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A denotational semantics of quantum Turing machines havinga quantum control is defined in the
dagger compact closed category of finite dimensional Hilbert spaces. Using the Moore-Penrose
generalized inverse, a new additive trace is introduced on the restriction of this category to isometries,
which trace is carried over to directed quantum Turing machines as monoidal automata. The Joyal-
Street-VerityInt construction is then used to extend this structure to a reversible bidirectional one.

1 Introduction

In recent years, following the endeavors of Abramsky and Coecke to express some of the basic quantum-
mechanical concepts in an abstract axiomatic category theory setting, several models have been worked
out to capture the semantics of quantum information protocols [1] and programming languages [12, 16,
24]. Concerning quantum hardware, an algebra of automata which include both classical and quantum
entities has been studied in [13]. In all of these works, while the model could manipulate quantum data
structures, the actual control flow of the data was assumed tobe necessarily classical.

The objective of the present paper is to show that the idea of aquantum control is logically sound
and feasible, and to provide a denotational style semanticsfor quantum Turing machines having such a
control. At the same time, the rigid topological layout of Turing machines as a linear array of tape cells is
replaced by a flexible graph structure, giving rise to the concept of Turing automata and graph machines
as introduced in [6]. By denotational semantics we mean thatthe changing of the tape contents caused
by the entire computation process is specified directly as a linear operator, rather than just one step of
this process.

Our presentation will use the language of [1, 17, 23], but it will be specific to the concrete dagger
compact closed category(FdHilb ,⊗) of finite dimensional Hilbert spaces at this time. One can actually
read Section 4 separately as an interesting study in linear algebra, introducing a novel application of the
Moore-Penrose generalized inverse of range-Hermitian operators by taking their Schur complement in
certain block matrix operators. This is the main technical contribution of the paper. We believe, however,
that the category theory contributions are far more interesting and relevant. All of these results are around
the well-known Geometry of Interaction (GoI) concept introduced originally by Girard [14] in the late
1980’s as an interpretation of linear logic. The ideas, however, originate from and are directly related to a
yet earlier work [2] by the author on the axiomatization of flowchart schemes, where the traced monoidal
category axioms first appeared in an algebraic context. Our category theory contributions are as follows:

(i). We introduce a total trace on the monoidal subcategory of (FdHilb ,⊕) defined by isometries,
which has previously been sought by others [15, 21].

(ii). We explain the role of theInt construction for traced monoidal categories [17] in turning a com-
putation process bidirectional or reversible.

(iii). We capture the phenomenon in (ii) above by our own concept “indexed monoidal algebra” [7],
which is an equivalent formalism for certain regular self-dual compact closed categories.

http://dx.doi.org/10.4204/EPTCS.143.2
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Due to space limitations we have to assume familiarity with some advanced concepts in category
theory, namely traced monoidal categories [17], compact closed categories [19], and theInt construction
that links these two types of symmetric monoidal categories[20] to each other. For brevity, by a monoidal
category we shall mean a symmetric monoidal one throughout the paper.

2 Traced and compact closed monoidal categories

The following definition of (strict) traced monoidal categories uses the terminology of [17]. Trace (called
feedback in [2]) in a monoidal categoryC with unit objectI , tensor⊗, and symmetriescA,B : A⊗B→
B⊗A is introduced as a left trace, i.e., an operationC (U ⊗A,U ⊗B)→ C (A,B).

Definition 1. A trace for a monoidal categoryC is a family of functions

TrUA,B : C (U ⊗A,U ⊗B)→ C (A,B)

natural inA andB, dinatural inU , and satisfying the following three axioms:

vanishing:
TrI

A,B( f ) = f , TrU⊗V
A,B (g) = TrVA,B(TrUV⊗A,V⊗B(g));

superposing:
TrUA,B( f )⊗g= TrUA⊗C,B⊗D( f ⊗g), whereg : C→ D;

yanking:
TrUU,U(cU,U ) = 1U .

We use the wordsliding as a synonym for dinaturality inU . When using the termfeedbackfor trace,
the notation Tr changes to↑ or ⇑, and we simply write TrU (↑U , ⇑U ) for TrUA,B wheneverA andB are
understood from the context. The reason for using three different symbols for trace is the different nature
of semantics associated with these symbols.

As it is customary in linear algebra, we shall use the symbolsI and 0 as “generic” identity (respec-
tively, zero) operators, provided that the underlying Hilbert space is understood from the context. As a
further technical simplification we shall be working with the strict monoidal formalism, even though the
monoidal category of Hilbert spaces with the usual tensor product is not strict. It is known, cf. [20], that
every monoidal category is equivalent to a strict one.

Definition 2. A monoidal categoryC is compact closed(CC, for short) if every objectA has a left adjoint
A∗ in the sense that there exist morphismsdA : I → A∗⊗A (the unit map) andeA : A⊗A∗ → I (the counit
map) for which the two composites below result in the identity morphisms 1A and 1A∗ , respectively.

A = A⊗ I →1A⊗dA A⊗ (A∗⊗A) = (A⊗A∗)⊗A→eA⊗1A I ⊗A= A,

A∗ = I ⊗A∗ →dA⊗1A∗
(A∗⊗A)⊗A∗ = A∗⊗ (A⊗A∗)→1A∗⊗eA A∗⊗ I = A∗.

As it is well-known, every CC category admits a so calledcanonical trace[17] defined by the formula

TrUA,B f = (dU ⊗1A)◦ (1U∗ ⊗ f )◦ (eU∗ ⊗1B).

Notice that we write composition of morphisms (◦) in a left-to-right order, avoiding the use of “;”, which
some may find more appropriate. We do so in order to facilitatea smooth transition from composition to
matrix product in Section 4. In the formula of canonical trace above we have made the additional silent
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Figure 1: Diagram for dagger compact closed categories

assumption that the involution()∗ is strict, so thatU∗∗ =U holds for each objectU . As it is known from
[11], this assumption can also be made without loss of generality.

Recall from [23] that adagger monoidal categoryis a monoidal categoryC equipped with an in-
volutive, identity-on-objects contravariant functor† : C op → C coherently preserving the symmetric
monoidal structure as specified in [23]. Adagger compact closed categoryis a dagger monoidal cate-
gory that is also compact closed, and such that the diagram inFigure 1 commutes for all objectsA.

3 Monoidal vs. Turing automata

Circuits and automata over an arbitrary monoidal categoryM have been studied in [3, 4, 5, 18]. It was
shown that the collection of such machines has the structureof a monoidal category equipped with a
natural feedback operation, which satisfies the traced monoidal axioms, except for yanking. Moreover,
sliding holds in a weak sense, for isomorphisms only.

Let A and B be objects inM. An M-automaton(circuit) A → B is a pair (U,α), whereU is a
further object andα : U ⊗A→U ⊗B is a morphism inM. If, for example,M = (Set,×), then the pair
(U,α) represents a deterministic Mealy automaton with statesU , input A, and outputB. The structure
of M-automata/circuits has been described as a monoidal category Circ(M) with feedback in [18]. This
category was also shown to be freely generated byM.

In this paper we take a different approach to the study of monoidal automata. We follow the method
of [6] with the aim of constructing atracedmonoidal category as an adequate semantical structure for
these automata. One must not confuse this type of semantics with the meaning normally associated with
the category Circ(M) above, as they have seemingly very little in common. A tracedmonoidal category
indicates adelay-freesemantics, as opposed to the step-by-stepdelayedsemantics suggested by Circ(M).
Moreover, the category that we are going to construct is not meant to be the quotient of Circ(M) by the
yanking identity, so as to turn it into a traced monoidal category in the straightforward manner. Rather,
we define a brand new tensor and feedback (trace) on ourM-automata, which are analogous to the basic
operations in iteration theories [10]. Regarding the base categoryM, we shall assume an additional,
so called additive tensor⊕, so that⊗ distributes over⊕. These two tensors will then be “mixed and
matched” in the definition of tensor forM-automata, providing them with an intrinsic Turing machine
behavior.

The “prototype” of this construction, resulting in the CC category of conventional Turing automata,
has been elaborated in [7] usingM = (Rel,×,+) as the base category. This category was ideal as a
template for the kind of construction we have in mind, since it has a biproduct+ as the additive tensor
and is self-dual compact closed according to the multiplicative tensor×. Below we present the quantum
counterpart of this construction, working in the dagger compact closed category of finite dimensional
Hilbert spaces(FdHilb ,⊗,⊕). More precisely, the categoryM above will be the restriction ofFdHilb to
isometries as morphisms, which subcategory is no longer compact closed and does not have a biproduct.
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4 Directed quantum Turing automata

In this section we present the construction outlined above,to obtain a strange asymmetric model which
does not yet qualify as a recognizable quantum computing device in its own right. The model represents
a Turing machine in which cells are interconnected in a directed way, so that the control (tape head)
always moves along interconnections in the given fixed direction, should it be left or right. In other
words, direction is incorporated in the scheme-like graphical syntax, rather than the semantics. We
use this model only as a stepping stone towards our real objective, the (undirected) quantum Turing
automaton described in Section 5.

Definition 3. A directed quantum Turing automatonis a quadruple

T = (H ,K ,L ,τ),

whereH , K , andL are finite dimensional Hilbert spaces over the complex fieldC, andτ : H ⊗K →
H ⊗L is an isometry inFdHilb .

Recall that anisometrybetween Hilbert spacesH1 andH2 is a linear mapσ : H1 → H2 such that
σ ◦σ† = I , whereσ† is the (Hilbert space)adjoint of σ . Following the notation of general monoidal
automata we writeT : K → L , and call the isometryτ the transition operatorof T. Thus,T is the
monoidal automaton(H ,τ) : K →L . Sometimes we simply identifyT with τ , provided that the other
parameters ofT are understood from the context.

b)a)

Figure 2: Two simple DQTA

The reader can obtain an intuitive understanding of the automatonT from Figure 2a. The state space
H is represented by a finite number of qubits (in our example 3),while the control is a moving particle
that moves from one of the input interfaces (spaceK ) to one of the output ones (spaceL ). It can only
move in the input→ output direction, as specified by the operatorτ . The number of input and output
interfaces is finite. The control itself does not carry any information, it is just moving around and changes
the state ofT. In comparison with conventional Turing machines, the state ofT is the tape contents of the
corresponding Turing machine, and the current state of the Turing machine is just an interface identifier
for T. For example, one can consider the DQTA in Figure 2b as one tape cell of a Turing machineTM
having 23 symbols in its tape alphabet and only 2 states (2 left-movingand 2 right-moving interfaces,
both input and output). Correspondingly,H is 8-dimensional, while the dimension of bothK andL

is 4. In motion, if the control particle ofT resides on the input interface labeled(L, i) ((R, i)), thenTM
is in statei moving to the left (respectively, right). The point is, however, that the automatonT need not
represent just one cell, it could stand for any finite segmentof a Turing machine, in fact a Turing graph
machine in the sense of [6]. In our concrete example, a segment of TM with n tape cells would have 3n
qubits inside the circle of Figure 2b, but still the same 4+4 interfaces.

An isometric isomorphismσ : H1 → H2 (unitary map, if H1 = H2) is a linear operator such that
both σ andσ† are isometries. Two automataTi : (Hi ,τi) : K → L , i = 1,2, areisomorphic, notation
T1

∼= T2, if there exists an isometric isomorphismσ : H1 → H2 for which

τ2 = (σ†⊗ IK )◦ τ1◦ (σ ⊗ IL ).
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For simplicity, though, we shall work with representatives, rather than equivalence classes of automata.
Turing automata can be composed by the standardcascade productof monoidal automata, cf. [4, 5,

18]. If T1 = (H1,τ1) : L → M andT2 = (H2,τ2) : M → N are directed quantum Turing automata
(DQTA, for short), then

T1◦T2 = (H1⊗H2,L ,N ,τ)

is the automaton whose transition operatorτ is

(πH1,H2 ⊗ IL )◦ (IH2 ⊗ τ1)◦ (πH2,H1 ⊗ IM )◦ (IH1 ⊗ τ2),

whereπH ,K is the symmetryH ⊗K → K ⊗H in (FdHilb ,⊗). As known from [18], the cascade
product of automata is compatible with isomorphism, so thatit is well-defined on isomorphism classes
of DQTA. The identity Turing automaton 1K : K → K has the unit spaceC as its state space, and its
transition operator is simplyIK . The results in [18] imply that these data define a categoryDQT over
finite dimensional Hilbert spaces as objects, in which the morphisms are isomorphism classes of DQTA.

Now let

T1 = (H1,τ1) : K1 → L1 andT2 = (H2,τ2) : K2 → L2

be DQTA, and defineT1⊞T2 to be the automaton over the state spaceH1⊗H2 whose transition operator

τ = τ1⊞ τ2 : (H1⊗H2)⊗ (K1⊕K2)→ (H1⊗H2)⊗ (L1⊕L2)

acts as follows:τ ≃ σ1⊕σ2, where the morphisms

σi : (H1⊗H2)⊗Ki → (H1⊗H2)⊗Li , i = 1,2 are:

σ1 = (πH1,H2 ⊗ IK1)◦ (IH2 ⊗ τ1)◦ (πH2,H1 ⊗ IL1), and σ2 = IH1 ⊗ τ2.

In the above equations,⊕ denotes the orthogonal sum of Hilbert spaces. Intuitively,τ is the selective
performance ofeither τ1 or τ2 on the tensor spaceH1⊗H2. We say “either or”, because the interfaces
of T1 andT2 are separated by⊕, rather than⊗. The natural isomorphism≃ is distributivity in the sense
of [1, Proposition 5.3]. It is clear that the operatorτ1⊞ τ2 is an isometry, so that the operation⊞ is well-
defined. We call this operation theTuring tensor. The Turing tensor is also associative, up to natural
isomorphism, of course.

The symmetriesK ⊕L →L ⊕K associated with⊞ are the “single-state” Turing automata whose
transition operator is the permutation

κK ,L =
L K

K

L

(

0 I
I 0

)

: (C⊗)(K ⊕L )→ (C⊗)(L ⊕K ).

Along the lines of [18] it is routine to check that⊞ is also compatible with isomorphism of automata,
and(DQT,⊞) becomes a monoidal category in this way.

Our third basic operation on DQTA is feedback. Feedback follows the scheme of iteration in Conway
matrix theories [10], using an appropriate star operation.Let T : U ⊕K → U ⊕L be a DQTA having

τ : H ⊗ (U ⊕K )→ H ⊗ (U ⊕L )



22 Quantum Turing automata

as its transition operator. Then↑U T : K → L is the automaton over (thesamespace)H specified as
follows. Consider the matrix ofτ :

H ⊗U H ⊗L

H ⊗U

H ⊗K

(

τA τB

τC τD

)

according to the biproduct decomposition

τ = 〈[τA,τC], [τB,τD]〉,

where[ , ] stands for coproduct and〈 , 〉 for product. The transition operator of↑U T is defined by the
Kleene formula:

↑U τ = lim
n→∞

(τD + τC◦ τ∗n
A ◦ τB). (1)

In the Kleene formula,τ∗n
A = ∑n

i=0 τ i
A, whereτ0

A = I andτ i+1
A = τ i

A ◦ τA. In other words,τ∗n
A is then-th

approximation ofτA’s Neumann serieswell-known in operator theory. The correctness of the abovedef-
inition is contingent upon the existence of the limit and also on the resulting operator being an isometry.
For these two conditions we need to make a short digression, which will also clarify the linear algebraic
background.

Let Iso denote the subcategory ofFdHilb having only isometries as its morphisms. Notice that
(Iso,⊗) is no longer compact closed, even though the multiplicativetensor⊗ is still intact in it. (The
duals are gone.) This tensor, however, does not concern us atthe moment. Consider⊕ as an additive
tensor inIso:

τ1⊕ τ2 = 〈[τ1,0], [0,τ2]〉 for all isometriesτi : Hi → Ki , i = 1,2.

Clearly,τ1⊕τ2 is an isometry. The new additive unit (zero) object is the zero spaceZ . With the additive
symmetriesκH ,K : H ⊕K →K ⊕H , (Iso,⊕) again qualifies as a monoidal category. The biproduct
property of⊕ is lost, however. Nevertheless, one may attempt to define a trace operation↑U τ in Iso by
the Kleene formula (1), whereτ : U ⊕K → U ⊕L . (CutH ⊗ in the matrix ofτ .)

Since the Kleene formula does not appear to be manageable, wefirst redefine↑U τ and prove the
equivalence of the two definitions later. Let

⇑U τ = τD + τC ◦ (I − τA)
+ ◦ τB, (2)

where()+ denotes theMoore-Penrose generalized inverseof linear operators. Recall, e.g., from [8] that
the Moore-Penrose inverse (MP inverse, for short) of an arbitrary operatorσ : H → K is the unique
operatorσ+ : K → H satisfying the following two conditions:

(i). σ ◦σ+ ◦σ = σ , andσ+ ◦σ ◦σ+ = σ+;

(ii). σ ◦σ+ andσ+ ◦σ are Hermitian.

The connection between formulas (1) and (2) is the following. If the Neumann seriesτ∗
A converges,

then(I − τA) is invertible and
τ∗

A = (I − τA)
−1 = (I − τA)

+.

We know that‖τA‖ ≤ 1, where‖‖ denotes the operator norm. (τ is an isometry.) Therefore the Kleene
formula needs an explanation only if‖τA‖ = 1. In that case, even if(I − τA) is invertible,τ∗

A may not
converge.
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Just as the Kleene formula in computer science, the expression on the right-hand side of equation (2)
is well-known and frequently used in linear algebra. For a block matrix

M =

(

A B
C D

)

,

whereA is square, the matrixD−CA+B is called theSchur complementof A on M, denotedA/M. Cf.,
e.g., [8]. Observe that, under the assumptionK = L ,

⇑U τ = I − (I − τA)/(I − τ).

For this reason we call⇑U τ theSchur I-complementof τA on τ , and write⇑U τ = τA\τ .

Theorem 4. The operatorτA\τ is an isometry.

Proof. Isolate the kernelN of (I −τA), and letU0 be the orthogonal complement [22] ofN onU . The
matrix of (I − τA) in this breakdown is

I − τA =
N U0

N

U0

(

0 0
−τN

A I − τ0
A

)

. (3)

Put this matrix (rather,I − (I − τA)) in the top left corner ofτ :

N U0 L

N

U0

K







I 0 τN
B

τN
A τ0

A τ0
B

τN
C τ0

C τD







.

Sinceτ is an isometry (regardless of its concrete orthogonal representation as a matrix operator), all
entries in the above block matrix with superscriptN must be 0. Consequently,(I − τ0

A) is invertible and
τA\τ = τ0

A\τ0, whereτ0 : U0 ⊕K → U0 ⊕L is the restriction ofτ to the bottom right 2× 2 corner.
Indeed,

(

0 0
0 I − τ0

A

)+

=

(

0 0
0 (I − τ0

A)
−1

)

,

so that
τC ◦ (I − τA)

+ ◦ τB = τ0
C ◦ (I − τ0

A)
−1◦ τ0

B.

It turns out from the above discussion that(I − τA) is group invertibleandrange-Hermitian, cf. [8, 9].
Therefore the MP inverse of(I − τA) coincides with its Drazin inverse, which is the group generalized
inverse of this operator. Cf. again [8, 9]. It follows that wecan assume, without loss of generality, that
(I − τA) is invertible. Note that (3) is only a unitary similarity, therefore the sliding axiom is needed to
make this argument correct. Cf. Theorem 7 below. For better readability, replace the symbolsτA, τB, τC,
andτD by A, B, C, andD, respectively. Furthermore, ignore the composition symbol ◦ as if we were
dealing with ordinary matrix product. Then we have:

(

A B
C D

)(

A† C†

B† D†

)

=

(

I 0
0 I

)

.
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The following four matrix equations are derived:

AA†+BB† = I , (4)

AC†+BD† = 0, (5)

CA†+DB† = 0, (6)

CC†+DD† = I . (7)

We need to show that
(D+C(I −A)−1B)(D†+B†(I −A†)−1C†) = I .

The product on the left-hand side yields:

DD†+DB†(I −A†)−1C†+C(I −A)−1BD†+C(I −A)−1BB†(I −A†)−1C†.

By (5) and (6) this is equal to:

DD†−CA†(I −A†)−1C†−C(I −A)−1AC†+C(I −A)−1BB†(I −A†)−1C†,

which is further equal toDD†+CQC†, where

Q=(I −A)−1BB†(I −A†)−1−A†(I −A†)−1− (I −A)−1A.

According to (7) it is sufficient to prove thatQ = I . A couple of equivalent transformations follow.
Multiply both sides ofQ= I by (I −A) from the left:

BB†(I −A†)−1− (I −A)A†(I −A†)−1−A = I −A,

BB†(I −A†)−1− (I −A)A†(I −A†)−1 = I .

Multiply by (I −A†) from the right:

BB†− (I −A)A† = I −A†,

BB†+AA† = I .

The result is equation (4), which is given. The proof is now complete. q.e.d.

Lemma 5. Letτ : U ⊕V ⊕K → U ⊕V ⊕L be an isometry defined by the matrix




M B1

B2

C1 C2 D



 , where M=

(

P Q
R S

)

.

If I − (P\M) = I − (S+R(I −P)+Q) is invertible, then

⇑V (⇑U τ) = ⇑U ⊕V τ .

Proof. Using the kernel-on-top representation of operators as explained under Theorem 4, we can as-
sume (without loss of generality) thatI −P is also invertible. Then the statement follows from the
Banachiewicz block inverse formula [9, Proposition 2.8.7]:

(

A B
C D

)−1

=

(

A−1+A−1B(D−CA−1B)−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)

,
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usingA= I −P, B=−Q, C=−R, andD = I −S. Computations are left to the reader. q.e.d.

Note that the Banachiewicz formula does not hold true for theMP or the Drazin inverse of the given
block matrix whenA−1 and(D−CA−1B)−1 are replaced on the right-hand side byA+ and(D−CA+B)+,
respectively, even if one of these square matrices is invertible. There are appropriate block inverse
formulas for generalized inverses, cf. [9], but these formulas are extremely complicated and are of no
use for us.

Lemma 6. Letτ : U ⊕V ⊕K → U ⊕V ⊕L be an isometry as in Lemma 5. If P\M = I, then

⇑V (⇑U τ) = ⇑U ⊕V τ .

Proof. Again, we can assume thatI −P is invertible. To keep the computation simple, letU andV both
be 1-dimensional. This, too, can in fact be assumed without loss of generality, if one uses an appropriate
induction argument. The induction, however, can be avoidedat the expense of a more advanced matrix
computation. Thus,

τ =





p q u1

r s u2

v1↓ v2↓ D



 ,

whereui and(vi ↓), i = 1,2 are row and column vectors, respectively. To simplify the computation even
further, let the numbersp,q, r,sbe real. The 2×2 matrixI −M is singular and range-Hermitian, therefore
it is Hermitian (only because the numbers are real, see [9, Corollary 5.4.4]), so that it must be of the form

I −M =

(

a b
b b2/a

)

for some real numbersa,b with a= 1− p 6= 0. Then

⇑U τ =

(

c u
v↓ D′

)

,

wherec= (1−b2/a)+b2/a= 1,

u = u2− (b/a) ·u1,

(v↓) = (v2↓)− (b/a) · (v1↓), and

D′ = D+(1/a) · (v1↓)u1.

Sincec= 1, u and(v↓) must be 0. Consequently,

a·u2 = b·u1 anda· (v2↓) = b· (v1↓). (8)

In order to calculate(I −M)+, let M′ = S(I −M)S−1, whereS= S−1 is the unitary matrix

S=
1
d
·

(

−b a
a b

)

, d2 = a2+b2.

After a short computation,

M′ =

(

0 0
0 d2/a

)

.



26 Quantum Turing automata

It follows that:

(I −M)+ = S

(

0 0
0 a/d2

)

S, and

⇑U ⊕V τ = D+(v1↓,v2↓)S

(

0 0
0 a/d2

)

S

(

u1

u2

)

.

Comparing this expression with

⇑V (⇑U τ) = D′ = D+(1/a) · (v1↓)u1,

we need to prove that

(v1↓,v2↓)S

(

0 0
0 a/d2

)

S

(

u1

u2

)

=
1
a
· (v1↓)u1.

On the left-hand side we have:

(a/d4) · (a·v1↓+b·v2↓)(a·u1+b·u2),

which indeed reduces to(1/a) · (v1↓)u1 by the help of (8). The proof is complete. q.e.d.

Theorem 7. The operation⇑U defines a trace for the monoidal category(Iso,⊕).

Proof. Naturality can be verified by a simple matrix computation, left to the reader. Regarding the sliding
axiom, we know from [17, Lemma 2.1] that slidings of symmetries suffice for all slidings in the presence
of the other axioms. Let thereforeσ : V →U be an arbitrary symmetry (or permutation, in general), and
τ : U ⊕K → U ⊕L be an isometry with〈[A,B], [C,D]〉 being the biproduct decomposition (matrix)
of τ . Then, for the “matrix”Sof σ :

⇑V ((σ ⊕ I)◦ τ ◦ (σ−1⊕ I))

= D+CS−1(I −SAS−1)+SB= D+CS−1(SS−1−SAS−1)+SB

= D+CS−1(S(I −A)S−1)+SB= D+CS−1S(I −A)+S−1SB

= D+C(I −A)+B= ⇑U τ .

In the above derivation we have used the obvious property(SMS−1)+ = SM+S−1 of the MP inverse.
Remember thatσ is a permutation, so thatσ−1 = σ†. Superposing and yanking are trivial. Therefore
the only challenging axiom is vanishing.

Let τ : U ⊕V ⊕K → U ⊕V ⊕L be an isometry given by the matrix
(

M B
C D

)

, whereM =

(

P Q
R S

)

.

We need to prove that⇑V (⇑U τ)=⇑U ⊕V τ . Again, without loss of generality, we can assume that(I −P)
is invertible and

I −P\M =

(

0 0
0 S0

)

,

whereV = N ⊕V0 andS0 : V0 → V0 is invertible. If N is the zero space, so thatI −P\M itself is
invertible, then the statement follows from Lemma5. Otherwise

⇑V (⇑U τ) = ⇑V0(⇑N (⇑U τ)).
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By Lemma 6,⇑N (⇑U τ) = ⇑U ⊕N τ , and by Theorem 4,

⇑V0(⇑U ⊕N τ) = ⇑U ⊕N ⊕V0τ = ⇑U ⊕V τ .

The proof is now complete. q.e.d.

At this point the reader may want to check the validity of the Conway semiring axioms

(ab)∗ = a(ba)∗b+1, (a+b)∗ = (a∗b)∗a∗ for all a,b∈ C, where

c∗ = (1−c)+ =

{

(1−c)−1 if c 6= 1
0 if c= 1.

Cf. [10]. Obviously, they do not hold, but they come very close. It may also occur to the reader that the
SchurI -complement defines a trace in the whole category(FdHilb ,⊕). Of course this is not true either,
because the Banachiewicz formula does not work for the MP inverse.

In the recent paper [21], the authors introduced the so called kernel-image trace as a partial trace [15]
on any additive categoryC . Given a morphismτ : U ⊕K → U ⊕L in C with a block matrix

τ = 〈[τA,τC], [τB,τD]〉

as above, thekernel-image trace↑U
k−i τ is defined if bothτB andτC factor through(I − τA), that is, there

exist morphismsi : K → U andk : U → L such that

τC = i ◦ (I − τA) and τB = (I − τA)◦k.

Cf. Figure 3. In this case
↑U

k−i τ = τD + τC ◦k= τD + i ◦ τB.

It is easy to see that↑U
k−i τ is always defined ifτ is an isometry, and↑U

k−i τ = ⇑U τ . (Use the kernel-on-top
transformation of(I −τA) as in Theorem 4.) Therefore↑U

k−i is totally defined on(Iso,⊕) and it coincides
with ⇑U . Using [21, Remark 3.3] we thus have an alternative proof of our Theorem 7 above.

τB

τC

τAI −

U L

K U
i

k

Figure 3: The kernel-image trace

Now we turn back to the original definition of trace in(Iso,⊕) by (1).

Theorem 8. For every isometryτ : U ⊕K → U ⊕L , ↑U τ is well defined as an isometryK → L .
Moreover,

↑U τ = ⇑U τ .

Proof. This is in fact a simple formal language theory exercise. Take a concrete representation ofτ
as an(n+ k)× (n+ l) complex matrix(ai j ), wheren, k, and l are the dimensions ofU , K , andL ,
respectively. For a corresponding set of variablesX = {xi j }, consider the matrix iteration theoryMat L(X∗)

determined by the iteration semiring of allformal power seriesover theω-complete Boolean semiring
B with variablesX as described in Chapter 9 of [10]. The fundamental observation is that↑n (ai j ) is



28 Quantum Turing automata

the evaluation of the series matrix↑n (xi j ) under the assignmentxi j = ai j , provided that each entry in
this matrix is convergent. In our case, since|a11| ≤ 1, this matrix is definitely convergent ifn= 1, and
↑1 (ai j ) = ⇑1(ai j ). A straightforward induction on the basis of Theorem 7 then yields↑n (ai j ) = ⇑n(ai j ),
knowing that every iteration theory is a traced monoidal category. q.e.d.

Corollary 9. The monoidal category(DQT,⊞) is traced by the feedback↑.

Proof. Now the key observation is that, for every isometryτ : U ⊕K → U ⊕L and objectM ,

(⇑U τ)⊗ IM = ⇑U ⊗M (τ ⊗ IM ).

This equation is an immediate consequence of

(σ ⊗ I)+ = σ+⊗ I ,

which is an obvious property of the MP inverse. (Cf. the defining equations (i)-(ii) ofσ+.) In the light
of this observation, each traced monoidal category axiom isessentially the same in(DQT,⊞) as it is in
(Iso,⊕). Thus, the statement follows from Theorems 7 and 8. q.e.d.

5 Making Turing automata bidirectional

Now we are ready to introduce the model of quantum Turing automata as a real quantum computing
device.

Definition 10. A quantum Turing automaton(QTA, for short) ofrank K is a tripleT = (H ,K ,τ),
whereH andK are finite dimensional Hilbert spaces andτ : H ⊗K →H ⊗K is aunitarymorphism
in FdHilb .

a) b)

Figure 4: One cell of a Turing machine as a QTA

Again, two automataTi : (Hi ,K ,τi), i = 1,2 are calledisomorphicif there exists an isometric iso-
morphismσ : H1 → H2 for which τ2 = (σ†⊗ IK )◦ τ1◦ (σ ⊗ IK ).

Example. In Figure 4a, consider the abstract representation of one tape cell drawn from a hypothet-
ical Turing machine having two states: 1 and 2. The tape alphabet {0,1} is also binary, which means
that there is a single qubit sitting in the cell. Thus,H is 2-dimensional. The control particlec can reside
on any of the given four interfaces. For example, ifc is on the top left interface, then the control is
coming from the left in state 1. After one move,c can again be on any of these four interfaces, so that the
dimension ofK is 4. Notice the undirected nature of one move, as opposed to the rigid input→output
orientation forced on DQTA. The situation is, however, analogous to having a separate input and dual
output interface for each undirected one in a correspondingDQTA. Cf. Figure 4b. The quantum Turing
automaton obtained in this way will then have a transition operatorτ as an 8×8 unitary matrix.

Let C be an arbitrary traced monoidal category. In order to describe the structure of (undirected)
quantum Turing automata we shall use a variant of the Joyal-Street-VerityInt construction [17] by which
tensor is defined on objects inInt(C ) as

(X,U)⊗ (X′,U ′) = (X⊗C X′,U ⊗C U ′),
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and on morphismsf : (X,U)→ (Y,V), f ′ : (X′,U ′)→ (Y′,V ′) as

f ⊗ f ′ = (1X ⊗C cX′,V ⊗C 1V ′)◦ ( f ⊗C f ′)◦ (1Y ⊗C cU,Y′ ⊗C 1U ′).

Recall thatf : X⊗V →Y⊗U in C . Correspondingly,

1(X,U) = 1X⊗C U , c(X,U),(Y,V) = cX,Y ⊗C cV,U , andd(X,U) = e(X,U) = (cX,U )C .

The reason for the change is that, by the original definition,the self-dual objects(X,X) in Int(C ) are not
closed for the tensor.

Definition 11. A CC-categoryC is completely symmetricif A=A∗∗, (A⊗B)∗ =A∗⊗B∗, and the natural
isomorphismA∗⊗B∗=(A⊗B)∗ ∼= B∗⊗A∗ determined by the duality()∗ coincides withcA∗,B∗ for all
objectsA,B.

In the above definition, “the duality()∗” refers to the pure autonomous structure ofC , forgetting
the symmetries. Observe that complete symmetry implies that the coherence conditions in effect for the
symmetriescA,B are automatically inherited by the unitsdA and counitseA in an appropriate way, e.g.,

dA∗ = dA ◦cA∗,A and dA⊗B = (dA⊗dB)◦ (1A⊗cA,B∗ ⊗1B),

as one would normally expect. These equations do not necessarily hold without complete symmetry.

Proposition 12. For every traced monoidal categoryC , the CC-category Int(C ) is completely symmet-
ric.

Proof. Immediate by the definitions. q.e.d.

Let Int0(C ) denote the full subcategory ofInt(C ) determined by its self-dual objects(X,X). Again,
as an immediate consequence of the definitions,()∗ defines a dagger structure onInt0(C ) through which
it becomes a dagger compact closed category. Clearly, the dagger (dual) off : X⊗C Y →Y⊗C X as a
morphism(X,X)→ (Y,Y) is cY,X ◦ f ◦cY,X. In general, we put forward the following definition.

Definition 13. A completely symmetric self-dual CC category(S2DC2 category, for short) is a completely
symmetric CC category such thatA= A∗ for all objectsA.

Corollary 14. In every S2DC2 categoryC , the contravariant functor()∗ defines a dagger structure on
C by which it becomes dagger compact closed. Consequently, dA = dA ◦cA,A and eA = cA,A ◦eA hold in
C . For every traced monoidal categoryC , Int0(C ) is an S2DC2 category.

Proof. Cf. Figure 1. q.e.d.

Now let us assume thatC is a dagger traced monoidal category, that is,C has a monoidal dagger
structure for which

TrU( f †) = (TrU f )† for f : U ⊗A→U ⊗B.

This is definitely the case for the subcategoryDQT0 of DQT consisting of automata having an isometric
isomorphism as their transition operator. Moreover, the map T 7→ T ⊞T† is injective inDQT0.

Theorem 15. For every dagger traced monoidal categoryC , the map f7→ f ⊗ f † defines a strict dagger-
traced-monoidal functor FC : C → Int0(C ) by which FC A= (A,A) for each object A.
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Proof. Routine computation, left to the reader. q.e.d.

At this point we have sufficient knowledge to understand the structure and behavior of QTA. Indeed,
any such automaton(H ,N ,τ) with τ : H ⊗N → H ⊗N is in fact a morphism(I , I) → (N ,N )
in the S2DC2 categoryInt0(DQT0). Using the terminology of [1, Definition 3.2], such a morphism is
the nameof any appropriate morphism(K ,K ) → (L ,L ) in Int0(DQT0) such thatN = K ⊕L .
The natural isomorphism induced by duality simply collapses these hom-sets into their name hom-set.
However, the reader should not be confused by the fact that the name of a morphismf : (X,X)→ (Y,Y)
in Int0(C ) — that is, f : X⊗Y → Y⊗X in C — is in fact a morphismX⊗Y → X⊗Y in C , actually
f ◦cY,X.

In particular, for every automatonT : K → L in DQT0, the name ofFDQT0
T = T ⊞T† as a mor-

phism (I , I) → (K ⊕L ,K ⊕L ) is the QTA of rankK ⊕L which reflects the joint behavior ofT
and its reverse. Of course, however, the whole structure of QTA is a lot richer than simply the image
of DQT0 underFDQT0

. This observation is analogous to the obvious fact that the tensor of two vector
spaces is richer than the collection of tensors of individual vectors. Building on this analogy we can
consider the collection of QTA as a suitable algebraic structure, rather than a category.

An equivalent formalism for S2DC2 categories in terms of so called indexed monoidal algebras has
been worked out in [6, 7]. This new formalism deals with QTA as“vectors” rather than morphisms, in
the spirit explained in the previous paragraph. The basis ofthe equivalence between indexed monoidal
algebras and S2DC2 categories is the naming mechanism, which identifies morphisms with their names.
The advantage of using this algebraic framework is that it simplifies the understanding of S2DC2 cat-
egories by essentially collapsing the dual category structure, which may sometimes be extremely but
unnecessarily convoluted.

6 Conclusion

We have provided a theoretical foundation for the study of quantum Turing machines having a quantum
control. The dagger compact closed categoryFdHilb of finite dimensional Hilbert spaces served as
the basic underlying structure for this foundation. We narrowed down the scope of this category to
isometries, switched from multiplicative to additive tensor, and defined a new additive trace operation
by the help of the Moore-Penrose generalized inverse. This trace was then carried over to the monoidal
category of directed quantum Turing automata. Finally, we applied theInt construction to obtain a
compact closed category, and restricted this category to its self-dual objects to arrive at our ultimate goal,
the model (indexed monoidal algebra) of undirected quantumTuring automata.
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