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University of Turku, Finland

iatorm@utu.fi

We consider two relatively natural topologizations of the set of all cellular automata on a fixed al-
phabet. The first turns out to be rather pathological, in that the countable space becomes neither
first-countable nor sequential. Also, reversible automata form a closed set, while surjective ones are
dense. The second topology, which is induced by a metric, is studied in more detail. Continuity of
composition (under certain restrictions) and inversion, as well as closedness of the set of surjective
automata, are proved, and some counterexamples are given. We then generalize this space, in the
sense that every shift-invariant measure on the configuration space induces a pseudometric on cellu-
lar automata, and study the properties of these spaces. We also characterize the pseudometric spaces
using the Besicovitch distance, and show a connection to the first (pathological) space.

1 Introduction

Cellular automata are a class of discrete dynamical systems. They are defined on the set of all two-
directional infinite sequences of symbols from a finite alphabet, and the dynamics are given by a local
function, which is synchronously applied at each coordinate. Cellular automata have been previously
studied at least in the contexts of algorithmics, computability and dynamical systems theory [9]. The
set of all cellular automata, or even a large subset of it, has been studied in relatively few articles.
Usually, such works have been concerned with the algebraic structure of the automorphism group or
endomorphism monoid of a subshift [2, 1, 6].

In the article [11], we show that when the full shift is given a certain natural topology (the Besicovitch
topology), cellular automata are exactly the continuous functions on it which compute the image of some
cellular automaton at every point. In particular, the cellular automaton used cannot even be ‘changed’
at, say, unary points of the full shift, where not much information about the cellular automaton is shown
in the image. The crucial idea in the proof is topologizing the set of all cellular automata, although the
choice of topology is rather arbitrary. This is the only use of a topology on the space of cellular automata
we are aware of. Since the space is countable, one might assume that topology is necessarily useless.
A good counterexample to this intuition is found for instance in [4], where the infinitude of primes is
proved using topology, in a rather beautiful way.

In hope of finding other uses for topologizing cellular automata, we introduce two naturally arising
topologies for the set of cellular automata. One of these topologies, defined in terms of pointwise be-
havior, turns out to be rather pathological, in that it gives a countable space which is not first-countable.
Some other such examples can be found in [12], but they are all based on a different idea, and have quite
distinct properties from our space.

∗Research supported by the Academy of Finland Grant 131558

http://dx.doi.org/10.4204/EPTCS.90.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


54 Topology and Cellular Automata

In addition to the naturally arising pathological example, we define a family of topologies which not
only arise naturally, but also behave that way. The topologies are given by measures of the configuration
space, and we call them difference set topologies. The topologies arise from measuring the difference of
preimages of cylinders, and thus they measure the difference of two CA in one step of evolution. As one
might guess, it turns out convergence in such a topology does not imply that the limit shares the dynam-
ical properties of the elements of the converging sequence. However, many ‘one-step’ properties play
well with our topology: in the uniform Bernoulli case, which is the most natural representative of the
family of topologies, we prove that surjective cellular automata are a closed set using the balance prop-
erty, that inversion is continuous, and that composition is continuous under certain natural restrictions.
Also, our proofs of perfectness and non-closedness of well-known subspaces use interesting approxima-
tion results: for instance, we turn the XOR automaton invertible with an arbitrarily small change in its
local function. This was also one of the key (although also one of the simplest) ideas in the proof of [8].

The paper is organized as follows. Section 2 consists of the definitions and notation used in this
paper. In Section 3, we briefly consider some topologies on cellular automata which seem promising
at first, but fail to satisfy some natural constraints. In particular, we show that in a topology defined by
pointwise behavior, composition is far from continuous, and discuss its other pathological properties.
In Section 4, we give a combinatorial description of the difference set topology given by the uniform
Bernoulli measure, and present some of its properties with combinatorial proofs. In Section 5, we give
the general definition of the difference set topologies for arbitrary shift-invariant measures. We study
the properties of such topological spaces, and rephrase some of the combinatorial results in terms of
measures. Section 6 consists of our conclusions and directions for future work.

2 Definitions

Let Σ be a finite set, called the state set or alphabet, which we assume to always have cardinality greater
than 1. The set ΣZ of bi-infinite state sequences, or configurations, is called the full shift on Σ. If x ∈ ΣZ,
then we denote by xi the ith coordinate of x, and we adopt the shorthand notation x[i, j] = xixi+1 . . .x j. A
word is an element of Σn for some n, and we write Σ∗ for the set of all words. We define N(r) for the
interval [−r,r], and call w ∈ ΣN(r) a centered word, denoting r(w) = r. We use the notation Σ↔ for the
set of all centered words. The indexing notations xi and x[i, j] are extended to (centered) words, with v0
being the central coordinate of a word v ∈ Σ↔. For v ∈ Σ↔ and u,w ∈ Σ∗ with |u| = |w|, we write uvw
for the centered word sharing its center with v, and v[i, j] for the word vi · · ·v j. For words u,v,w ∈ Σ∗, the
notation ∞uv.w∞ defines in a natural way a configuration which is u-periodic to the left and w-periodic to
the right, with the word v starting at coordinate 0.

We define a metric dC, called the Cantor metric, on the full shift by

dC(x,y) = ∑
xi 6=yi

2−|i|

for all x,y ∈ ΣZ. This definition makes ΣZ a compact metric space. We define the shift map σ : ΣZ→ ΣZ

by σ(x)i = xi+1. For a word w (centered or not) and n ∈ Z, we define the cylinder of w at n by [w]n =
{x ∈ ΣZ | xn+i = wi for all relevant i}. If W is a set of words, then [W ]n =

⋃
w∈W [w]n. If W is finite, these

sets are also called cylinders, and they form a clopen (closed and open) basis for the topology of ΣZ.
A cellular automaton is a continuous function c : ΣZ → ΣZ with the property c ◦σ = σ ◦ c. Al-

ternatively, cellular automata are defined by local functions F : ΣN(r) → Σ for some r ∈ N such that
c(x)i = F(x[i−r,i+r]). Any r that can be chosen for the local function is called a radius of c, and the min-
imal radius is denoted r(c). We also denote N(c) = N(r(c)). A cellular automaton c, being continuous,
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defines a dynamical system (ΣZ,c). The notation CA stands for the set of all CA on ΣZ. We denote by
SUR and REV the sets of surjective and injective cellular automata, respectively. It is known (see [5]) that
REV ⊂ SUR, and that bijective cellular automata are in fact reversible, that is, the inverse function is in
CA as well. Also, surjective cellular automata are exactly those c ∈ CA that exhibit the so-called balance
property that |c−1(w)| = |Σ|2r(c) for all w ∈ Σ∗ with |w| ≥ 1, when c is considered as a word function
c : Σ|w|+2r(c)→ Σ|w|.

For u,v ∈ Σ↔, we denote u≺ v if v = sut for some s, t ∈ Σ∗, and u∼ v if u0 = v0. We always assume
τ is a permutation of Σ without fixed points. When Σ = {0,1}, the permutation a 7→ ā is defined as (0 1)
in cycle notation.

We also need some notions for topological spaces and their subsets, mostly in Section 3. A subset
of a topological space is sequentially closed, if it contains the limits of its converging sequences. A
topological space X is said to be

• metrizable, if the topology can be induced by a metric,

• normal, if any two disjoint closed subsets of X can be separated with open neighborhoods,

• completely regular, if any closed set F of X and a point x /∈ F can be separated by a continuous
function f : X → [0,1] in the sense that f (x) = 0, f (F) = {1},

• sequential, if its sequentially closed subsets of X are exactly the closed sets,

• of first category, if it is a countable union of nowhere dense sets,

• totally disconnected, if its connected components are singletons,

• zero dimensional, if it has a clopen base,

• first-countable, if every point has a countable neighborhood basis,

• second-countable, if the topology has a countable base.

A function f : X → Y between metric spaces (X ,d) and (Y,d′) is Lipschitz if d′( f (x), f (y))<C ·d(x,y)
for some constant C > 0. In particular, Lipschitz functions are continuous.

In this article, a measure is always understood as a probability measure on the Borel subsets of ΣZ.
A measure µ is shift invariant if µ(C) = µ(σ(C)) for all Borel sets C ⊆ ΣZ. It is known (see [3]) that
all measures are regular, meaning that for every Borel set C ⊂ ΣZ we have µ(C) = inf{µ(U) | C ⊆
U,U open}. For two measures µ and ν , we denote µ � ν if µ(C) = 0 implies ν(C) = 0.

A shift invariant measure µ is ergodic, if σ(C) = C implies µ(C) ∈ {0,1}. Examples of ergodic
measures are the Bernoulli measures µp, given by a map p : A → [0,1] with ∑a∈A p(a) = 1, which
are defined by setting µp([w]0) = ∏

|w|−1
i=0 p(wi). If µ is ergodic, ν is shift invariant and µ � ν , then

µ = ν . The famous Birkhoff’s pointwise ergodic theorem states that if µ is a shift invariant measure and
f : ΣZ→ C a µ-integrable function, then

f ∗(x) = lim
n→∞

1
2n+1

n

∑
i=−n

f (σ i(x))

is defined for µ-almost all x. Also, the function f ∗ is µ-integrable and satisfies∫
ΣZ

f ∗ dµ =
∫

ΣZ
f dµ.
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3 Problematic Topologies

When topologizing a set of objects, one usually wishes the topology to be somehow related to the nature
of these objects, or some structure given to the set itself. In a topological group, for example, the group
operations (g,h) 7→ g · h and g 7→ g−1 are required to be continuous. In the case of cellular automata, a
reasonable requirement is that composition should be continuous, at least with some natural restrictions.
In order to avoid trivialities, we also require that the space should be nondiscrete and Hausdorff. In
this section, we briefly discuss some topologies that fail to fulfill these properties, also noting a possibly
interesting counterexample in topology.

Definition 1. The pointwise topology on CA has the sets

Ux(a) = {c ∈ CA | c(x)0 = a},

indexed by x ∈ ΣZ and a ∈ Σ, as a subbase. For x ∈ ΣZ,c ∈ CA, we denote Ux(c) =Ux(c(x)0).

This means that a sequence (ci)i∈N converges to c ∈ CA iff (ci(x))i∈N converges to c(x) for all x ∈ ΣZ.
Equivalently, ci → c if and only if for all x ∈ ΣZ, we have (ci(x))0 = c(x)0 for all large enough i. As
we will see later, this does not characterize the pointwise topology. In the case |Σ| = 2, this space is a
kind of ‘dual’ of the usual Cantor space: The Cantor topology is given on the set of infinite sequences by
taking the cylinders as a clopen base. In the pointwise topology, we take the cylinders as points (a CA
corresponding to the cylinder it maps to 1), and take as a subbase the sets of cylinders containing, or not
containing, a given point.

The pointwise topology might seem like a very natural choice for topologizing the cellular automata,
but already the composition operation fails to be continuous:

Example 1. Composition is not sequentially continuous (and thus not continuous) in the pointwise topol-
ogy, even in REV with the alphabet {0,1}. Namely, let i ∈ N, and consider the automata ci and di that
behave as the identity, except that ci transforms every pattern of the form 110ia0i11 to 110iā0i11, and di

transforms every 0i+1aa0i10iaa0i+1 to 0i+1āā0i10iāā0i+1. It is routine to check that these automata are
reversible (as they have period 2), and that in the pointwise topology, both (ci) and (di) converge to the
identity automaton. However, (ci ◦di) does not, since the central cell of ci(di(

∞01. 0∞)) is always 0.

Of course, composition from either side with a constant cellular automaton is continuous.
The pointwise topology has some interesting properties: the reversible cellular automata form a

closed set, and the set of surjective automata is dense. Note that since we have not proved that this space
is sequential (and in fact it is not: see Theorem 1), we cannot prove these propositions using sequences.

Proposition 1. The set REV is closed in the pointwise topology.

Proof. Let c be a point in CA− REV. Since a cellular automaton is reversible if and only if it is re-
versible on periodic points, we have that c(x) = c(y) for some p-periodic points x and y. Now, let
Xp = {z | σ p(z) = z}, and consider the set U =

⋂
z∈Xp

Uz(c), which is an open neighborhood of c. Then,
d ∈U =⇒ d(x) = d(y), and thus U ⊂ CA−REV.

Proposition 2. The set SUR is dense in the pointwise topology.

Proof. Let c ∈ CA be arbitrary, and let U =
⋂

x∈X Ux(c) be a neighborhood of c, where X ⊂ ΣZ is finite.
Let n ∈ N be such that every pair x 6= y ∈ X differs in some coordinate in N(n). We assume that Σ =
{0, . . . ,k− 1}, so that we can use addition modulo k on Σ. For a centered word w ∈ ΣN(n), we define
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X(w) ∈ Σ as the letter xn+1, if xN(n) = w for some x ∈ X , and 0 otherwise. Note that X(w) is well-defined
by the choice of n.

We define the automaton d ∈ CA, which has radius n+1, by

d(x)0 = c(x)0 + xn+1−X(xN(n)) mod k

for all x ∈ ΣZ. We immediately see that d(x)0 = c(x)0 for all x ∈ X , so that d ∈ U . Also, d is right-
permutive, meaning that d(v) 6= d(w) holds whenever v,w ∈ ΣN(n+1) differ only in their rightmost coor-
dinate n+1. It is clear that such automata are always surjective, so the claim is proved.

We note that whether a set F ⊆ CA is dense in another set G ⊆ CA in the pointwise topology has a
natural interpretation even outside our formalism: this is the case if and only if whenever one chooses an
automaton c ∈ G and a finite set of points X ⊆ ΣZ, some automaton d ∈ F satisfies d(x)0 = c(x)0 for all
x ∈ X .

The pointwise topology has the curious property that, while the underlying set is countable, the space
is not first-countable. To our knowledge, examples of such spaces are nontrivial to construct. Of the 143
examples in [12], only 5 spaces are countable but not first-countable, and we compare them with the
pointwise CA space in Table 1.

Theorem 1. The space CA with the pointwise topology has the following properties:

• It is countable.

• It is Hausdorff.

• It is not compact.

• It is perfect.

• It is totally disconnected.

• It is of first category.

• It is not first-countable, and in fact no point has a countable neighborhood basis. It is thus neither
metrizable nor second-countable.

• It is normal.

• It is not sequential.

Proof. Countability and the Hausdorff property are trivial. The lack of compactness follows from
(Ux(a))x∈SZ,a∈Σ not having a finite subcover. The space is easily seen to be perfect, since the finite
intersections of Ux(a) form a base, and no such set is a singleton. The space is totally disconnected
because every Ux(a) is clopen (its complement is

⋃
b∈Σ−{a}Ux(b)), and it is of first category since every

singleton set is closed and the space is countable.
As for lack of first-countability, let c ∈ CA, and assume (Vi)i∈N is a neighborhood basis for c. Since

(Ux(c))x∈ΣZ forms a neighborhood subbasis for c as well, there must exist finite sets Xi ⊂ ΣZ such that⋂
x∈Xi

Ux(c) ⊂ Vi for all i. If we let X =
⋃

i∈N Xi, then clearly (Ux(c))x∈X is already a countable subbase
for c. Let y /∈ X , and for each i, let ci be the cellular automaton with r(ci) = i which behaves like c,
except for mapping y[−i,i] to τ(c(y)i). Clearly, ci 6→ c since ci(y)0 6= c(y)0 for all i. However, when x 6= y,
we have ci ∈Ux(c) for large enough i, and thus ci→ c, a contradiction.

Finally, we prove the normality. Let ci,di ∈ CA for all i ∈ N be such that the sets X = {ci | i ∈ N}
and Y = {di | i ∈ N} are closed and disjoint. Since the space is countable, this covers all the closed
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CA with pointwise topology yes no no yes yes yes
26. Arens-Fort space yes no no yes no no

35. Q∗ no yes yes no yes yes
98. Appert space yes no no yes no no

99. maximal compact topology no yes yes yes no no
114. single ultrafilter topology yes no no yes no no

Table 1: Properties of the countable but not first-countable counterexamples of [12] contrasted with our
space. The space Q∗ is the one-point compactification of Q. In the table, the spaces which are not normal
Hausdorff are neither normal nor Hausdorff. The space Q∗ is in fact connected. The spaces which are
not perfect do not even contain induced perfect subspaces.

sets. Inductively for all i ∈ N, we choose clopen neighborhoods Ui 3 c1, . . . ,ci and Vi 3 d1, . . . ,di such
that Ui ∩Y = Vi ∩X = Ui ∩Vi = /0 as follows. First, U0 = V0 = /0. Let Ui−1 and Vi−1 be defined. Let
U be a clopen neighborhood of ci such that U ∩Y = /0, and define Ui = Ui−1 ∪ (U −Vi−1). Similarly,
Vi = Vi−1 ∪ (V −Ui) for a clopen neighborhood V of di with V ∩X = /0. Now,

⋃
iUi and

⋃
iVi form

disjoint open neighborhoods of X and Y , respectively, and this proves normality.

The lack of sequentiality is seen as follows: The set SUR is dense by Proposition 2, and thus not
closed, since now SUR ( CA = SUR. However, we will prove in Theorem 4 that SUR is closed in an-
other topology we define in Section 4, and Lemma 4 shows that such sets are sequentially closed in the
pointwise topology. These results do not depend on this theorem.

Remark 1. In fact, the above proof for normality works as such in any countable space with a clopen
base. Without countability, we only know that such a space is completely regular.

We now note a further connection with the Cantor space, namely that the pointwise topology is zero-
dimensional and perfect. It is known that a compact, perfect, zero-dimensional and metrizable space is
homeomorphic to the Cantor space. We do not know whether a similar characterization exists for the
pointwise topology, and whether the ‘duality’ can be formalized.

Problem 1. Characterize the pointwise topology on CA using some of its topological properties.

Finally, we note that one might also define a topology on CA in one of the following ways: ci→ c if
for all x ∈ ΣZ, we have ci(x) = c(x) for all large enough i, or by defining that ci→ c if for all w ∈ Σ↔,
we have ci(x)0 = c(x)0 for all x ∈ [w]0 for large enough i. However, both of these attempts result in the
discrete topology, as is easily verified.
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4 Topologizing the CA by measuring preimages: the combinatorial ap-
proach

Definition 2. Let c,d ∈ CA, and r a common radius for c and d. Then the difference set of c and d for
the radius r is

Dc
d = {w ∈ Σ

N(r) | c(w) 6∼ d(w)},
where the CA are taken as word functions c : ΣN(r)→ ΣN(r−r(c)) and d : ΣN(r)→ ΣN(r−r(d)). The distance
between c and d is

δ (c,d) =

∣∣Dc
d

∣∣
|Σ|2r+1 .

We call the space CA with this metric the uniform Bernoulli space.
The name ‘uniform Bernoulli space’ comes from the fact that we later define pseudometrics on CA

using shift-invariant measures, and the pseudometric δ is given by the uniform Bernoulli measure. The
value δ (c,d) above does not depend on the exact value of r, and it is left implicit in the notation Dc

d . For
c◦d, we always use the radius r(c)+ r(d).
Example 2. The space CA is not totally bounded (and thus not compact): Let {ci ∈ CA | i = 1, . . . ,n} be
a finite set of automata, and let r = max{r(ci) | i = 1, . . . ,n}. Consider the r+1-shift automaton σ r+1.
Given a word w ∈ ΣN(r+1), we have σ r+1(w)∼ ci(w) iff wr+1 = ci(w0). Thus

δ (σ r+1,ci) = 1−|Σ|−1 ,

and CA cannot be covered by a finite number of open (1−|Σ|−1)-balls.
Example 3. The function (◦) : CA2→ CA is not continuous. In fact, even the function (d 7→ d ◦ c) is not
continuous for all c ∈ CA: Let Σ = {0,1} and let cq for q ∈ {0,1} be the all-q CA defined by cq(x)i = q
for all x ∈ ΣZ, i ∈ Z. We let

di(x) j =

{
1, if x[ j−i, j+i] = 02i+1

0, otherwise.

Clearly di→ c0, but since di ◦ c0 = c1 for all i, di ◦ c0 does not approach c0 ◦ c0 = c0.
Here, we used a rather pathological CA as the rightmost argument, and in fact, with suitable restric-

tions, we do obtain continuity.
Theorem 2. The restriction of (◦) to CA×SUR is continuous.

Proof. Since CA× SUR is a metric space, it is enough to check that limits of sequences commute with
(◦). So let ci,c ∈ CA and di,d ∈ SUR with (ci,di)→ (c,d). We need to show ci ◦di→ c◦d. Let i be large
enough that δ (ci,c) < ε and δ (di,d) < ε , and assume that r(ci) ≥ r(c) and r(di) ≥ r(d). We need an
upper bound on the size of Dci◦di

c◦d .
First, let us give an upper bound for the size of the set A of all words w ∈ ΣN(r(ci)+r(di)) such that

di(w) j 6= d(w) j for some j ∈ N(c). If w ∈ A, then at least one of wN(di)+ j for j ∈ N(c) must be in Ddi
d .

Thus
|A| ≤ |N(c)| ·

∣∣∣Ddi
d

∣∣∣ · |Σ|2r(ci).

Then, let us give an upper bound for the size of B=Dci◦di
c◦d −A. Let w∈B, so that di(w)N(c)= d(w)N(c).

Since w ∈Dci◦di
c◦d , we have ci(di(w)) 6∼ c(d(w))∼ c(di(w)), which implies ci(di(w)) 6∼ c(di(w)), and thus

di(w) ∈ Dci
c . Now we have that di(B)⊂ Dci

c , and since di ∈ SUR, the balance property implies

|B| ≤ |Dci
c | · |Σ|2r(di).
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Of course,
∣∣∣Dci◦di

c◦d

∣∣∣ = |A|+ |B|, which implies δ (ci ◦di,c◦d) < (2r(c)+2)ε by a direct calculation.

The following lemma is proved similarly as the previous one, and shows that composition on the left
is always continuous.
Lemma 1. If e ∈ CA, then the function c 7→ e◦ c is (Lipschitz-)continuous in CA. More specifically,

δ (e◦ c,e◦d)≤ (2r(e)+1) ·δ (c,d)

for all c,d ∈ CA.

Proof. Let c,d ∈ CA, and let r = max(r(c),r(d)). Now if e(c(w)) 6∼ e(d(w)) for some word w ∈
ΣN(r+r(e)), then necessarily c(w)N(e) 6= d(w)N(e). Thus we have

|De◦c
e◦d | ≤

∣∣∣{w ∈ Σ
N(r+r(e)) | c(w)N(e) 6= d(w)N(e)}

∣∣∣
≤ |N(e)| · |Dc

d | · |Σ|
2r(e) .

The claim again follows by a direct calculation.

Using the above lemma, we prove that inversion is also continuous.
Theorem 3. The function (·)−1 : REV→ REV is continuous.

Proof. Let c∈ REV. We prove that (·)−1 is continuous at c. For that, let d ∈ REV such that r = r(d)> r(c)
and r′ = r(d−1)> r(c−1).

Let w ∈ ΣN(r+r′) be such that d(w) ∈ Dc−1

d−1 . Then we have c−1(d(w)) 6∼ d−1(d(w)) ∼ c−1(c(w)),
which implies w ∈ Dc−1◦c

c−1◦d . This means that the d-preimage of Dc−1

d−1 is included in Dc−1◦c
c−1◦d .

Since d ∈ SUR, we again have
∣∣∣Dc−1

d−1

∣∣∣ · |Σ|2r+1 ≤
∣∣∣Dc−1◦c

c−1◦d

∣∣∣ by the balance property. An application of
Lemma 1 now yields

δ (c−1,d−1)≤ δ (c−1 ◦ c,c−1 ◦d)≤ (2r(c−1)+1) ·δ (c,d),

which proves the claim.

The space has no isolated points, and in fact we obtain a large amount of approximation results by
using the continuity of (◦).
Proposition 3. All of CA, SUR and REV are perfect as topological spaces.

Proof. Given CA c, we construct the CA ci with r(ci) = r(c)+ i, which are equivalent to c on all words
of ΣN(ci), except 0N(ci), on which they disagree with c. Clearly ci→ c, but ci 6= c holds for all i, and thus
CA is a perfect space.

Now consider the cellular automata ci which function as identity maps, except for mapping the central
cell of 110ia0i11 to τ(a). It is clear that ci ∈ REV for all i, since these automata keep the occurrences of
11 untouched, and can only change the central cell between two occurrences. It is also clear that they
converge to the identity map.

Now consider an arbitrary surjective CA d. All of the ci ◦ d are distinct, since d is surjective and
the ci are distinct, and by the continuity of (◦) restricted to CA× SUR, the sequence ci ◦ d converges to
id◦d = d. If d is reversible, then so are all ci ◦d. We have obtained that also SUR and REV are perfect as
topological spaces.
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Theorem 4. SUR is closed.

Proof. Let c /∈ SUR and d ∈ SUR. We show that δ (c,d) is bounded from below by a positive constant
depending only on c. That is, we will prove there exists ε > 0 such that Bε(c)∩SUR= /0.

We may assume r(d)≥ r(c). Since c is not surjective, there exists a word v ∈ ΣN(n) for some n such
that ∣∣c−1(v)

∣∣≥ |Σ|2r(c)+1.

Now let w ∈ ΣN(r(d)+n) be such that c(w)r(d) = v. We either have d(w) = v, or wN(d)+i ∈ Dc
d for some

i ∈ N(n). In terms of cardinalities this implies∣∣d−1(v)
∣∣+(2n+1) · |Dc

d | · |Σ|
2n

≥
∣∣c−1(v)

∣∣ · (|Σ|2(r(d)−r(c)))

≥ (|Σ|2r(c)+1)(|Σ|2(r(d)−r(c))),

and since
∣∣d−1(v)

∣∣= |Σ|2r(d) by the balance property, it follows that
∣∣Dd

c

∣∣≥ (2n+1)−1 · |Σ|2(r(d)−r(c)−n).
But then δ (c,d)≥ n−1 · |Σ|−2(r(c)+n), and the claim is proved.

In fact, by a result in [10], one can choose n≤ |Σ|2r(c) in the previous proof, yielding a bound

δ (c,d)≥ |Σ|−2(r(c)−|Σ|2r(c)) .

Like surjectivity and inversion, commuting with a fixed cellular automaton is another intuitively
‘one-step’ property, and thus should behave well in our topology. Using the continuity of ◦, we indeed
verify this intuition, and prove that the limit of CA commuting with a given surjective CA also commutes
with the CA.
Example 4. The commutator of a surjective CA c is closed. Consider the function d 7→ δ (c ◦ d,d ◦ c).
Since composition from both left and right by a surjective cellular automaton is continuous and the
metric is a continuous function CA2→ R, we obtain that the preimage of 0 is a closed set. But obviously
this is just the commutator.
Example 5. For each p ≥ 1, the set of p-periodic CA is closed. Namely, if ci→ c and cp

i = id for all i,
then by the continuity of composition on REV we have cp = id.

As opposed to the above example and the case of SUR, the set REV of reversible cellular automata is
not a closed subset of the uniform Bernoulli space.
Example 6. The set REV is not closed if |Σ| ≥ 3. Let c be the CA

c(x) j =

{
x j + x j−1 mod 2, if x j ∈ {0,1}
2, otherwise

That is, c is the XOR-with-left-neighbor automaton, which addionally fixes 2s and interprets them as 0s.
We let ci behave as c, except for fixing the current cell if they see no 2’s in the neighborhood N(i). Since
2|N(i)|

3|N(i)| −→ 0, we see that ci −→ c.
Of course, c is not in REV, since ∞0∞ and ∞1∞ have the same image. All of ci, however, are in REV:

Let ci(x) = ci(y) for some x 6= y. Since 2’s are never created or destroyed, x and y have 2’s in the same
coordinates, and thus for both x and y, the set of coordinates that are fixed when applying XOR are equal.
In every point, a fixed coordinate must occur at least every |N(i)| steps, since if no 2’s occur in a block
of size |N(i)|, the middle cell is fixed. But these two facts clearly imply x and y are equal, which proves
the claim.
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We show that the uniform Bernoulli space is not complete either, which strengthens the intuition
given in Example 2 that sequences of cellular automata quite rarely converge to anything (as one might
expect).
Example 7. The space CA is not complete. We will show this by constructing a Cauchy sequence (ci) in
CA without a limit. Start with the identity CA c1 and for each i > 1, define ci recursively as follows: Let
(ni) be a sequence in N with ni ≥ i and the property that

k−1

∑
i=1
|Σ|−ni+ j ≤ 1

2
· |Σ|−∑

j
i=1 ni (1)

for all j,k ∈ N with j < k. This is the case, if (ni) grows fast enough.
Let ri = r(ci) = ∑

i
k=1 nk, and for all words w ∈ ΣN(ri), define

ci(w) =
{

τ(ci−1(w)0), if w[r(ci)−ni+1,r(ci)] = 0ni

ci−1(w)0, otherwise.

Then δ (ci,ci+1) = |Σ|−ni ≤ |Σ|−i for all i, and by the triangle inequality

δ (ci,ci+k)≤
k−1

∑
j=0

δ (ci+ j,ci+ j+1)≤ |Σ|−i
k−1

∑
j=0
|Σ|− j <

|Σ|−i

1−|Σ|−1 ,

so the sequence (ci) is Cauchy.
Moreover, for each i,k ∈ N with i < k, equation (1) implies that

δ (ci,ci+k)≥ δ (ci,ci+1)−
k−1

∑
j=1

δ (ci+ j,ci+ j+1)

= |Σ|−ni−
k−1

∑
j=1
|Σ|−ni+ j ≥ 1

2
· |Σ|−ni ,

so none of the terms ci can be a limit for the sequence.
Consider then an arbitrary CA c not in the sequence (ci). We may choose it to have the radius r(ci) =

∑
i
k=1 nk for some large enough i. We show that c is not a limit for (ci). First, note that δ (c,ci)≥ |Σ|−r(ci)

holds. But now equation (1) implies that

δ (c,ci+k)≥ δ (c,ci)−
k−1

∑
j=0

δ (ci+ j,ci+ j+1)

≥ |Σ|−r(ci)−
k−1

∑
j=1
|Σ|−ni+ j ≥ 1

2
· |Σ|−r(ci)

for all k > i. Thus c is not a limit for (ci).

Finally, let us briefly discuss the homomorphisms of [7] and [2], and some dynamical notions, in the
uniform Bernoulli space and the pointwise topology.
Definition 3. Let r be a radius of c ∈ REV, and let

Rc = {(x[0,2r−1],c(x)[−r,r−1]) | x ∈ Σ
Z},

the set of right stairs of c. We define h+(c) =
|Rc|
|Σ|3r ∈Q.
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The map h+ : REV→Q is in fact a group homomorphism from (REV,◦) to (Q>0, ·), and it compares
the information flows to the left and to the right in the evolution given by an automaton [7]. We show by
example that this function is not continuous, even though its definition is concerned with only one step.
Example 8. The morphism h+ is not continuous at least with the alphabet Σ = {0,1}×{0,1}. First, it
is easy to see that for all i, there exists a length ki and a finite set of words Wi ⊂ Σki with |Wi| < 1

i |Σ|
ki ,

such that Wi defines an empty SFT when taken as the set of forbidden patterns. For y ∈ {0,1}Z, define
Ji(y) = { j ∈ Z | y[ j, j+ki−1] ∈Wi}. Clearly, there must exist n such that Z− Ji(y) does not contain an
interval of length n for any y, that is, coordinates j such that y[ j, j+ki−1] ∈Wi must occur with bounded
gaps. For j ∈ Ji(y), we define Pi( j,y) as largest j′ ∈ Ji(y) such that j′ < j.

We now define

ci(x) j =

{
x j, if j /∈ Ji(π1(x))
(π1(x) j,π2(x) j′), if j ∈ Ji(π1(x)),

where j′ = Pi( j,π1(x)). That is, we shift information to the right at the positions marked by Wi.
From |Wi|

|Σ|ki
→ 0, it clearly follows that ci→ id. It is also easy to see that h+(ci) = 2 for all i.

We note that there is a more well-known homomorphism defined on (REV,◦) called the gyration
function, defined in [2]. Since this function is based on behavior on periodic points, it is very easy to
find a counterexample for continuity in the uniform Bernoulli space, and a proof of continuity in the
pointwise topology, when the codomain ∏

∞
n=1Z/nZ is given the product topology.

The previous example also shows that sensitive cellular automata are not a closed set, as each ci is
sensitive, but their limit is not.
Example 9. If c ∈ CA, define the entropy of c as

h(c) = lim
r→∞

lim
t→∞

logNc(r, t)
t

,

where Nc(r, t) is the number of different r× t-rectangles in all spacetime diagrams of c. The entropy
function is not continuous in general, even in REV: Let Σ = {0,1}2, and define the CA ci as the identity
CA, except that maximal patterns of the form

a1
b1

(0
0
)i 1

1
a2
b2

(0
0
)i 1

1 · · ·
(0

0
)i 1

1
an
bn
,

where n≥ 2 and the a j,b j ∈ Σ are not part of any word
(

0
0

)i 1
1, are rotated to

b1
b2

(0
0
)i 1

1
a1
b3

(0
0
)i 1

1 · · ·
(0

0
)i 1

1
an−1
an

.

This is clearly doable with a local rule that checks its surroundings for the marker patterns, and the
resulting CA are reversible with ci→ id. Now given a word w ∈ Σr and t ∈ N, we append the word(0

0
)i 1

1
a
b1

(0
0
)i 1

1
a
b2

(0
0
)i 1

1 · · ·
(0

0
)i 1

1
a
bt−1

to w, producing in the spacetime diagram an r× t-rectangle with w on the bottom and b1b2 · · ·bt−1 on
the lower track of the right border. Thus we have that Nci(r, t)≥ 4r ·2t−1, so

h(ci)≥ lim
r→∞

lim
t→∞

r log4+(t−1) log2
t

= log2.

But the identity CA has zero entropy: h(id) = 0.
We conclude this section with the following two open problems.

Question 1. Is h+ : REV→Q continuous when REV has the pointwise topology?
Conjecture 1. Transitive CA are not closed in the uniform Bernoulli space.
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5 Topologizing the CA by measuring preimages: the measure theoretic
approach

Definition 4. Let µ be a measure on ΣZ. We define the pseudometric

δ
µ(c,d) = µ([Dc

d ]0).

In this way each measure µ gives a topology for CA. We denote ci
µ→ c if ci→ c holds in this topology.

Remark 2. The pseudometric δ µ is a metric iff µ has full support.

It is easy to see that ci
µ→ c holds iff

µ(c−1(C)4c−1
i (C))→ 0

holds for all clopen sets C ⊆ ΣZ. As we noted in the previous section, the pseudometric defined by the
uniform Bernoulli measure coincides with that of the uniform Bernoulli space.

We now finish the proof of non-sequentiality in Theorem 1. The result follows from the following
connection between the difference set topologies and the pointwise topology. Note that since the point-
wise topology is not sequential, Proposition 4 does not imply that it would be finer than the difference
set topologies.

Lemma 2. Let µ be a measure on ΣZ, and let X1,X2, . . . be a countably infinite family of Borel sets with
µ(Xi) > ε for some ε > 0. Let X be the set of points x ∈ ΣZ which appear in infinitely many of the Xi.
Then µ(X)≥ ε .

Proposition 4. Let µ be a measure in ΣZ. If ci→ c in the pointwise topology, then δ µ(ci,c)→ 0.

Proof. Assume the contrary. Without loss of generality, there then exists a positive ε with δµ(ci,c)> ε

for all i. Denoting Xi = [Dc
ci
]0, the conditions of the above lemma are satisfied, and the set

X = {x ∈ Σ
Z | ci(x)0 6= c(x)0 for infinitely many i}

has µ-measure at least ε . In particular, X is nonempty, which contradicts the fact that ci → c in the
pointwise topology.

The following result shows that the difference set topologies are quite numerous and varied in form.

Theorem 5. If µ and ν are measures on ΣZ, µ 6= ν , and µ is ergodic, then µ and ν induce distinct
topologies on CA.

Proof. First, it is necessarily true that µ 6� ν , so we have a measurable set B ⊆ ΣZ such that µ(B) = 0
and ν(B) = q > 0. By regularity, for every i ∈ N we find an open set Ui ⊇ B such that µ(Ui) < i−1 and
ν(Ui)< q+ i−1. We can suppose that Ui+1 ⊆Ui for all i.

For every i we have an ascending chain of clopen sets C1
i ⊆ C2

i ⊆ . . . ⊆Ui such that Ui−Cn
i ↘ /0.

From this it follows that ν(Cn
i )→ ν(Ui). Thus, for all i ∈ N, we can take a number Mi ∈ N such that

ν(Ci)> q− i−1 holds for the set Ci =CMi
i . If j ≥ i, we also have that

ν(Ci∩C j)≥ ν(Ci)+ν(C j)−ν(Ui)> q−3i−1.

Furthermore, it is clear that µ(Ci)≤ µ(Ui)< i−1.
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Let Wi ⊆ ΣN(ri) be a finite set of words such that Ci = [Wi]0. Define a sequence in CA as follows. The
CA ci acts as the identity except on words of Wi, on which it applies the permutation τ to the central cell.
Now Did

ci
=Wi, so that

δ
µ(id,ci) = µ(Ci)→ 0

but
δ

ν(id,ci) = ν(Ci)→ q > 0.

Thus ci
µ→ id holds, but ci

ν→ id does not, which proves the claim.

Corollary 1. All Bernoulli measures induce distinct topologies on CA. No other shift invariant measure
can induce these topologies.

We now reprove most of the combinatorial results of Section 4 in the measure theoretic framework.
In some cases, the proofs become somewhat shorter and cleaner.
Definition 5. Let µ be a measure on ΣZ. Then PRESµ denotes the set of µ-preserving CA, that is,

PRESµ = {c ∈ CA | µ(c−1(B)) = µ(B) for all µ-measurable B⊆ Σ
Z}.

The following theorems generalize the results for the uniform Bernoulli measure µ , and are proved
using the same ideas. Note that in this case, SUR= PRESµ .
Theorem 6. Let µ be a measure on ΣZ. The restriction of (◦) to CA×PRESµ is continuous with respect
to δ µ .

Proof. Let ci ∈ CA and di ∈ PRESµ for all i, and ci
µ→ c, di

µ→ d. We will prove that ci ◦di
µ→ c◦d.

For that, let C ⊆ ΣZ be a clopen set. Denote

Ai = d−1
i (c−1

i (C))4d−1
i (c−1(C)),

the di-preimage of the set where ci and c differ w.r.t. C, and

Bi = d−1(c−1(C))4d−1
i (c−1(C)),

the set where di and d differ w.r.t c−1(C). It is clear that

d−1
i (c−1

i (C))4d−1(c−1(C))⊆ Ai∪Bi.

Since di preserves µ and c−1(C) is a clopen set, we have that

µ(Ai) = µ(c−1
i (C)4c−1(C))→ 0

and
µ(Bi) = µ(d−1(c−1(C))4d−1

i (c−1(C)))→ 0,

from which the claim then follows.

Theorem 7. If µ is a measure and d ∈ CA, then c 7→ d ◦ c is continuous with respect to δ µ .

Proof. Let ci
µ→ c and C a clopen set. Since d−1(C) is also clopen, we have

µ((d ◦ ci)
−1(C)4(d ◦ c)−1(C))

= µ(c−1
i (d−1(C))4c−1(d−1(C)))→ 0.
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Theorem 8. If µ is a measure, then (·)−1 is continuous on PRESµ ∩REV.

Proof. Let ci
µ→ c in PRESµ ∩ REV, and C a clopen set. Clearly, also c−1

i ∈ PRESµ for all i. Denote
D = c(C), which is also clopen. Now

µ((c−1
i )−1(C)4(c−1)−1(C))

= µ(ci(C)4c(C))

= µ(ci(c−1(D))4D)

= µ(c−1(D)4c−1
i (D))→ 0.

Theorem 9. Let µ be a measure. Then PRESµ is closed in CAµ .

Proof. Let c /∈ PRESµ . Now we have a measurable set B such that µ(c−1(B))> µ(B). Since µ is regular,
we can find an open set U ⊇ B such that µ(U) < µ(c−1(B)) ≤ µ(c−1(U)). Now U can in turn be
approximated with clopen sets C1 ⊆C2 ⊆ . . .⊆U such that U −C j ↘ /0, which implies µ(C j)→ µ(U)
and µ(c−1(C j))→ µ(c−1(U)). Take j large enough that µ(C j)≤ µ(U)< µ(c−1(C j)) and denote C =C j.

Suppose then that ci ∈ PRESµ for all i ∈N, and ci
µ→ c. Now in particular µ(c−1

i (C))→ µ(c−1(C))>
µ(C). But this contradicts the assumption ci ∈ PRESµ .

Next, we show how the difference set spaces can also be obtained by integrating different distance
functions over the space ΣZ. In the case of the Besicovitch pseudometric (defined below), we have an
exact correspondence with the respective δ µ .

Theorem 10. Let µ be a shift invariant measure, and define, for all c,d ∈ CA,

δ
µ

C (c,d) =
∫

ΣZ
dC(c(x),d(x)) dµ(x).

Then δ µ and δ
µ

C are uniformly equivalent pseudometrics.

Proof. First, note that

δ
µ

C (c,d)≥
∫
[Dc

d ]0
dC(c(x),d(x)) dµ(x)≥ µ([Dc

d ]0).

Second, we have

δ
µ

C (c,d) =
∫

ΣZ ∑
c(x)i 6=d(x)i

2−|i| dµ(x)≤∑
i∈Z

µ([Dc
d ]i)2

−|i| = 3µ([Dc
d ]0).

Definition 6. Let x,y ∈ ΣZ. The Besicovitch distance of x and y is

dB(x,y) = limsup
n→∞

|{|i| ≤ n | xi 6= yi}|
2n+1

,

that is, the limit superior of the density of their differences as the size of the observation window grows
without bound.
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The Besicovitch distance is a pseudometric and defines a topology on ΣZ different from the usual
Cantor topology. The following theorem gives a connection between the pseudometrics δ µ and dB.

Theorem 11. Let µ be a shift invariant measure, and define, for all c,d ∈ CA,

δ
µ

B (c,d) =
∫

ΣZ
dB(c(x),d(x)) dµ(x).

Then we have δ µ = δ
µ

B .

Proof. Let c,d ∈ CA with common radius r. Now the function 1[Dc
d ]0

is µ-integrable, so by the ergodic
theorem we have that

1∗[Dc
d ]0
(x) = lim

n→∞

1
2n+1

n

∑
i=−n

1[Dc
d ]i
(x)

= lim
n→∞

∣∣{i ∈ N(n) | xN(r)+i ∈ Dc
d}
∣∣

2n+1

is defined for µ-almost all x, and∫
ΣZ

1∗[Dc
d ]0

dµ =
∫

ΣZ
1[Dc

d ]0
dµ = µ([Dc

d ]0).

The claim directly follows, since now 1∗[Dc
d ]0
(x) = dB(c(x),d(x)) for µ-almost all x ∈ ΣZ.

6 Future Work

In the future, it would be interesting to consider connections between dynamical notions such as transi-
tivity, mixingness, sensitivity and entropy by proving that under some additional natural constraints on
the topologies considered, closedness of sets of cellular automata with a (possibly parametrized) dynam-
ical property, and continuity of certain dynamical invariants automatically imply other closedness and
continuity results in any topology. Such results, if any can be proved, could perhaps imply (or inspire)
interesting new connections outside our topology framework between dynamical notions. We are also
interested in whether entropy can be made continuous with a natural topology based on the long-term
behavior of cellular automata.

We would also like to study the sequentialization of the pointwise topology, the topology whose
closed sets are exactly the sequentially closed sets of the pointwise topology. This is easily seen to
define a sequential topology. This topology is finer than the pointwise topology and any of the difference
set topologies, and both REV and SUR are closed sets (by Proposition 1 and Theorem 4, respectively).
However, it can be shown that the space is still perfect.

References
[1] Mike Boyle, John Franks & Bruce Kitchens (1990): Automorphisms of one-sided subshifts of finite type.

Ergodic Theory Dynam. Systems 10(3), pp. 421–449, doi:10.1017/S0143385700005678.

[2] Mike Boyle, Douglas Lind & Daniel Rudolph (1988): The Automorphism Group of a Shift of Finite Type.
Transactions of the American Mathematical Society 306(1), pp. pp. 71–114. Available at http://www.
jstor.org/stable/2000831.

http://dx.doi.org/10.1017/S0143385700005678
http://www.jstor.org/stable/2000831
http://www.jstor.org/stable/2000831


68 Topology and Cellular Automata

[3] Manfred Denker, Christian Grillenberger & Karl Sigmund (1976): Ergodic theory on compact spaces. Lec-
ture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin.

[4] Harry Furstenberg (1955): On the infinitude of primes. Amer. Math. Monthly 62, p. 353.
[5] G. A. Hedlund (1969): Endomorphisms and automorphisms of the shift dynamical system. Math. Systems

Theory 3, pp. 320–375.
[6] Michael Hochman (2010): On the automorphism groups of multidimensional shifts of finite type. Ergodic

Theory Dynam. Systems 30(3), pp. 809–840, doi:10.1017/S0143385709000248.
[7] J. Kari (1996): Representation of reversible cellular automata with block permutations. Theory of Computing

Systems 29, pp. 47–61. Available at http://dx.doi.org/10.1007/BF01201813. 10.1007/BF01201813.
[8] Jarkko Kari (1990): Reversibility of 2D cellular automata is undecidable. Physica D: Nonlinear Phenomena

45(13), pp. 379 – 385, doi:10.1016/0167-2789(90)90195-U. Available at http://www.sciencedirect.
com/science/article/pii/016727899090195U.

[9] Jarkko Kari (2005): Theory of cellular automata: a survey. Theoret. Comput. Sci. 334(1-3), pp. 3–33,
doi:10.1016/j.tcs.2004.11.021.

[10] Jarkko Kari, Pascal Vanier & Thomas Zeume (2009): Bounds on Non-surjective Cellular Automata. In:
Proceedings of the 34th International Symposium on Mathematical Foundations of Computer Science 2009,
MFCS ’09, Springer-Verlag, Berlin, Heidelberg, pp. 439–450, doi:10.1007/978-3-642-03816-7 38.
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