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In this paper are presented first results of a theoretical study on the role of non-monotone interac-
tions in Boolean automata networks. We propose to analyse the contribution of non-monotony to the
diversity and complexity in their dynamical behaviours according to two axes. The first one consists
in supporting the idea that non-monotony has a peculiar influence on the sensitivity to synchronism
of such networks. It leads us to the second axis that presents preliminary results and builds an un-
derstanding of the dynamical behaviours, in particular concerning convergence speeds, of specific
non-monotone Boolean automata networks called XOR circulant networks.
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gence time.

1 Introduction

Boolean automata networks were first introduced by McCulloch and Pitts in [13] and Kauffman in [11].
These two works and others following these (see [9, 12, 24]) highlighted the importance of embedding
biological problematics in a context close to discrete mathematics and theoretical computer science.

In the lines of these studies, we propose in this paper to tackle the question of the role of non-monotony in
Boolean automata networks. Our interest in this issue comes from the fact that non-monotony, although
widely studied in other contexts [4, 6, 10], is missing from the literature related to Boolean automata net-
works viewed as models of genetic regulation networks. Indeed, classically, the interaction structure of
Boolean models of genetic regulation networks are often represented by signed digraphs whose vertices
represent genes, and arcs labelled by + (resp. by −) represent activations (resp. inhibitions) of genes on
each other. Thus, a gene that tends to influence the expression of another gene is supposed to be either
one of its activators or one of its inhibitors, rather than both. More precisely, it cannot act as an activator
under certain circumstances and act as an inhibitor under others. This interpretation of gene regulations
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leads to define monotone Boolean automata networks as studied in [2, 3, 8, 14, 18]. Interesting facts are
that, from the general point of view, the global dynamical properties of non-monotone networks have
not yet been at the centre of studies in this domain nor has the impact of non-monotone interactions yet
been examined per se. It therefore seems pertinent to address questions about the role of non-monotony
on the dynamical characteristics of Boolean automata networks. To go further, our recent theoretical de-
velopments have led us to think that non-monotony may be at the origin of singular behaviours of these
networks. This gives additional significance to the issue of non-monotony from both the perspectives of
the theory of Boolean automata networks and of the framework of genetic regulation networks. Thus,
we present in this paper the grounds of a larger study on non-monotony in networks by developing two
lines. The first one consists in understanding the synchronism sensitivity of networks. To do so, we
highlight that networks can be synchronism sensitive at different levels and shows that non-monotony
is a central structural parameter that helps to classify networks. Then, on the basis of the first line, we
present primary results on the dynamical properties (notably in terms of convergence time) of a specific
class of non-monotone networks called XOR circulant networks.

In Section 2, we provide definitions and notations of Boolean automata network theory that are used in
the paper. Section 3 gives details about a classification of such networks according to their synchronism
sensitivity and show that non-monotony is a central parameter in this context. Then, Section 4 presents
dynamical properties of XOR circulant networks by exploiting their trajectories and their convergence
time. Finally, Section 5 proposes perspectives arising from this work.

2 Definitions and notations

A Boolean automata network involves interacting elements. Any of these elements has a state which
equals 0 or 1. Then, we speak of inactive and active elements respectively. Moreover, the state of
each element can change over time according to the states of other elements and to their influence on
it [17, 22]. This section is devoted to the formalisation of the main definitions and notations used in the
sequel.

2.1 Network definition

A Boolean automata network N of size n is composed of n elements called automata which are numbered
from 0 to n−1 such that V = {0, . . . ,n−1}. Every automaton i has a state xi that takes values in {0,1}.
The time space is discrete and equals N. The allocation of a value of {0,1} to every automaton of N is
called a configuration of N. It is represented by a vector x = (x0, . . . ,xn−1) ∈ {0,1}n. We also denote by
x(t) (resp. xi(t)) the configuration of N (resp. the state of automaton i) at time step t ∈ N. The density of
a configuration x is defined as d(x) = 1

n · |{xi | (i∈V )∧(xi = 1)}|. Because we are particularly concerned
with switches of automata states starting in a given configuration, we introduce the following notations:

∀x = (x0, . . . ,xn−1) ∈ {0,1}n,

∀i ∈V = {0, . . . ,n−1}, xi = (x0, . . . ,xi−1,¬xi,xi+1, . . . ,xn−1) and ∀W ⊆V, xW∪{i} = xW i
. (1)

Notice that 0i is the configuration in which i ∈ V is the only automaton that has state 1 and 0W is the
configuration in which the automata in W all have state 1 contrary to automata in V \W . The interaction
structure of N is represented by a digraph G = (V,A), called the interaction graph of N that specifies
what influences apply to each automaton of N. In G, V equals the set of automata of N and A ⊆ V ×V
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{
f0(x) = x1
f1(x) = (¬x0∧¬x1)∨ (x0∧ x1)

0 1

Figure 1: A Boolean automata network of size 2 with its set of local transition functions and its underly-
ing interaction graph.

is the interaction set. The precise nature of these influences are given by the local transition functions
fi : {0,1}n→{0,1} which are associated to each automaton and satisfy:

∀i, j ∈V, ( j, i) ∈ A ⇐⇒ ∃x ∈ {0,1}n, fi(x) 6= fi(x j). (2)

In other words, ( j, i) is an arc of G if and only if j effectively influences i. This means that in some
network configurations (but not necessarily in all of them), the state of j causes a change of states of i.
As a consequence, a Boolean automata network is entirely defined by the set of local transition functions
of its automata. Figure 1 illustrates a Boolean automata network of size 2 by picturing the set of its local
transition functions and its underlying interaction graph.

2.2 Updating modes and transition graphs

The definition of a network does not determine its possible dynamical behaviours. To do so, the way
automata are updated over time has to be specified. Here, we introduce the three distinct updating modes
that are used in this paper.

The most general standpoint is to consider every possibility. Considering a network N as a state transition
system, each configuration of N is subjected to 2n−1 outgoing transitions, one for each non-empty set
of automata whose states can be updated. For any subset W 6= /0 ⊆ V , we define the update function
FW : {0,1}n→{0,1}n such that:

∀x ∈ {0,1}n,∀i ∈V, FW (x)i =

{
fi(x) if i ∈W ,
xi otherwise.

Thus, if we consider the most general updating mode, the global network behaviour is represented by
the general transition graph Gg = ({0,1}n,Tg) where Tg = {(x,FW (x)) | x ∈ {0,1}n, W 6= /0 ⊆V} [15].
In Gg, an arc is labelled by the list of subsets W of automata that are updated in their corresponding
transition (x,FW (x)) such that each FW applied to x gives the same image (see the left panel of Figure 2).

Transitions (x,Fi(x)) that involve the update of one automaton i ∈V only are called asynchronous tran-
sitions. Transitions (x,FW (x)), |W | > 1, that involve the update of several are called synchronous tran-
sitions. The sub-graph Ga = ({0,1}n,Ta) of Gg whose set of arcs Ta = {(x,F{i}(x)) | x ∈ {0,1}n, i ∈V}
equals the set of asynchronous transitions of the network is called the asynchronous transition graph.
Taking Ga as a reference transition graph allows to define the asynchronous updating mode according
to which, in each configuration, only n transitions are considered, one for each automaton that can be
updated alone. This updating mode has been widely used in studies of Thomas and his co-workers
in [19, 20, 21, 25]. An illustration of an asynchronous transition graph is given in Figure 2 (centre).

The general and the asynchronous transition graphs are very large graphs. In some cases, to draw in-
tuitions, it is interesting to restrict our attention to the transitions resulting from a specific deterministic
updating schedule u. This distinct point of view is derived from the work of Robert [22, 23] and has been
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Figure 2: (left) General, (centre) asynchronous and (right) parallel transition graphs of the Boolean
automata network of Figure 1.

adopted in various studies, see for instance [1, 5, 7]. Section 4 focuses on a specific such deterministic
mode, called the parallel updating mode π . It consists in updating all automata at once in each network
configuration. The underlying global transition function is F [π] = FV so that ∀i ∈ V, F [π](x)i = fi(x)
and the network behaviour is considered to be described by the graph of F [π], i.e., the transition graph
Gπ = ({0,1}n,Tπ) where Tπ = {(x,F [π](x)) | x ∈ {0,1}n} (see the right panel of Figure 2).

2.3 Dynamical behaviours and non-monotony

Consider a Boolean automata network N and an updating mode u ∈ {g,a,π} among those mentioned
above. Let Gu be the associated transition graph and x ∈ {0,1}n be a configuration of N. The definitions
that follow extend directly and naturally to more general updating modes.

A path in Gu that starts in x is a trajectory of x. In Gu, strongly connected components that admit no
outgoing arcs, called terminal strongly connected components, are called the attractors of N. They
correspond to the asymptotic behaviours of N. Their sizes equal the number of configurations that they
contain. The configurations belonging to attractors of N are called its recurrent configurations. An
attractor of size 1 is called a stable configuration. Other attractors are called stable oscillations. In the
deterministic context of the parallel update schedule, stable configurations correspond to fixed points of
the global transition function F [π] and stable oscillations of size p are rather called limit cycles of period
p. They correspond to oriented cycles in Gπ . These notions are illustrated in Figure 2. There, stable
configurations are represented in light grey and stable oscillations in dark grey. In particular, this figure
shows that the network defined in Figure 1 admits a unique stable configuration, that is, configuration
11, whatever the updating mode chosen. This recalls that stable configurations are preserved unlike
sustained oscillations (see the limit cycle of period 3 appearing when the network is subjected to the
parallel updating mode).

By analogy with continuous functions, the local transition function fi of an automaton i ∈V is said to be
locally monotone in j ∈V if, either:

∀x = (x0, . . . ,xn−1) ∈ {0,1}n, fi(x0, . . . ,x j−1,0,x j+1, . . . ,xn−1)≤ fi(x0, . . . ,x j−1,1,x j+1, . . . ,xn−1)

or:

∀x = (x0, . . . ,xn−1) ∈ {0,1}n, fi(x0, . . . ,x j−1,0,x j+1, . . . ,xn−1)≥ fi(x0, . . . ,x j−1,1,x j+1, . . . ,xn−1).
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In other terms, fi is locally monotone in j if, in the conjunctive (or disjunctive) normal form of fi(x),
either only x j appears or only ¬x j does. The function fi is said to be locally monotone or simply mono-
tone if it is locally monotone in all j ∈V . It is said to be non (locally) monotone otherwise. In this latter
case, there is a j ∈V such that in some configurations, the state of i imitates that of j and in some other
configurations, on the contrary, the state of i negates that of j. A network is monotone when all functions
fi, i ∈V , are monotone. Otherwise, if at least one local transition function is non-monotone, the network
is said to be non-monotone. Note that we distinguish totally non-monotone networks (with only non-
monotone local transition functions) from partially non-monotone networks (composed by at least one
local monotone transition function). As an example, the network of Figure 1 is partially non-monotone.

3 Synchronism sensitivity and non-monotony

The aim of this section is to focus on the concept of synchronism sensitivity of Boolean automata net-
works and highlight that non-monotony is a consistent structural parameter that has a significant role in
this line.

3.1 Synchronism sensitivity cases

When Boolean automata networks are viewed in the framework of state transition systems by means
of the general and asynchronous updating modes, questions about the influence of synchronism on the
dynamical behaviours of networks naturally arise. The notion of synchronism sensitivity of a network
can then be informally described as the fact that its dynamical behaviour changes significantly when
synchronism is taken into account in the computation of its evolution. On the basis of the transition
graphs Ga and Gg (and more precisely on what can change by building Gg from Ga), we concentrate
on asymptotic dynamical behaviours (and specifically on recurrent configurations rather than attractors).
First, we describe the different cases that can possibly occur when synchronous transitions are added to
an asynchronous transition graph.

Let N be a Boolean automata network with its associated asynchronous and general transition graphs
Ga = ({0,1}n,Ta) and Gg = ({0,1}n,Tg) and let x,y ∈ {0,1}n be two distinct configurations of N. We
say that a synchronous transition from (x,y) ∈ Tg is sequentialisable if there exists a sequence of asyn-
chronous transitions from x to y, i.e., if there is a trajectory from x to y in Ga. It is obvious that if all
synchronous transitions of Gg are sequentialisable then, adding synchronism does not change the asymp-
totic dynamical behaviour of N and N is then not synchronism sensitive. Let us therefore restrict the study
to the case where Gg contains a non-sequentialisable synchronous transition (x,y). For any z ∈ {0,1}n,
we let Az (resp. A ?

z ) be the set of attractors to which z leads or belongs in Ga (resp. in Gg). And we
denote by L = ∪z∈{0,1}nAz (resp. L ? = ∪z∈{0,1}nA ?

z ) the set of all attractors in Ga (resp. in Gg). With
these notations, because of the existence of transition (x,y) in Gg, any attractor that can be reached by y
can also be by x so A ?

y ⊆A ?
x . On the contrary, in Ga, because there are no trajectories from x to y ((x,y)

is non-sequentialisable), Ay ( Ax is impossible. Indeed, either (i) y is transient and the only attractors
that it can reach are those of Ay = Ax that can be reached from x, either (ii) y is transient and it can
reach attractors in Ay \Ax 6= /0 that cannot be reached from x, or (iii) y is recurrent and since there are
no trajectories from x to y, there also are no trajectories from y to x also is and Ax∩Ay = /0. Notice that,
in the two latter cases induce Ay * Ax and that (i), (ii) and (iii) respectively yield cases 2, 3 and 4 listed
below. Thus, when the non-sequentialisable synchronous transition (x,y) is added to Ga, one of the only
four possible cases listed below holds:
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1. x is transient in Ga. Consequently, the set L = L ? of all attractors is unchanged. All configu-
rations z ∈ {0,1}n that can reach x in Ga, including x, remain transient but gain the possibility to
reach attractors in Ay \Az (i.e., Ay = A ?

y and Ax ⊆Az =⇒ A ?
z = Az∪Ay).

2. x is recurrent, y is transient and Ay = Ax. Consequently, all z ∈ {0,1}n on a trajectory from y to
Ax, including y, become recurrent and are included in A ?

x , causing Ax to grow (to become A ?
x ).

3. x is recurrent, y is transient and Ay\Ax 6= /0. Then x becomes transient causing L to loose attractor
Ax (A ?

x = Ay = A ?
y and L ? = L \Ax).

4. both x and y are recurrent in Ga. Attractor Ax “empties itself” in Ay (∀z ∈Ax, z becomes transient
and such that Az = Ax * A ?

z = A ?
y ) also causing L to loose attractor Ax (to become L ?).

3.2 Synchronism sensitivity levels

The four cases above suggest between three and four levels of sensitivity (see Definition 1 below) that
a Boolean automata network can have to the addition of synchronism (the relative importance of levels
1◦ and 1• being disputable, they are deliberately not ordered). Cases 1 and 2 respectively yield levels 1◦

and 1• and cases 3 and 4 both yield level 2.

Definition 1. Let N be a Boolean automata network. The synchronism sensitivity of N can be of:

• level 0: N is not sensitive at all. All its synchronous transitions either act as shortcuts for asyn-
chronous trajectories or, on the contrary, add local, confluent deviations which increase the num-
ber of possible steps in a trajectory without changing its outcome.

• level 1◦: N is sensitive in the sense that the addition of synchronism grants additional liberty in the
evolutions of some transient configurations that are made to reach a greater number of different
attractors.

• level 1•: N is sensitive in the sense that the addition of synchronism causes some transient config-
urations to become recurrent and thus some (necessarily unstable) attractors to grow.

• level 2: N is sensitive in the sense that the addition of synchronism destroys attractors.

As said before, because we focus here exclusively on recurrent configurations, the only networks that
we have to consider are of levels 1• and 2. However, our recent studies have shown that, contrary to
level 2, level 1• comprises many networks. It is thus not sufficiently discriminant and consequently not
significant in our framework. So, let us concentrate on level 2.

3.3 Synchronism sensitive minimal networks

Focusing on synchronism sensitive Boolean automata networks of level 2, our aim is now to show what
are the minimal networks (in terms of size) which are sensitive to the addition of synchronism and how
they relate to non-monotony. Here, the motivation directly comes from systems and synthetic biology
where the discovering of minimal genetic interaction patterns with singular dynamical properties (i.e.,
singular biological functionalities) seems central to improve our understanding of living organisms.

This leads us to the following proposition.

Proposition 1. The minimal Boolean automata networks that are synchronism sensitive of level 2 are
totally non-monotone.
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Figure 3: (top) Generic description of the four smallest Boolean automata networks that satisfy the
conditions of Proposition 1. (bottom) Generic (left) asynchronous and (right) general transition graphs
of these networks.

Proof. As explained above, in order to be synchronism sensitive of level 2, a Boolean automata network
needs to have at least one non-sequentialisable synchronous transition in its general transition graph Gg.
Let us uncover the structural conditions that must be satisfied by a minimal network N belonging to level
2, with at least one non-sequentialisable synchronous transition. First, N needs to have more than one
automaton because, if not, synchronism has no sense. If it has size 2, then, to have a non-sequentialisable
synchronous transition, Gg needs to contain a generic sub-graph (with asynchronous transitions only) of
the following form:

x0,1 x0

x1 x

{1}

{0}

{0}

{1}

where x i, j = x{i, j} = xi j
(see Equation 1). This sub-graph is the smallest that is necessary for the general

transition graph to contain a non-sequentialisable synchronous transition (x,x i, j). It is also easy to see
that there can be only one non-sequentialisable synchronous transition in the general transition graph Gg

of a network of size and level 2. Moreover, to guarantee synchronism sensitivity of level 2, because fixed
points are conserved whatever the updating mode, the synchronous transition (x,xi, j) must go out of a set
of configurations belonging to an asynchronous stable oscillation. Now, there is only one way to create
an asynchronous stable oscillation that verifies the presence of the asynchronous sub-graph drawn above.
It consists in adding transitions (xi,x) and (x j,x). On this basis, in order to create synchronism sensitivity
of level 2, configuration x i, j needs to be a fixed point of N. If not, x i, j is a predecessor of the limit cycle
and adding synchronism will maintain the recurrence of every asynchronous recurrent configuration.
Thus, since x i, j is a fixed point of N, adding transition (x,xi, j) makes xi, j become the only attractor of
N with respect to the general updating mode. Thus, the general transition graph of N must have the
form pictured in the bottom right panel of Figure 3 (the bottom left panel illustrates the asynchronous
transition graph of such a N to compare). Hence, only two functions f0 are possible. If in configuration
x above, x0 = 1, then, f0(x) : x 7→ x0⊕ x1 where ⊕ denotes the XOR connector1. If in configuration x
above, x0 = 0, then f0(x) : x 7→ ¬(x0⊕ x1). The function f1 is defined similarly. In conclusion, there are
four minimal networks satisfying the properties of Proposition 1. They have size 2 and their interaction

1∀a,b ∈ {0,1}, a⊕b = (a∧¬b)∨ (¬a∧b).
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graphs equal the graph pictured in the top panel of Figure 3. Their two local interaction functions f0 and
f1 either equal x 7→ x0⊕ x1 or x 7→ ¬(x0⊕ x1).

Among the four minimal Boolean automata networks described in the proof above that are synchronism
sensitive of level 2, those defined by{

f0(x) = x0⊕ x1
f1(x) = ¬(x0⊕ x1)

and
{

f0(x) = ¬(x0⊕ x1)
f1(x) = x0⊕ x1

are isomorphic. This result relates intimately synchronism sensitivity to non-monotony. Indeed, the
smallest patterns that produce synchronism sensitivity strong singularities are non-monotone networks.
Moreover, it is easy to see that synchronism sensitivity of level 2 applies to other non-monotone networks.
Thus, it would be judicious and interesting to go further and characterise the family of synchronism
sensitive non-monotone networks of level 2. Now, in order to develop intuition about the dynamical
behaviour of general non-monotone networks, we choose to focus on a specific class of non-monotone
networks, namely XOR circulant networks.

4 XOR circulant networks

Let us focus now on the trajectorial and asymptotic dynamical behaviours of XOR circulant networks.
These networks define a class of non-monotone Boolean automata networks that is not too large but has
all the necessary properties to present complex behaviours.

4.1 Definitions and basic properties

A matrix C of order n whose ith row vector Ci (i < n) is the right-cyclic permutation with offset i of its
first row vector C0 so that C has the following form:

C =


c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2
cn−2 cn−1 c0 . . . cn−3

...
...

...
. . .

...
c1 c2 c3 . . . c0


is a circulant matrix. For any integer k ≥ 2, a k-XOR circulant network of size n≥ k is a network with n
automata so that the following four properties are satisfied:

(1) the adjacency matrix C of the network interaction graph G = (V,A), called the interaction matrix,
is a circulant matrix;

(2) each row Ci of this matrix contains exactly k non-null coefficients;

(3) C0,n−1 = cn−1 = 1;

(4) the local transition function of any automaton i is a XOR function such that ∀x ∈ {0,1}n, fi(x) =⊕
j∈V Ci, j · x j = ∑ j∈V Ci, j · x j mod 2.

Here, XOR circulant networks are subjected to the parallel updating mode, which means that if x = x(t)
is the configuration at time step t, then the network configuration at time step t + 1 equals x(t + 1) =
F(x) = C · x (where operations are taken modulo 2). Notice that F is then a linear function [4, 6, 26]
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Figure 4: (left) A 2-XOR circulant network of size 4 and (right) a 3-XOR circulant network of size 6.

and that, consequently, a XOR circulant network is entirely defined by its interaction graph G = (V,A) or
by its interaction matrix C . Figure 4 pictures two interaction graphs, the first one (left panel) is a 2-XOR

circulant network of size 4, the second is a 3-XOR circulant network of size 6.

A k-XOR circulant network N can be viewed as a cellular automaton. Indeed, if N has size n and
interaction graph G = (V,A), N can be modelled by the finite one-dimensional cellular automaton of n
cells assimilated to the n automata of N and that satisfies what follows. The neighbourhood N of a
cell i ∈ V equals the in-neighbourhood of automaton i in N: N = { j ∈ V | ( j, i) ∈ A}. The local rule
γ : {0,1}|N | → {0,1} of the cellular automaton is similar to the local transition functions of N and is
defined as γ((x`)`∈N ) =

⊕
`∈N x`. We make specific use of this formalisation to exploit tools of the

theory of cellular automata. Thus, if x = x(0) ∈ {0,1}n is an initial configuration of N, we consider the
corresponding space-time diagram, that is, the grid of {0,1}n×N whose line t ∈ N represents x(t). The
trace of cell or automaton i then corresponds to column i of this grid, that is, to the sequence (xi(t))t∈N.
Furthermore, for an arbitrary configuration x and an automaton i, Ri(x) denotes the configuration that
satisfies ∀ j ∈ V, Ri(x) j = x2i− j mod n and is called the reflection of x with respect to i. We write Ñ
to denote the reflection of N, i.e., the k-XOR circulant network whose interaction matrix is tC . In the
sequel, unless it is made explicit, N −(i) (resp. N +(i)) denotes the in-neighbourhood (resp. the out-
neighbourhood) of automaton i and Ñ −(i) (resp. Ñ +(i)) denotes its in-neighbourhood (resp. its out-
neighbourhood) in Ñ. Thus, for any two automata i, j, j ∈ N −(i) ⇐⇒ j ∈ Ñ +(i). F̃ denotes the
global transition function of Ñ if F denotes that of N. Notice that F̃ represents the reflected global
transition function of N. By default, unless N is the reflection of another k-XOR circulant network
that was introduced before, its automata are supposed to be numbered as suggested above, i.e., so that
cn−1 =C0,n−1 = 1. This way, {(i, i+1 mod n) | i∈V} ⊆ A defines a Hamiltonian circuit in the structure
of N and {(i+1 mod n, i) | i ∈V} ⊆ A defines a Hamiltonian circuit in the structure of its reflection Ñ.

Let us now list in the proposition below some basic properties of XOR circulant networks that follow
directly from the definitions of XOR functions and circular matrices.

Proposition 2.

1. The number of k-XOR circulant networks of size n equals
(n−1

k−1

)
.

Any k-XOR circulant network of size n satisfies the following properties:

2. Configuration (0, . . . ,0) is a stable configuration.

3. Configuration (1, . . . ,1) is a predecessor of (0, . . . ,0) if k is even and it is a stable configuration if
k is odd.

4. The trajectory of a configuration x is isomorphic to that of any configuration y which is a circular
permutation of x.
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4.2 Results

In what follows, unless it is mentioned, the automata are always taken modulo the size n of the network
considered.

4.2.1 General k-XOR circulant networks

Here, we concentrate on general k-XOR circulant networks and exploit the cellular automata formalisa-
tion presented above to derive some features of the dynamical behaviours of these networks.

Lemma 1. Let N be a k-XOR circulant network of size n with automata set V and reflected global
transition function F̃. For any automaton i, let Mi(t) denote the set of automata which have state 1 in
configuration F̃ t(0i

). Then, ∀x(0) ∈ {0,1}n,∀t ∈ N, xi(t) =
⊕

j∈Mi(t) x j(0).

Proof. We prove Lemma 1 by induction on t ∈N. For t = 0, Mi(0) = {i} holds by definition of configu-
ration 0i. Thus, ∀x(0) ∈ {0,1}n, xi(0) =

⊕
j∈Mi(0) x j(0). Now, suppose that ∀x(0) ∈ {0,1}n, xi(t) =⊕

j∈Mi(t) x j(0) and consider the initial configuration y(0) ∈ {0,1}n. Since y(t + 1) = F̃ t+1(y(0)) =
F̃ t(y(1)), the induction hypothesis applied to configuration x(0) = y(1) yields yi(t +1) =

⊕
j∈Mi(t) y j(1).

By definition, ∀ j ∈ V, y j(1) = f j(y(0)) =
⊕

`∈N −( j) y`(0) =
⊕

`∈Ñ +( j) y`(0). Thus, because the XOR

connector is commutative and associative, we have:

yi(t +1) =
⊕

j∈Mi(t)

( ⊕
`∈Ñ +( j)

y`(0)
)
=

⊕
{` s.t. |Ñ −(`)∩Mi(t)|≡1 mod 2}

y`(0).

Now, remark that ∀t ∈ N, F̃(0Mi(t)) = 0Mi(t+1) by definition. Then, ∀` ∈ V,0Mi(t+1)
` = 1 if and only

if |Ñ −(`)∩Mi(t)| ≡ 1 mod 2. From this, we derive that yi(t + 1) =
⊕

j∈Mi(t+1) y j(0) and then ∀t ∈
N, xi(t) =

⊕
j∈Mi(t) x j(0).

Lemma 2. Let N be a k-XOR circulant network of size n with automata set V and global transition
function F. For any automaton i and for any configuration x ∈ {0,1}n, F̃(Ri(x)) = Ri(F(x)) holds.

Proof. For any automaton j, the following holds:

F̃(Ri(x)) j =
⊕

`∈Ñ −( j)

(Ri(x))` =
⊕

`∈Ñ −( j)

x2i−` =
⊕

{` s.t. 2i−`∈Ñ −( j)}

x` =
⊕

{` s.t. j∈N −(2i−`)}
x`.

Now, if j ∈N −(2i− `), then all automata a,a′ ∈ V of N such that a− a′ = j− (2i− `) are such that
a ∈N −(a′). In particular, if automaton j ∈N −(2i− `), then ` ∈N −(2i− j). Hence, we have:⊕

{` s.t. j∈N −(2i−`)}
x` =

⊕
`∈N −(2i− j)

x` = F(x)2i− j = (Ri(F(x))) j,

and Lemma 2 follows.

Proposition 3. Let N be a k-XOR circulant network of size n with automata set V and global tran-
sition function F. For any automaton i and for the initial configuration x(0) = 0i, it holds that ∀t ∈
N, F̃ t(x(0)) = Ri(x(t)).
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Figure 5: Space-time diagrams (a) of a 2-XOR circulant network of size 14 and interaction-step s = 0
(cf. page 48), (b) of its reflected network and (c) of another 2-XOR circulant network of size 27 and
interaction-step 4.

Proof. Proposition 3 is proven by induction on t. Let t = 0. Property F̃ t(x(0)) = Ri(x(t)) is true because
x(0) = 0i. Suppose that it is true for t. Then, we have F̃ t+1(x(0)) = F̃(F̃ t(x(0))) = F̃(Ri(x(t)). By
Lemma 2, F̃(Ri(x(t)) = Ri(F(x(t)) = Ri(x(t +1)), which is the expected result.

This result comes from the fact that F and F̃ are the global transition functions of two reflected k-XOR

circulant networks that are isomorphic by definition (see Figure 5). Proposition 3 implies that, for any
automaton i, the space-time diagram of (0i

(t))t∈N is the reflected space-time diagram of (0Mi(t))t∈N with
respect to i and is related to the trace of automaton i. Thus, the space-time diagrams of configurations of
density 1

n carry information on the global behaviours of N. This is notably due to the fact that configura-
tions of density 1

n are unit vectors and because of the underlying superposition principle for linear maps.
That leads us to give the following proposition.

Proposition 4. Let N be a k-XOR circulant network of size n with automata set V and global transition
function F. The maximum convergence time, i.e., the maximal transient trajectory length, is reached by
configurations of density 1

n . Moreover, let p∗ be the period of the attractors reached by configurations of
density 1

n . Then, for any configuration x of N, the period of its attractor divides p∗.

Proof. All configurations of density 1
n are cyclic permutations of each other. Thus, by Proposition 2.4

their trajectories are isomorphic. They consequently reach their attractor of period p∗ at the same time
t∗. Now, let x be an arbitrary configuration and i an automaton. By Proposition 3, the space-time diagram
of (0Mi(t))t∈N is the reflected space-time diagram of (0i

(t))t∈N with respect to i. Thus, the space-time
diagram of (0Mi(t))t∈N reach its attractor at time t∗ and its period is p∗. This means that, ∀i ∈ N, the trace
of automaton i has period p∗ and enters its cyclic behaviour before t∗. As a result, the trajectory of x
reaches its attractor before t∗ and the period of the latter divides p∗.
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4.2.2 2-XOR circulant networks

Now, we focus on 2-XOR circulant networks of arbitrary size n and pay attention to the space-time
diagrams of configurations of density 1

n . What is called the interaction-step of such a network N is the
smallest integer s 6= 1 < n such that ∀i ∈V , (i, i+ s) ∈ A. Figure 5 (a) and (b) illustrates as expected that
when s = 0 the space-time diagram is the Sierpinski triangle. For other values of s, space-time diagrams
are deformed Sierpinski triangles. These observations result in the following lemma (that is used further
to analyse 2-XOR circulant networks of size n = 2p, p ∈ N∗, and interaction step s = 0).

Lemma 3. If N is a 2-XOR circulant network of size n with interaction-step s = 0 then ∀i ∈ V,∀q ∈
N, xi(2q) = x(i−2q)(0)⊕ xi(0).

Proof. Lemma 3 is proven by induction on q. Let i ∈ V be an arbitrary automaton and let q equal 1
initially. Clearly, the following holds:

xi(2) = x(i−1)(1)⊕ xi(1) = x(i−2)(0)⊕ x(i−1)(0)⊕ x(i−1)(0)⊕ xi(0) = x(i−2)(0)⊕ xi(0).

Thus, the basis of the induction holds too. Now, consider that, for q ∈ N, xi(2q) = x(i−2q)(0)⊕ xi(0) is
true. In the sequel, we pay particular attention to states

a = xi(0), b = x(i−2q−1)(0), c = x(i−2q)(0), d = xi(2q−1), e = x(i−2q−1)(2
q−1) and f = xi(2q).

Then, by induction hypothesis, for q+ 1, we have d = a⊕ b, e = b⊕ c and f = d⊕ e, from which we
derive that f = d⊕ e = (a⊕b)⊕ (b⊕ c) = a⊕ c. As a result, we can write:

∀i ∈V,∀q ∈N , xi(2q) = xi(0)⊕ x(i−2q)(0),

and obtain the expected result.

4.2.3 2-XOR circulant networks of sizes powers of 2

In this paragraph, we restrict the study to 2-XOR circulant networks of sizes n = 2p, where p ∈ N∗. Let
x = (x0, . . . ,xn−1)∈ {0,1}n be a configuration of such a network N. x can be viewed as the concatenation
of two vectors of sizes n

2 such that x = (x′,x′′), where x′ = (x0, . . . ,x n
2−1) and x′′ = (x n

2
, . . . ,xn−1). x′ and

x′′ are called the semi-configurations of x. Let us define the repetition degree δr(x) of x as:

δr(x = (x′,x′′)) =

{
0 if x′ 6= x′′,
δ if (x′ = x′′)∧ (δr(x′) = δ −1).

x is said to be a repeated configuration when x = (x′,x′). Moreover, remark that the time complexity for
computing the repetition degree is O(n). Let us now present results about such networks convergence
times.

Proposition 5. Let N be a 2-XOR circulant network of size n = 2p, p ∈ N∗, and interaction-step s.
Configurations x ∈ {0,1}n of repetition degree δr(x) ≥ log2(n)− 1 converge towards (0, . . . ,0) in no
more than 2 time steps.

Proof. First, notice that because N is a 2-XOR circulant network of size n = 2p, p ∈ N∗, there exist
only 4 repeated configurations of degree no smaller than log2(n)− 1, namely, (0,1, . . . ,0,1), its dual
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(1,0, . . . ,1,0) and (1, . . . ,1) and its dual (0, . . . ,0). Let us consider the two distinct parities of s inde-
pendently. Also, let t ∈ T and let x(t) be either (0,1, . . . ,0,1) or (1,0, . . . ,1,0). If s is even, then,
by hypothesis on x(t), ∀i ∈ V, x(i+s)(t + 1) = xi(t)⊕ x(i+s−1)(t) = 1. Otherwise, if s is odd, then,
∀i ∈ V, x(i+s)(t + 1) = xi(t)⊕ x(i+s−1)(t) = 0. Now, considering with this Propositions 2.2 and 2.3,
we get the expected result.

Let us now focus on the particular case of 2-XOR circulant networks of sizes n = 2p, p ∈ N∗, and
interaction-steps s = 0.

Theorem 1. Let N be a 2-XOR circulant network of size n = 2p, p∈N∗, and interaction-step 0. The only
attractor of N is (0, . . . ,0) and any configuration x converges to it in no more than n time steps.

Proof. Since n = 2p, by Lemma 3, ∀i ∈ V, xi(n) = xi(0)⊕ xi+n(0) = xi(0)⊕ xi(0) = 0. Then, any
configuration x converges to the stable configuration (0, . . . ,0) in no more than n time steps.

Questioning about the configurations whose convergence time is maximal leads us to Lemma 4 and
Theorem 2.

Lemma 4. Let N and N ′ be two 2-XOR circulant networks of respective sizes n = 2p+1 and n′ = 2p,
p ∈ N∗, and interaction-steps 0. Let x′ be a configuration of size 2p and x = (x′,x′) be a repeated
configuration of size 2p+1. Then, for any t ∈T , x(t) = (x′(t),x′(t)).

Proof. Let x be an arbitrary repeated configuration of N. By induction on t, we show that ∀t ∈N, x(t) =
(x′(t),x′(t)). Let G′ = (V ′,A′) be the interaction graph of N′. By hypothesis, the lemma is true for
t = 0. Now, consider that x(t) = (x′(t),x′(t)) for t ∈ N (x(t) is a repeated configuration) and that ∀i ∈
V, xi(t +1) = x(i−1)(t)⊕ xi(t). Hence we have, for all i ∈V :

xi(t +1) = x(i−1)(t)⊕ xi(t) = x(i−1+2p)(t)⊕ x(i+2p)(t) = x(i+2p)(t +1).

Consequently, x(t +1) is also repeated and verifies, for all i ∈V ′:

xi(t +1) = x(i−1) [n′](t)⊕ xi(t) = x′(i−1) [n′](t)⊕ x′i(t) = x′i(t +1).

As a result, x(t +1) = (x′(t +1),x′(t +1)).

Theorem 2. Let N be a 2-XOR circulant network of size n = 2p, p ∈ N∗, and interaction-step 0. Any
configuration x such that n ·d(x)≡ 1 [2] converges in n time steps exactly.

Proof. We proceed by induction on p. If p = 1, according to Propositions 2.3 and 5, configurations of
repetition degree log2(n)− 1 are proven to converge in 2 time steps. Thus, the basis of the induction
holds. Consider the following induction hypothesis: for p = q, any configuration x such that 2q ·d(x)≡
1 [2] converges in 2q time steps. Suppose now that p = q+1 and consider a 2-XOR circulant network N
of size n = 2q+1 and interaction-step 0. Let x be a configuration of size 2q+1 such that n · d(x) ≡ 1 [2].
After 2q time steps:

• x(2q) is a repeated configuration of the form x(2q) = (x′(2q),x′(2q)). Indeed, by Lemma 3, ∀i ∈
{0, . . . ,2q− 1}, xi(2q) = xi(0)⊕ x(i+2q)(0). Hence, ∀i ∈ {0, . . . ,2q− 1}, xi(2q) = x(i+2q+1)(0)⊕
x(i+2q)(0) = x(i+2q)(2q).
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• x′ has an odd number of 1s. By the property above together with Lemma 3 , since ∀i ∈ {0, . . .2q−
1},x′i(2q) = xi(2q) = xi(0)+ x(i+2q)(0), each automaton of x(0) influences exactly one automaton
of x′. If x′i(2

q) = 0, then the states of both the automata of x(0) that influence x′i(2
q) must have the

same parity. If x′i(2
q) = 1 then the states of both the automata of x(0) that influence x′i(2

q) must
have different parities. Since there is an odd number of 1s in x(0), there is an odd number of 1s in
x′(2q).

By Lemma 4, x(2q) behaves exactly like x′(2q). Furthermore, by the induction hypothesis, x′ converges
in exactly 2q time steps. Hence, x converges in exactly n = 2q+1 time steps.

5 Conclusion and Perspectives

In this paper, we have highlighted that non-monotony could be at the origin of dynamical singularities
of Boolean models of genetic regulation networks, with respect to their sensitivity against synchronism.
This is an interesting property because biological experimentations currently give no tangible results
about the way that genes express over time. Moreover, on the basis of this result, we have developed a
study on the XOR circulant networks class and have shown some notable results about their convergence
times in particular.

This work opens many research directions that could help develop the knowledge on the influence of
non-monotony in automata networks and, a fortiori, in real genetic networks. One of these perspectives
relies on the first part of this paper dealing with synchronism sensitivity. It would consist in understand-
ing how do monotone and non-monotone Boolean automata networks relate. In [16], preliminary results
are derived on synchronism sensitivity of monotone networks that emphasise necessary structural condi-
tions (namely, the presence of specific circuits in the interaction graphs) and examples of synchronism
sensitive monotone networks are given. What is interesting is that these examples involve linear mono-
tone codings of non-monotony. This naturally raises the question of whether non-monotony accounts for
the synchronism sensitivity in arbitrary monotone and non-monotone networks. In addition, further anal-
yses on the behaviours of XOR circulant networks are planned. We would like to obtain generalisations
of the results presented above by following two directions: relaxing structural constraints step by step
and viewing these networks as state transition systems rather than discrete dynamical systems subjected
to the parallel updating mode.
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