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We prove that there do not exist positively expansive catlaltomata defined on the fildlary tree
shift (for k > 2). Moreover, we investigate some topological propertighese automata and their
relationships, namely permutivity, surjectivity, pregnivity, right-closingness and openness.
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1 Introduction

In the classical theory of cellular automata (CA), the urseeis the gridZ9 of integer points of the
Euclideand-dimensional space. The state of every cell in the grid ranmga finite nonempty set. A
configuration is an element @de, that is, a mapf : Z9 — A that describes the state of every cell. A
cellular automaton is a map: AZY 5 AZ° that changes a configuration by simultaneously updating the
state of each cell according to a fixed local rule, i.e., athde only considers the states of the neighbors
of this cell.

In this setting, an important role is played by one-dimenaidCA (d = 1) and many results holding
in this case no longer hold in the multi-dimensional case>(2). Another framework that has been
extensively studied is that of (one-dimensional) onegi@a (i.e., those defined o).

Provided that the universe remains discrete and homogen€ i can be considered in a much
more general setting, in which the grid is replaced by thel&agraph of a finitely generated group or
semigroupG. Notice that the gridz? is the Cayley graph of the free abelian group of ranHt is well
known thatA® is a compact metric space, and there is a natural right aofi@on A®, called the shift
action. CA are characterized as the continuous self-mgpmhAC that commute with this action.

In this paper we study topological properties of CAAIN, whereX* is the free monoid of finite rank
|Z|. This generalizes the case of one-sided CA (wiEre- 1). The Cayley graph &* is a regulatZ|-ary
rooted tree. This setting was recently studied_ir [2,] 3, 4, Nbtice that topological properties of CA
acting on configurations spaces different fréd have already been studied, namely in the framework
of sand automata (see |12]).

A property that holds only in the one-dimensional case caorscexpansivity. Indeed, there do not
exist multidimensional CA that are positively expansiv&][2vhilst one-dimensional CA and also one-
sided CA can have this property [5, 6]. We prove that there atcerist CA onA*" that are positively
expansive fofZ| > 2.

For one-dimensional CA (including the one-sided case),aamedefine left-permutivity and right-
permutivity. We extend the definition of left-permutivitp CA on A~ and we refer to this property
as permutivity. Actually, due to the non-linearity &f, the definition of right-permutivity cannot be
naturally extended. We prove that permutive CA are sukjecid preinjective. Despite the fact that the
surjectivity and the preinjectivity of a CA o’ are equivalent in any dimensiah we show an example
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of a surjective CA oiA>" which is not preinjective. On the other hand, we prove theirgectivity implies
surjectivity.

We extend the notion of right-clonsingness of a CA in ourisgitand we prove that it implies
preinjectivity.

In [6], Blanchard and Maass prove that right-closing oregiCA are open. We extend their proof
to our class of CA of radius one, but we believe that the rdmltls true in general.

At the end of the paper we provide some concluding remarksanoriefly discuss the perspectives
of future work.
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2 Definitions and background

2.1 The rooted treex*

For a positive integek, we denote by the set{0,1,...,k—1}. Letn € N be a nonnegative integer. We
denote byz" the set of alwords v= 0,03 - - - g, of length n(whereg; € Zfori =1,2,...,n) overZ. In
particular,e € 3 indicates the only word of length 0, called teepty word Forn > 1, we denote by,
the selUi”;O1 ' (that is, the set of all words of length n— 1). Notice thaiA,| = %

The concatenatiorof two wordsv = 0103 ---0n € " andV = 070%--- g;, € 2™ is the wordwV =
0102+ On0,0%- - Opy € Z™M. Then the seE* = (J,n 2", equipped with the multiplication given by
concatenation, is a monoid whose identity elemesst ik is called thefree monoidover the sek.

From the graph theoretical point of view, we consi@éras the vertex set of the regukuary rooted
tree, wherek = |Z|. The empty word is its root, and for every vertexe Z* the vertices/o € 2* (with
o € %) are called thechildren of v. Every vertex is connected to each of its children by a nbeid
edge.

2.2 Configurations and shift spaces

Let A be a nonempty finite set, called taphabet The elements of are calledetters Thespace of
configurationsof =* over the alphabeA is the setd>” of all mapsf: * — A. When equipped with the
prodiscrete topologythat is, with the product topology where each fadiaf A> = [Tves: Ais endowed
with the discrete topology) the configuration space is a @eotally disconnected, metrizable space.
Also, the free monoi@* has a right action oA> defined as follows: for everyc 3* andf € A* the
configurationf¥ € A% is defined by setting

(V) = F(wW),

for all vV € Z*. This action, called thehift action is continuous with respect to the prodiscrete topology.
Recall that a sub-basis for the prodiscrete topologdrconsists of theelementary cylinders

€(v,a)={f e A¥ : f(v)=a},
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wherev € ¥* anda € A. In what follows, %’(a) is an abbreviation fo%’(¢,a). A cylinder is a finite
intersection of elementary cylinders.Nf C X is finite andp: M — Ais a map, we denote b (p) the
cylinder determined by.

A neighborhood basis of a configuratidre A> is given by the sets

‘/V(f7n) = {gGAZ* :g|An = f|An}7

wheren > 1 (as usual, foM C Z*, we denote byf |y the restriction off to M).
If f,, f> € A* are two different configurations, we define the distance

diSt( fl, fg) = ln-,

wheren=min{n e N: f; # f,onA,}. If f; = fp, we set their distance equal to zero. Notice that the
topology induced by this metric is just the product topology

Definition 1 (Subshift). A subseiX c A% is called asubshift(or tree shift or simplyshift) provided that
X is closed (with respect to the prodiscrete topology) stmitt-invariant (that is, f¥ € X for all f € X and
v e ). In particularAZ" is a tree shift and it is called tHall (tree) shift

2.3 Forbidden blocks and shifts of finite type

Definition 2 (Pattern and block). Let M C Z* be a finite set. Apatternis a mapp: M — A. The set
M is called thesupportof p and it is denoted by supp). We denote byAM the set of all patterns with
supportM. For anyn > 1, ablockis a patternp: A, — A. The integem is called thesizeof the block.
The set of all blocks is denoted ¥ (A% ).

If X is a subset oA>" andM C Z* is finite, the set of pattern§f|y : f € X} is denoted byXy.
Forn > 1, the notationX, is an abbreviation foK,, (that is, the set of all blocks of sizewhich are
restrictions toA, of some configuration iX). We denote byZ(X) the set of all blocks oK (that is,
B(X) = Unzlxn)-

Given a blockp € #(A*") and a configuratiorf € A>', we say thatp appearsin f if there exists
v e Z* such that( )[sypyp) = P If p does not appear if, we say thatf avoids p Let.# be a set of
blocks. We denote b (.#) the set of configurations id*" avoiding simultaneously all the blocks.if,
in symbols

X(F)={f € A¥ : (fV)|a, ¢ .Z, forallve =¥ andn > 1}.

If |Z|] =1 we have a one-dimensional setting in whEkchis identified withN. Indeed, if~ = {0},
we associate € N with 0" € ", where 0 denotes the word 0-0. In this case, a configuratiohc AN

n
can be identified with the (right) infinite wond = apa; - -- over the alphabef whereay = f(¢) and
an = f(0") for all n> 1. Analogously, a block of size can be identified with an element Af, that is
a word of lengthn over the alphabeA. Indeed the seh, = {€,0,00,...,0"1} c =* is identified with
{0,1,2,....n—1} CN.
By analogy with the one-dimensional case (see for exam@e Theorem 6.1.21]), we have the
following combinatorial characterization of subshifts.

Proposition 3. A subset Xc AZ" is a subshift if and only if there exists a sBtc %(A¥") of blocks such
that X = X(%).
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Let X C A* be a subshift. A se# of blocks as in Propositiddl 3 is calleddafining set of forbidden
blocksfor X. If one can find a finite defining set of forbidden blocks ¥rthe subshiftX is calledof
finite type
Remark4. The blocks of a subshift determine the subshift. Indeedgrgiwo subshiftX,Y ¢ A>', we
haveX = X(#(AZ)\ #(X)), so thatX =Y <= B(X) = B(Y).

2.4 Cellular automata

Definition 5 (Cellular automaton). A mapt: A> — A is called acellular automator(CA for short)
if there exist an integar > 1 and a magu : A%+ — A such that

T(H)(v) = u(f)lars)
for all f € A> andv e =*. The integer is called theradius of T, and is the associatelbcal defining
map

The following is atopological characterization of celltdatomata. Fora proofinthe one-dimensional
case, se€[18, Theorem 6.2.9]. See dls0 [9, Theorem 1.&J18nProposition 1.2.4], for a more general
setting.

Theorem 6 (Curtis-Hedlund-Lyndon). A mapt: A~ — A> is a cellular automaton if and only if
it is continuous (with respect to the prodiscrete topologgyl commutes with the shift action (that is,
(r(f))V = (V) forall f € A and ve ).

Example7. Let A= {0,1} andr = 1. The local defining map: A®»2 — Alis defined by

4(p) = {o if p(e) = p(0) = p(1) =0

1 otherwise

for eachp € A%, In other wordsu sends a patterp € A*2 in 0 if and only if all the elements of the
pattern are 0's. An illustration of the behavior of the CAlefined byu is depicted in Figurgll.

1 SLIN 1
0 0 1 0
0 1 0 0 i 1 0 1
i 0 1 0 0 0 1 1 i o 1 o . o 1 1
P PN P P PN P P PN P P PN P

Figure 1: The image underof a configurationf € Z*.

Remark8. Given a cellular automaton: A> — AZ', it immediately follows from Theorerl 6 and the
compactness o0&, that the image (A*") c A% is a subshift oA .

3 Expansiveness

In this section we prove that there is no positively expaa€h onAZ if k= |Z| > 2. For this, we follow
the proof given by Shereshevsky [21] (see also [22]) for Chngel onZ® with d > 2.
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Definition 9 (Positive expansiveness)A CA 1: A> — A¥ s positively expansivi there existsN > 1
such that for anyfy, f, € A* one hasf; # f, = 1'(f1)[a, # T(2)|ay, fOr somet > 0.

Remarkl10. The definition of positive expansiveness can be reformdlagefollows: there existd > 1
such that for anyfy, f, one hasf; # f, = dist(1!(f1), T(f2)) > &, for somet > 0.

Definition 11 (Entropy of a CA). Let 1 be a cellular automaton. We define
2(t,nt) = {(fla, T(Dlay,..., T H(F)|a,) : f € AT}

Obviously, Z(t,n,t) C AP x ... x A% and an immediate consequence of this fact is &t n,t)| <
—_——

t
. . log|2(t,n; . .
A2t We definen(t,n) = limsup._,., 22T Theentropy oft is defined by

h(t) = lim h(t,n) = suph(t,n).

n—o0 n>1

Lemma 12. Let T be an expansive CA with constant N. Then there exists such that for every & 0
and f,, f, € A* one has

Tl(fl)‘ANJrn = Tl(fz)‘ANJrn 0= fl’AN+n+1 fZ‘AN+n+1

Proof. First we prove our statement far= 0, that is, we prove that there exists 1 such that for every
f1, f> € A¥ one has
T'(f1)lay = ' (f2)lan Vo = Falay., = Falay..- (3.1)

Suppose the contrary. For edch 1 there existfl( ), fz( )€ A% such that

T (£ |y = T (K)o

and
|AN+1 7£ f |AN+1

As A*' is compact, consider two suitable subsequel(ltﬁ’ﬁ)heN and (£ )new of (£ ey and( £V )y
converging tof; and f, respectively. Foh large enough, we havé_L|AN+l = f(th lan,: and falay,, =

\ANH, thus f1|ay., # f2lay,,. Sincer is continuous, we have that( Wy Tt(fl) andt'(f, £y -
Tt(fz), for eacht > 0. Oncet has been fixed, it holds, fdr large enough,rt( 1( Nay = TH(f1) oy,
T (£57) |y = T'(f2)|ay @ndt < tn. Thus, T'(£L)[a = TH(F")|a, and thent!(f1)la, = T(f2)|ans
contradicting the expansivenesstofHence[(3.]1) holds for a suitahie> 1.

To prove our statement in general, suppose thatl is as in [IEll) Len > 0 be an integer and
let f,, f, € A¥ be two configurations such tha’t( f1)|AN+n =T (f2)|AN+n . Fixw e An. 1. For every
W € Ay we have thatvw/ € Ayn andt' (f)) (W) = T'(f))(ww) =T (fz)(wvxl) = T'(f¥)(W)¥_,. That
is, T' () |ay = T'(f¥)|ayW'_o- By B1), we have that)|a,., = f¥|ay.,- The wordw € Aq; 1 having
been chosen arbitrarily, we have tHal, ..., = f2|ay.n.s O

Lemma 13. Let 1 be an expansive CA with constant N and 1 as in LemmaZ2. Then for everynl
and f,, f, € A* one has

T (1) |an = T'(F2) [ag Yo = falag.n = T2lanen-
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Proof. By LemmaL2, fromr!(f1)[a, = T'(f2)|a, V™o, We haver (f1)|ay,, = T'(f2)|ay,,7\"g"". Again,
applying Lemmd12, we have (f1)|ay,, = r‘(fz)]AMvi(iBz)t. By iterating this argument, the claim
follows. O

A consequence of Lemniall3 is the following.

Corollary 14. Lett be an expansive CA with constant N and 1 as in Lemm&I2. Then for everynl
|A[IBnl < 2 (T N nt+1)].
Theorem 15. For |Z| > 2, there do not exist expansive CA oh A

Proof. Suppose that is expansive with constaiM, and let > 1 be asin Lemmial2. By Corollaryl14, we
have thatA|lAv+l < |22(1,N,nt+ 1)| for everyn > 1. Moreover, by definition, we have?(t,n,t)| <
|A|IA0lt for eachn > 1 andt > 0. In particular| 22(t,N,nt 4 1)| < |A/AI(MD) - This implies|A|Avol <

|AANID) | that s, KTt < (k:__11>(nt+ 1) (wherek = |Z|). This is a contradiction becausecan be
chosen arbitrarily large. O

4 Permutivity, preinjectivity and surjectivity

In what follows,7: A> — A% denotes a CA defined by a local map A%+t — A. We always suppose
thatr > 1.

Fix n > 1. For a patterrp: Ap\ {€} — A and a lettera € A, we denote bya< p the block onA®
coinciding withp on A, \ {€} and sending to a.

Definition 16 (Permutivity). A CA T of radiusr > 1 ispermutivelf for every patternp: A1\ {€} = A
and every lettea € A, there exists a uniqug € A such thafu(a’ < p) = a.

In other wordsg is permutive if for everyp € A%+1\{&} the functionu((-) < p) : A— Ais a permutation
of the alphabeA.

Proposition 17. Permutive CA are surjective.

Proof. Let f € AZ" be a configuration. For eveny> 1 there exists a configuratidq such that (f,)|a, =
fla,. For this, it is sufficient to arbitrarily fix the levels fronme (n-+ 1)-th to the (n-+r)-th in the
configurationf, and fill it in backward by permutivity.

This implies that lim . 7(f,) = f. SinceAZ is compact, there exists a subseque(g)nen Of
(fn)nen converging to somg € A*". Thus, limy_. 7(fy,) = 7(g) and thenr(g) = f. O

Definition 18 (Diamond). Let T be a CA and lep € A be a block. Adiamond oft (based on p)s a
pair of different blocks having the same support of gize 2r + 2 coinciding withp on A; and onvA;
for each vertex of lengthn—r, and having the same image undger

Remarkl9. Let T be a CAand € A™ ablock. Ifpy, p2 € AP are two blocks (wittn > 2r + 2) coinciding
with ponA, and onvA, for each vertex of lengthn—r, we can construct two configuratiofis f, € A>
such thatf; repeatsp;, i = 1,2, infinitely many times. Note that; = f, if and only if p; = p2, and
T(f1) = 1(f2) if and only if u(p1) = p(p2).

Definition 20 (Preinjectivity). A CA T is preinjectiveif it has no diamonds.

Proposition 21. Permutive CA are preinjective.
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Proof. Let T be a permutive CA. Far= 1,2, let p; and f; be as in Remark19. Suppose that~ f, are
different configurations. Then there exists Z* such thatf;(v) # f2(v) and filua,. ,\ vy = f2lvar, 1\ (v}
Equivalently, we have thaty(e) # f}(&) and f|, ,\ (e} = f3la.1\(e}- Sincet is permutive, we have

H((F)a2) # H((f))]a). Hence
T(f)(V) = H((f)la 1) # H((F)]a,) = T(f2) (),

and thusrt (f;) # 1(f2) andu(ps1) # U(pz2). This implies that has no diamonds. O

4.1 An example of a surjective CA which is not preinjective

Let A= {0,1} andr = 1. Consider the CA whose local defining map : A*? — A defined by

u(p) = p(0)+p(1) mod2

Figure[2(d)) displays a generic configuratibrand Figurg 2() a preimage 6f

ar ag 0 ag
as a as 3 0 a 0 &
ay ag a9 a0 a;1 a2 &3 A4 0 aa 0 a 0 a 0 ap
P PN P P N N P P N N P P N N P
(a) A generic configuratior. (b) A preimage off.

Figure 2: An example of surjective CA.

The CAT is not preinjective: Consider the pattenms p, € A such thatp; (v) = 0 = py(v) for each
v¢{0,1} andfi(0) = f1(1) =0=1— f(0) = 1— (1) (see Figurgl3). Clearly, we hayg p;) = p(p2).

0 0
/\
o 0 1 1
PN PN
0O 0 0 O 0O 0 0 O

Figure 3: A diamond of.

4.2 The Garden of Eden theorem

As it is well-known, preinjectivity and surjectivity are eigalent for CA overAl or even more generally
overAZ’. This is the statement of tf@arden of Eden theoreproved by Moore[[19] and Myhil[]20].

In this section we focus on the the implication “preinjeityiv—> surjectivity”. In the case o it
can be proved for a wide class of subshifts using argumentdving the entropy (see [14]). In[17,
Proposition 5.26], Klirka provides a direct proof usingfthiowing fact: if T is not surjective, then there
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exists a words € A" such that the preimage set*(v) has cardinalityé > |A|" (wherer is the radius of
7). With this latter result at hand, fiw € A" such thatv € u~(v). For eachm> 1 define the sets

Mp={WwWy - wWpwW:iw e u t(V)} and L ={vwviV---VVpivivie Al

One hagu(. ) C AL, | My = E™ and| .2y = A™ D, Since€ > |Al", one hag™ > |A|"(™) for m
large enough. This implies that distinct elements#4f, have the same image, i.e., there exists at least
one diamond.

We prove now that the same arguments apply in our general baparticular the following propo-
sition is an easy generalization of a theorem by Kiirka [1&dFfem 5.21] (see also [15]).

Proposition 22. Let T be a CA of radius £> 1. If for every n> 1 and every block g A the preimage
setu—1(q) has cardinality|A|/®+/~I1%[ thent is surjective.

Proof. Let f € A* be a configuration. Far> 1 set

Xo={g€ A" g, - fla,}.

ThenX, = 1-1(%(f|a,)), thatis the preimage of the cylinder determined by the bfdgk By hypothesis,
X is nonempty and it is closed sinaeis continuous. MoreoveK,.1 C X, for everyn > 1. By
compactness, there exigis (-1 X, and obviouslyr(g) = f. Thus,1 is surjective. O

Corollary 23. Lett be a CA of radius &> 1. If T is not surjective then there exist an integerri and a
block ge Af such thau=2(q)| > |A[/Bnsr|=IAnl,

Proof. Suppose that is not surjective. By Propositidn 22, we have that theretexisntegen > 1 and a
blockq € A% such thatu ()|  |A[/I =14l Notice that, once has been fixed Jqc aan () = Alrr
and then

IR

geALN

Thus the mean number of preimages of a blgek A% is |A|/AerI=I8nl and if |u=1(q)| < |A[/Anr=1al)
there must existy € A such thafu=1(q)| > |A|/Ael=1Anl, 0

Theorem 24. Preinjective CA are surjective.

Proof. Apply the argument of Kilrrka illustrated above. Supposé th&A T is not surjective. By

virtue of Corollary[Z3B, there exists a pattegnc A® such that the preimage sat1(q) has cardi-
N+r_n

nality & > |A|8nel=I8al — |AST". Fix p € A+ such thatp € p~%(q). The sets#y and .Z,

n+rym+1_
K 171

are defined analogously and one hgs#y) C .y, In this case we haveZy,| = & 1 and

KHML_ g

(kn+r)m+1,1kn+r7kn KN\ . ) KT 0 (kn+r)m+17171
|| = |A| "W R :(\A]‘W ) . Again, sinc&§ > |A| ¥ ,onehas ¥ 1 >

kn+r)m+171
L L N e .. . - H
(]A\ ) T form large enough. Thisimplies that distinct elementsf have the same image,

i.e., there exists at least one diamond. O

Remark25. Notice that Proposition 17 is also a consequence of Propo&il and Theoreiin 24.
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5 Closingness

Right-closingness is a well-known notion in the one-diniemal case and positively expansive CA share
this property[[16] (see alsdl[7, Lemma 6.5]). In this sectimngeneralize this notion to CA on the full
tree shift.

Let p € Al andq € A be two patterns of a CA, with n,m > 1. The notatiorp —— g means that
there exists a configuratiohc A*" such thatf |5, = pandt(f)|s, = .

Fix n,m> 1. Given a blockp € A® and a sequence of blockgs, ..., px) € AP x ... x Al we
denote byp<(py,..., pw) the pattern ofA®+m coinciding with p on A, and with p; on v;A, for each
i=1,...,k", wherey, is thei-th word overZ of lengthn (in the lexicographical order).

Definition 26 (Right-closingness).A CA 1 is right-closing if there existsN € N such that ifp SN q
with supp(p) = A, and supgq) = A, then there exists a unique sequefpeg..., pr) € (A*)K such
that for any configuratiorf

r

f’Ar = pandr(f)‘ArN =q—= f’ViAr = pi vik::lﬁ

wherey; is thei-th word overZ of lengthr in the lexicographical order.

Proposition 27. Right-closing CA are preinjective.

Proof. Fori =1,2, letp; andf; be as in Remaik19 and suppagéd;) = 7(f,). Right-closingness implies
that f1|va, = f2|wa, for eachv e Z'. Again, we have thafi|,a, = f2|un, for eachu,v e . So we have
that f; and f, agree on triangles of increasing size. This implies- f, and thenp; = pp, and thust has
no diamonds. O

Propositio 27 and Theoreml24 imply the following result.

Corollary 28. Right-closing CA are surjective.

5.1 The one-dimensional case

If Tis a CA onAZ, there exists a more natural definition of closingness tees the linear structure @f
We illustrate it below. For more details séé [7],[[17] ahd [6]

Definition 29 (Left-asymptoticity). Two configurationsfy, f» € AZ are left-asymptoticif f1l] o) =
f2]|—eo,n fOr somen € Z.

Definition 30 (Right-closingness inZ and N). A CA 1: AZ — AZ js right-closingif any two different
left-asymptotic configurationgy, f, € AZ verify 1(f1) # 1(f2). ACA 1: AY — AN isright-closingif the
natural extensiom: AZ — AZ of 1 (i.e., T is defined by the same local map®sis right-closing.

In [6, Section 3.1], Blanchard and Maass give the followifigitary” definition of right-closingness
in N. We extended this definition to CA on trees in Definition 26.

Definition 31. A CA 1: AY — AN is right-closing if there exista € N such that ifv SN W1 - - - Wy With
v,w; € A", i=1,...,N, then there exists a uniquec A" such that for any configuratiohc AY one has

flor—y =vandt(f)|om_1 =Wi--- Wy = flp2_y=V.
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6 Openness

Definition 32 (Openness).A CA T is openif the image of an open set is an open set.
Remark33. A CA is open if and only if the image of a cylinder is an union gfiaders.

Proposition 34. Open CA are surjective.

Proof. Suppose that is open. Fix a lettem € A and let%’(a) be the cylinder determined by, By
assumption, there exists a bloplsuch thats’(p) C 1(%¢'(a)), where?'(p) is the cylinder determined by
p. In particular we have that p. Suppose that supp) = A, and definer = 0™ € ™. Consider a
configurationf € A>". We want to prove that has a preimage. Fix a configuratiépcoinciding withp
onAn and such thafy = f. By definition, we have that; € ¢'(p) and then there existsc ¢'(a) such
thatt(g) = f1. Thus,7(g") =1(g)¥ = f{ = f. O

Remark35. Propositiorf 34 can be proved by means of a topological argtinhedeed, ift is open, we
have thatr (A>") is open. This implies that(AZ') = A*', becausa (A>') is a tree shift and the only open
tree shifts are ® and> . To prove this claim, consider a susbshiftand a configuratiorf € X. Fix a
forbidden blockp for X. We define a sequendé,)ncy € A% in such a way thaf, and f agree om,.
Moreover, we imposéy = p for somev ¢ A,. In this way, we have lif.,. f, = f andp appears in each
fo (hencef, € AZ"\ X). If X were open, we would have that A> \ X, which is a contradiction. We do
not get a contradiction when: (1) there do not exist confitjoma f € X (i.e., X is empty), or (2) there
does not exist a forbidden blogkfor X (i.e., X is the full shift). In the case of bidimensional CA, the
same argument is used In |11, Proposition 4].

In [6], Blanchard and Maass prove the following result for GAAY. In Propositiori 317, we give a
generalization of their proof in the case of CAAf .

Proposition 36. [6] Proposition 3.2] Right-closing CA on'Aare open.

We want to point out that iA\Y it is possible to recode a CA of radiuswith an equivalent CA
of radius 1. This recoding is more complicatedAf. This explains the additional hypotheses in the
following proposition.

Proposition 37. Right-closing CA of radius £ 1 are open.

Proof. For simplicity of the notation, we suppoke- |Z| = 2, but the proof can be easily adapted for any

k> 2. LetN be as in Definition 26. By hypothesis, we have that it g, with a € Aand suppq) = Ay,
then there exists a unique péir, ay) € A? such that for any configuratioh

f(¢) =aandt(f)|p, === f(0) =ag andf(1) = ay.

We want to prove that for every tup(by, ..., bx) € A2 there is a unique paiey,a;) € A2 such thai<
(aq,a2) LN g<(by,...,bn). Suppose the contrary. Then there existss g buta /i> q<(bg,...,bon).
SincerT is surjective, we have that LN g<(bg,...,bn) for some letter@ # a. Hence, there exists
a patternp: Ax;2\ {€} — A such tha' < p LN g<(by,...,bx). Consider the patterp’: Ani3 — A
extendinga < p in such a way thap/(v) = a for eachv € 3N+2, Clearly, p/ £, ¢, whereq is some

extension ofj<(by,. .., bon) to Axn,2 such thaty coincides withg onvAy, for eachv € N+3. Consider
now the blockq” defined as an extension .3 of  such thatg” coincides with 2+2 copies of

(by,..., b ) onE2N+2, By right-closingness, we have thait/"s o (see Figuré4), and again, sincés
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surjective, there exists a lettaf such that” # &, &’ # aanda”’ LN g’. In this way, sincé\ s finite, we
can eventually find a block &&= having no preimage, in contradiction with the surjectiwfyr. Hence

the claim is true.

Figure 4: lllustration of the construction in the proof obPosition 37 .

Supposea —— . We want to prove that’(q) C 1(%'(a)). For any configuratiorf € % (q), there
exists a pair(ay,a,) such thata< (a;,a) —— q< f|sx. Again, there exists a paifa,a’) such that
a<(al,a) Hg-1q flsnian_ysn, fori=1,2. Hencea<(ar, a) < (&,ay,&,a;) -+, g4 flengsnet.
In this way, we can recursively construct a preimagé of ¢ (a). O

Remark38. Corollary[28 is also a consequence of Proposifich 37 (if geized to any radius), and
Propositior 34. It can also be obtained by the lifting (up dodn) operation described in/[1].

7 Conclusion and possible developments

This paper is a first attempt to study topological propermie€A on the full tree shiftA> . We showed
that there do not exist positively expansive CA3f > 2 (Theoreni_IE). In the case of CA o’ it is
well known that positively expansive CA exist if and onlydif= 1.

In Section[4, we gave a definition of permutivity which is aumat generalization of the notion
of left-permutivity for one-dimensional CA. The symmetriotion of right-permutivity is not naturally
generalizable in our setting. It is easy to prove that in the-dimensional case right-permutive CA are
right-closing. In Sectiohl5, we defined right-closingnemsG@A onA>" and we wonder whether there is
a good definition of right-permutivity which still impliesght-closingness. In the case of bidimensional
CA, some interesting constructions are given by DennunzibFeormenti in[[11].

Ford-dimensional CA, preinjectivity is equivalent to surjediy. We showed in Sectidn 4.1 that there
exist CA on the full (binary) tree shift that are surjectivét bot preinjective. In Theorem P4 we prove
that preinjective CA are surjective. We proved that permiytimplies surjectivity and preinjectivity
(Propositiong 17 and 21, respectively). In Proposifioh 2Z7also proved that right-closingness implies
preinjectivity.

In Sectior 6 we considered open CA. We proved that openngsessurjectivity (Proposition_34).
In Propositiori 36, we showed that right-closing CA of rading are open. We believe that the result is
generalizable to any radius.

Other properties we are working on for CA on tree shifts aedtansitivity, the mixing property, and
the density of the periodic orbits. For example, in the oimethsional case, itis known that left-permutive
CA are mixing [8], and right-closingness implies the dgnsitthe periodic orbits[[7].
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