r−1

. Again, sinceξ > |A|
kn+r−kn

k−1 , one hasξ
(kn+r )m+1−1

kn+r−1
−1 >

(

|A|
kn+r−kn

k−1

) (kn+r )m+1−1
kn+r−1

for m large enough. This implies that distinct elements ofMm have the same image,

i.e., there exists at least one diamond.

Remark25. Notice that Proposition 17 is also a consequence of Proposition 21 and Theorem 24.
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5 Closingness

Right-closingness is a well-known notion in the one-dimensional case and positively expansive CA share
this property [16] (see also [7, Lemma 6.5]). In this sectionwe generalize this notion to CA on the full
tree shift.

Let p∈ A∆n andq∈ A∆m be two patterns of a CAτ , with n,m≥ 1. The notationp
µ

−→ q means that
there exists a configurationf ∈ AΣ∗

such thatf |∆n = p andτ( f )|∆m = q.
Fix n,m≥ 1. Given a blockp∈ A∆n and a sequence of blocks(p1, . . . , pkn) ∈ A∆m ×·· ·×A∆m, we

denote byp⊳ (p1, . . . , pkn) the pattern ofA∆n+m coinciding with p on ∆n and with pi on vi∆r for each
i = 1, . . . ,kn, wherevi is thei-th word overΣ of lengthn (in the lexicographical order).

Definition 26 (Right-closingness).A CA τ is right-closing if there existsN ∈ N such that ifp
µ

−→ q
with supp(p) = ∆r and supp(q) = ∆rN, then there exists a unique sequence(p1, . . . , pkr ) ∈ (A∆r )kr

such
that for any configurationf

f |∆r = p andτ( f )|∆rN = q=⇒ f |vi∆r = pi ∀kr

i=1,

wherevi is thei-th word overΣ of lengthr in the lexicographical order.

Proposition 27. Right-closing CA are preinjective.

Proof. For i = 1,2, letpi and fi be as in Remark 19 and supposeτ( f1) = τ( f2). Right-closingness implies
that f1|v∆r = f2|v∆r for eachv∈ Σr . Again, we have thatf1|uv∆r = f2|uv∆r for eachu,v∈ Σr . So we have
that f1 and f2 agree on triangles of increasing size. This impliesf1 = f2 and thenp1 = p2, and thusτ has
no diamonds.

Proposition 27 and Theorem 24 imply the following result.

Corollary 28. Right-closing CA are surjective.

5.1 The one-dimensional case

If τ is a CA onAZ, there exists a more natural definition of closingness that uses the linear structure ofZ.
We illustrate it below. For more details see [7], [17] and [6].

Definition 29 (Left-asymptoticity). Two configurationsf1, f2 ∈ AZ are left-asymptoticif f1|]−∞,n] =
f2|]−∞,n] for somen∈ Z.

Definition 30 (Right-closingness inZ and N). A CA τ : AZ → AZ is right-closing if any two different
left-asymptotic configurationsf1, f2 ∈ AZ verify τ( f1) 6= τ( f2). A CA τ : AN → AN is right-closingif the
natural extension̄τ : AZ → AZ of τ (i.e., τ̄ is defined by the same local map asτ), is right-closing.

In [6, Section 3.1], Blanchard and Maass give the following “finitary” definition of right-closingness
in N. We extended this definition to CA on trees in Definition 26.

Definition 31. A CA τ : AN → AN is right-closing if there existsn∈ N such that ifv
µ

−→ w1 · · ·wN with
v,wi ∈ Ar , i = 1, . . . ,N, then there exists a uniquev′ ∈ Ar such that for any configurationf ∈ AN one has

f |[0,r−1] = v andτ( f )|[0,rN−1] = w1 · · ·wN =⇒ f |[r,2r−1] = v′.
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6 Openness

Definition 32 (Openness).A CA τ is openif the image of an open set is an open set.

Remark33. A CA is open if and only if the image of a cylinder is an union of cylinders.

Proposition 34. Open CA are surjective.

Proof. Suppose thatτ is open. Fix a lettera ∈ A and letC (a) be the cylinder determined bya. By
assumption, there exists a blockp such thatC (p)⊂ τ(C (a)), whereC (p) is the cylinder determined by

p. In particular we have thata
µ

−→ p. Suppose that supp(p) = ∆m and definev= 0m ∈ Σm. Consider a
configurationf ∈ AΣ∗

. We want to prove thatf has a preimage. Fix a configurationf1 coinciding withp
on ∆m and such thatf v

1 = f . By definition, we have thatf1 ∈ C (p) and then there existsg∈ C (a) such
thatτ(g) = f1. Thus,τ(gv) = τ(g)v = f v

1 = f .

Remark35. Proposition 34 can be proved by means of a topological argument. Indeed, ifτ is open, we
have thatτ(AΣ∗

) is open. This implies thatτ(AΣ∗
) = AΣ∗

, becauseτ(AΣ∗
) is a tree shift and the only open

tree shifts are /0 andAΣ∗
. To prove this claim, consider a susbshiftX and a configurationf ∈ X. Fix a

forbidden blockp for X. We define a sequence( fn)n∈N ∈ AΣ∗
in such a way thatfn and f agree on∆n.

Moreover, we imposef v
n = p for somev /∈ ∆n. In this way, we have limn→∞ fn = f andp appears in each

fn (hencefn ∈ AΣ∗
\X). If X were open, we would have thatf ∈ AΣ∗

\X, which is a contradiction. We do
not get a contradiction when: (1) there do not exist configurations f ∈ X (i.e., X is empty), or (2) there
does not exist a forbidden blockp for X (i.e., X is the full shift). In the case of bidimensional CA, the
same argument is used in [11, Proposition 4].

In [6], Blanchard and Maass prove the following result for CAon AN. In Proposition 37, we give a
generalization of their proof in the case of CA onAΣ∗

.

Proposition 36. [6, Proposition 3.2] Right-closing CA on AN are open.

We want to point out that inAN it is possible to recode a CA of radiusr with an equivalent CA
of radius 1. This recoding is more complicated inAΣ∗

. This explains the additional hypotheses in the
following proposition.

Proposition 37. Right-closing CA of radius r= 1 are open.

Proof. For simplicity of the notation, we supposek= |Σ|= 2, but the proof can be easily adapted for any

k≥ 2. LetN be as in Definition 26. By hypothesis, we have that ifa
µ

−→ q, with a∈ A and supp(q) = ∆N,
then there exists a unique pair(a1,a2) ∈ A2 such that for any configurationf

f (ε) = a andτ( f )|∆N = q=⇒ f (0) = a1 and f (1) = a2.

We want to prove that for every tuple(b1, . . . ,b2N) ∈ A2N
there is a unique pair(a1,a2) ∈ A2 such thata⊳

(a1,a2)
µ

−→ q⊳ (b1, . . . ,b2N). Suppose the contrary. Then there existsa
µ

−→ q buta 6
µ

−→ q⊳ (b1, . . . ,b2N).

Sinceτ is surjective, we have thata′
µ

−→ q⊳ (b1, . . . ,b2N) for some lettera′ 6= a. Hence, there exists

a patternp: ∆N+2 \{ε} → A such thata′ ⊳ p
µ

−→ q⊳ (b1, . . . ,b2N). Consider the patternp′ : ∆N+3 → A

extendinga′ ⊳ p in such a way thatp′(v) = a for eachv ∈ ΣN+2. Clearly, p′
µ

−→ q′, whereq′ is some
extension ofq⊳ (b1, . . . ,b2N) to ∆2N+2 such thatq′ coincides withq onv∆N, for eachv∈ ΣN+3. Consider
now the blockq′′ defined as an extension to∆2N+3 of q′ such thatq′′ coincides with 2N+2 copies of

(b1, . . . ,b2N) on Σ2N+2. By right-closingness, we have thata′ 6
µ

−→ q′′ (see Figure 4), and again, sinceτ is
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surjective, there exists a lettera′′ such thata′′ 6= a′, a′′ 6= a anda′′
µ

−→ q′′. In this way, sinceA is finite, we
can eventually find a block ofAΣ∗

having no preimage, in contradiction with the surjectivityof τ . Hence
the claim is true.

6
µ

−→a′

p

a . . . a

p′

q

b1 . . . b2N

. . .

. . .q

b1 . . . b2N

q

b1 . . . b2N

q′ q′′

Figure 4: Illustration of the construction in the proof of Proposition 37.

Supposea
µ

−→ q. We want to prove thatC (q) ⊂ τ(C (a)). For any configurationf ∈ C (q), there

exists a pair(a1,a2) such thata⊳ (a1,a2)
µ

−→ q⊳ f |ΣN . Again, there exists a pair(a′i ,a
′′
i ) such that

ai ⊳ (a′i ,a
′′
i )

µ
−→ qi−1 ⊳ f |ΣN+1∩(i−1)ΣN , for i = 1,2. Hence,a⊳ (a1,a2) ⊳ (a′1,a

′′
1,a

′
2,a

′′
2)

µ
−→ q⊳ f |ΣN∪ΣN+1.

In this way, we can recursively construct a preimage off in C (a).

Remark38. Corollary 28 is also a consequence of Proposition 37 (if generalized to any radius), and
Proposition 34. It can also be obtained by the lifting (up anddown) operation described in [1].

7 Conclusion and possible developments

This paper is a first attempt to study topological propertiesof CA on the full tree shiftAΣ∗
. We showed

that there do not exist positively expansive CA if|Σ| ≥ 2 (Theorem 15). In the case of CA onAZ
d
, it is

well known that positively expansive CA exist if and only ifd = 1.
In Section 4, we gave a definition of permutivity which is a natural generalization of the notion

of left-permutivity for one-dimensional CA. The symmetricnotion of right-permutivity is not naturally
generalizable in our setting. It is easy to prove that in the one-dimensional case right-permutive CA are
right-closing. In Section 5, we defined right-closingness for CA onAΣ∗

and we wonder whether there is
a good definition of right-permutivity which still implies right-closingness. In the case of bidimensional
CA, some interesting constructions are given by Dennunzio and Formenti in [11].

Ford-dimensional CA, preinjectivity is equivalent to surjectivity. We showed in Section 4.1 that there
exist CA on the full (binary) tree shift that are surjective but not preinjective. In Theorem 24 we prove
that preinjective CA are surjective. We proved that permutivity implies surjectivity and preinjectivity
(Propositions 17 and 21, respectively). In Proposition 27 we also proved that right-closingness implies
preinjectivity.

In Section 6 we considered open CA. We proved that openness implies surjectivity (Proposition 34).
In Proposition 36, we showed that right-closing CA of radiusone are open. We believe that the result is
generalizable to any radius.

Other properties we are working on for CA on tree shifts are the transitivity, the mixing property, and
the density of the periodic orbits. For example, in the one-dimensional case, it is known that left-permutive
CA are mixing [8], and right-closingness implies the density of the periodic orbits [7].
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