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We present a concurrent operational Petri net semantics forthe join-calculus, a process calculus for
specifying concurrent and distributed systems. There often is a gap between system specifications
and the actual implementations caused by synchrony assumptions on the specification side and asyn-
chronously interacting components in implementations. The join-calculus is promising to reduce this
gap by providing an abstract specification language which isasynchronously distributable. Classical
process semantics establish an implicit order of actually independent actions, by means of an inter-
leaving. So does the semantics of the join-calculus. To capture such independent actions, step-based
semantics, e. g., as defined on Petri nets, are employed. Our Petri net semantics for the join-calculus
induces step-behavior in a natural way. We prove our semantics behaviorally equivalent to the orig-
inal join-calculus semantics by means of a bisimulation. Wediscuss how join specific assumptions
influence an existing notion of distributability based on Petri nets.

1 Introduction

Specifications for distributed systems usually employ synchrony assumptions to keep the modeling as
simple as possible. Properties of specifications cannot be reused for real implementations, because com-
ponents in a distributed system run concurrently and communicate in an asynchronous fashion. This
leaves a gap between specifications and implementations.

Process calculi, e. g., theπ-calculus, concentrate on the essential parts in system specifications, keep-
ing in mind that they represent actual systems. Therefore, they come with a syntax and a semantics to
describe the behavior of a system as precise as possible. Theasynchronousπ-calculus, a restricted
π-calculus, tries to reduce the gap between system specifications and implementations. By the asyn-
chronousπ-calculus, we are able describe asynchronously communicating systems, but implementations
still rely on hard to implement constructs, such asrendezvousor leader election[16].

The join-calculus by Fournet and Gonthier [9] is a process calculus equipped with a basic language
and an abstract notion of computation, thereflexive chemical abstract machine. Fournet and Gonthier
extend Berry and Boudol’schemical abstract machine[2] by explicit reaction sites – similar tolocations
in distributed systems – and combine the concepts of restriction, reception and recursion in one construct
called ajoin definition. By join definitions, they force receptors, i. e., names which are used to receive
messages, to reside on one location. In contrast,π-calculus allows the use of sent names as receptors
(cf.scope extrusion) which enables the calculus to describe the concept ofmobility, but makes distributed
implementations of the calculus difficult.

Still, as many other process calculi, the join-calculus only comes with an interleaving semantics
which makes it hard to reason about the distributed behaviorof processes. Although the join-calculus is
equipped with a parallel composition operator, it is ratherdifficult to describe independence of actions,
whereas other models, such as Petri nets [19], describe independence explicitly. Therefore, we present
an operational Petri net semantics for the join-calculus taking advantage of the parallel structure to obtain
a large degree of independence, i. e., concurrency.
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The general idea of our Petri net semantics is inspired by thework of Busi and Gorrieri [6], where
they propose a Petri net semantics with inhibitor arcs for the π-calculus. They decompose aπ term into
places and construct the nets by transition rules working ondecompositions. They solve scoping issues
in the π-calculus by a global renaming. Our semantics does not rely on such a renaming as we store
the message scopes in places. As in Busi and Gorrieri’s semantics, all necessary information is encoded
in the initial decomposition corresponding to initially marked places. We concentrate on the core join-
calculus which is not equipped with an explicit choice. Therefore, we can also abandon inhibitor arcs
from our semantics. In general, our semantics yields infinite but 1-safe Petri nets. It also comes with a
bisimulation result to the original join-calculus semantics ensuring the correctness of our approach.

Petri nets and Petri net related formalisms have already been used to describe the semantics of the
join-calculus. Buscemi and Sassone propose a type-theoretic approach by suggesting a hierarchy on the
syntax of the join-calculus [5]. For each level, they prove that, if a join-calculus term is typable, i. e., is
satisfying a restriction on the syntax, then the Petri net ofthe join term they construct is bisimilar to the
original join-calculus semantics. They get place/transition nets by restricting processes to top-level join
definitions. To handle more expressive join terms, they use colored, reconfigurable and dynamic Petri
nets. In our work, we cover full expressiveness of the join-calculus by an infinite construction. Bruni et
al. propose an event structure semantics for the join-calculus [4]. Their main goal is to establish so called
persistent graph grammarsas a tool to describe name passing process calculi. They focus on an encoding
from the asynchronousπ-calculus into persistent graph grammars. The unfolding ofthe grammars yields
event structures. For the join-calculus they yield event structures with empty concurrency relations. The
semantics we propose includes concurrency by exploiting the parallel structure of a join term. There
are also more general approaches which do not give a semantics for the join-calculus, but use the same
ideas to obtain new Petri net classes. Prominent examples are mobile and dynamic Petri netsby Asperti
and Busi [1] andfunctional netsby Odersky [18]. Our approach does not aim at extending Petrinets or
introducing new extensions to Petri net theory.

Unfortunately, our net semantics yields infinite nets whichseems to make it impossible to be useful
for any real-world applications. Due to nice structural properties of the nets, the semantics could be
directly used for anyunfolding basedtechniques on Petri nets. One of such applications is model-
checking. In Petri net unfoldings [7], it is not necessary tocompute the potentially infinite structure of
the net, but make use of a finite representation calledprefix. In this paper, we want to investigate the join-
calculus in terms of distributability. Recent research [13, 20] suggest a notion of distributed systems in
terms of Petri nets and proved a Petri net structure, which refers to symmetric confusion, to be impossible
to distribute. If our proposed semantics is reasonable and correct, we may argue on the distributability
of the calculus itself.

The rest of the paper is structured as follows. Sect. 2 introduces the necessary notions for this paper
including Petri nets (Sect. 2.1) and an overview of the join-calculus (Sect. 2.2). The following section is
concerned with the definition of our Petri net semantics for the join-calculus and its correctness results.
In Sect. 4, we discuss a notion of distributability and how the join-calculus influences it. In Sect. 5, we
conclude our work and give some further research directions.

2 Preliminaries

In this section, we introduce the basic notions and conceptsused in our net semantics. First, we need the
notion of multisets.

Definition 1 (Multisets). Let A be a set. Amultiset M over Ais a mapping fromA to N. For a ∈ A,
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M(a) = 0 iff a 6∈ M. Otherwisea∈ M. Two multisetsM1,M2 overA can be unified by⊎. M1⊎M2 is a
multiset where for eacha∈ A, (M1⊎M2)(a) = M1(a)+M2(a).

Wheneverf is a function from a setA to a cartesian product∏n
i=0Ai , then we define the projections

on the result off by f i := πi ◦ f , whereπi is the projection function on theith component of the product.
id denotes theidentity functiondefined on any set.

In our semantics we need to store scopes for objects. These scopes may be nested. To handle this
nesting of scope we introduce the notion ofstacks– a common data structure also used in compilers. A
stack may be empty (⊥) or filled with elements of an alphabet. It is equipped with three operations. First,
thepushoperation adds an element on top of a stack. Second, thetop operation returns the top element
of a stack. Last, thepopoperation removes the top element of a stack.

Definition 2 (Stack). Let Σ be an alphabet. Astack s overΣ is either⊥ or scontains at least one element
e∈ Σ, i. e.,,s= [e,s′], wheres′ is a stack overΣ. The set of all stacks overΣ is denoted bySΣ. The
following operations are defined onSΣ.

• ⊤ : SΣ → Σ denotes the top element of a stackswith

s⊤ :=

{
ε s=⊥
e s= [e,s′].

• ↓: SΣ ×Σ → SΣ denotes the push operation. For a stacksand a symbole, s↓ e := [e,s].

• ↑: SΣ → SΣ denotes the pop operation. For a stacks,

s↑=

{
⊥ s=⊥
s′ s= [e,s′].

Instead of[e1, [e2, [. . . , [en,⊥] . . . ]] we write[e1,e2, . . . ,en,⊥].
Labeled transition systems serve as the common semantic model of both formalisms, Petri nets and

the join-calculus. It consists of three components, a set ofstatesQ, a labeled relation between states→
and a start stateq0. The labels for so called transitions are obtained from somealphabetΣ.

Definition 3 (LTS). A labeled transition system (overΣ), LTS is a triple,(Q,→,q0) whereQ is a set,
→⊆ Q×Σ×Q, andq0 ∈ Q.

In [11], van Glabbeek gives a huge collection of behavioral equivalences forLTSs. Bisimulationis a
very strong equivalence taking the branching structure, i.e., the structure of decisions, of a system into
account. As already mentioned, Petri nets as well as the join-calculus have anLTS semantics. Therefore,
we introduce the notion of bisimulation. Later in Sect. 3.3 we will prove our semantics introduced in
Sect. 3.1 to bebisimilar to the original semantics of the join-calculus.

Definition 4 (Bisimulation). Let A1 = (Q1,→1,q1) andA2 = (Q2,→2,q2) be labeled transition systems
over some alphabetΣ. A relationR ⊆ Q1×Q2 is called abisimulation between A1 and A2 iff

• (q1,q2) ∈ R,

• if (p,q) ∈ R andp
a
−→1 p′, then there existsq′ ∈ Q2 such thatq

a
−→2 q′ and(p′,q′) ∈ R, and

• if (p,q) ∈ R andq
a
−→2 q′, then there existsp′ ∈ Q1 such thatp

a
−→1 p′ and(p′,q′) ∈ R.

If such a relation exists, thenA1 andA2 arebisimilar.
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2.1 Petri Nets

Petri netswere first introduced by Carl Adam Petri [19]. Petri nets are directed bipartite graphs with
places drawn as circles and transitions drawn as boxes. Places and transitions are the nodes of a net.
Directed edges called arcs, either connect places with transitions or transitions with places. An example
is depicted in Fig. 5. We assume a universe of places denoted by P. We later specifyP to meet the
purposes of our semantics. The set of net places is a subset ofP. As in labeled transition systems we
have a fixed alphabetΣ for transition labels representing the actions of a system.In contrast to classical
net definitions, we directly encode the set of arcs into transitions.

Definition 5 (Net). The tupleN = (P,T) is called alabeled net overΣ iff

• P⊆ P is a set and

• T ⊆ 2P×Σ×2P.

The labelπ2(t) of a transitiont is also referred to asl(t). Here,l is implicitly given and not a part
of the net definition. The preset of a transitiont is denoted by•t := π1(t), the postset oft is denoted by
t• := π3(t). Pre- and postsets of places are defined by•p := {t ∈ T | p∈ t•} and p• := {t ∈ T | p∈ •t}.
The arc relation is obtained byF = {(p, t) ∈ P×T | p∈ •t}∪{(t, p) ∈ T ×P| p∈ t•}.

A net is calledfinite iff (P∪T) is finite. Otherwise, the net is calledinfinite.
The potential state of nets is described bymarkings, which are multisets over the set of places.

Tokens, drawn as black dots (cf. Fig. 5), represent the number of places in a marking. These states may
change byfiring transitions. Transitions areenablediff there is at least one token on anyinput place
p∈ •t. An enabled transition may fire, which means that itconsumesone token from each input place
andproducesone token on any output placep∈ t•. This procedure is formally defined by thefiring rule.

Definition 6 (Enabledness, Firing rule). Let N = (P,T) be a net and letm : P→N be a marking ofN. A
transitiont ∈ T is enabled under m, writtenm[t〉, iff m(p)> 0 for all p∈ •t. An enabled transitiont ∈ T
mayfire. Thesuccessor marking of mby firing t is m′, writtenm[t〉m′, with

m′(p) =







m(p) + 1 if p∈ (t• \ •t)
m(p) − 1 if p∈ (•t \ t•)
m(p) else.

Petri netsare nets with an initial markingm0 corresponding to the start state of a net.

Definition 7 (Petri net). The triple N = (P,T,m0) is called aPetri net iff (P,T) is a net andm0 is a
marking of(P,T).

A marking m is reachablein a netN = (P,T,m0) iff there exists a sequence of transitionst1, . . . , tn
(ti ∈ T) such thatm0[t1〉 . . . [tn〉m. The set of all reachable markings ofN is denoted byReach(N). By
relating reachable markings we derive anLTS from a Petri net.

Definition 8. Let N = (P,T,m0) be a Petri net labeled overΣ. TheLTS of N is defined byLTS(N) :=
(Reach(N),−→,m0) where

• −→⊆ Reach(N)×Σ×Reach(N) and

• (m,a,m′) ∈−→ iff there existst ∈ T with m[t〉m′ andl(t) = a.

Instead of(m,a,m′) ∈−→ we often use the abbreviationm
a

−→ m′.
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P ::= 0 x〈v〉 P|P def x〈u〉 |y〈v〉 ⊲ PinP

Figure 1: Syntax ofJcore

2.2 Join-Calculus

The join-calculus [9] is a process algebra describing the model of thereflexive chemical abstract machine
based on Berry’s and Boudol’s chemical abstract machine [2]. One of the reasons for the development
of the join-calculus was the difficulty to actually implement distributed CCS or distributedπ-calculus.
In comparison to theπ-calculus by Milner [16], the join-calculus combines restriction, recursion and
reception in one construct calledjoin definition, forcing receptors to reside on onelocation. Hence, it is
not possible toextrudea name and use the same name for reception. Fournet and Gonthier [9] identified
a strict subset of the join-calculus which is proven to be as expressive as the full calculus. This subset is
calledcore join-calculus. This section and our Petri net semantics is based on the corecalculus.

For further notions, we assume an infinite set of namesN . The syntax of the core join-calculus is
defined in Fig. 1.0 stands for thenull process, a process with no behavior.x〈v〉 representsoutput mes-
sages. As in theπ-calculus,x stands for the channel name andv is a value passed throughx. Theparallel
compositionof two processesP andQ is denoted byP|Q, whereP andQ work independently. The last
syntactic element is thedefinition, def x〈u〉 |y〈v〉 ⊲ QinP. Definitions combine restriction, reception of
names and recursion in one construct.x〈u〉 |y〈v〉 is called thejoin-pattern. x〈u〉 |y〈v〉 ⊲ Q is called the
join definitionor, together with a processP, theenclosing definitionof P. We denote the set of all join
definitions byD . P is theenclosed process. The set of all core join terms is denoted byJcore.

Variables in a join-term are partitioned into three categories which are not necessarily disjoint. The
free variables(fv) are those being visible to the environment.Defined variables(dv) are variables bound
to a join definition, i. e., those channels that are processedby a definition. Received variables(rv) are
only locally bound to new processes resulting from the application of join definitions. These three sets
are defined in Fig. 2 (cf. [8]).

We useσfv,σdv,σrv to denote a renaming on the set of free, defined and received variables.
The core join-calculus has its roots in an abstract machine called thereflexive chemical abstract

machine. Instead of specifying a set of reduction rules, the chemical abstract machine first defines a
structural congruence and, on top of that, there is only one reduction rule. In process calculi this method
is adopted to reduce the number of rules for a structural operational semantics significantly. As we want
to use the structural operational semantics to define labeled transition systems of the core join-calculus,
we first need the structural congruence of core join terms. The congruence defined in Fig. 3 is reduced
to the core join-calculus (cf. [8]).

From the structural congruence we observe that it does not matter what the exact defined variables
are. In consequence, we may rename them. We thereby need to make sure that all occurrences of defined
variables in the enclosed process are renamed as well. Later, our semantics will keep track of definitions.
To make sure that there are no name clashes, we introduce a minimal notion ofnormalityon which we
rely. Our normality criterion is concerned with join definitions occurring in parallel, i. e., definitions
D1, . . . ,Dk in processes of the form,

defD1 inP1 | . . . | defDk inPk.

Definition 9 (Normality of Jcore). We call a processP∈ Jcore normal if for all definitions D,D′ oc-
curring in parallel inP, it holds thatdv(D)∩dv(D′) = /0.
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fv[x〈v1, . . . ,vn〉]
Def
= {x,v1, . . . ,vn}

fv[defD inP]
Def
= (fv[P]∪ fv[D])\dv[D]

fv[P|P′]
Def
= fv[P]∪ fv[P′]

fv[0]
Def
= /0

fv[J ⊲ P]
Def
= dv[J]∪ (fv[P]\ rv[J])

dv[J ⊲ P]
Def
= dv[J]

dv[x〈y1, . . . ,yn〉]
Def
= {x} dv[J |J′]

Def
= dv[J]⊎dv[J′]

rv[x〈y1, . . . ,yn〉]
Def
= {y1, . . . ,yn} rv[J |J′]

Def
= rv[J]⊎ rv[J′]

Figure 2: Free, defined and received variables ofJcore terms

P|0 ≡ P
P|Q ≡ Q|P

(P|Q) |R ≡ P|(Q|R)
P| defD inQ ≡ defD inP|Q if fv(P)∩dv(D) = /0

defD in defD′ inP ≡ defD′ in defD inP if fv(D)∩ fv(D′) = /0

defD inP ≡ defDσdv inPσdv if σdv injective
defD inP ≡ defDσrv inP if σrv injective

Figure 3: Structural congruence onJcore

(JOIN) x〈s〉 |y〈t〉
x〈u〉 |y〈v〉⊲R
−−−−−−−→ R[s/u, t/v]

(REACT)
P

D
−→ P′

defD inP
D

7−→ defD inP′

(PAR1)
P

D
−→ P′

P|Q
D
−→ P′ |Q

(PAR2)
P

D
7−→ P′

P|Q
D

7−→ P′ |Q

(JUMP1)
P

D
−→ P′,dv(D)∩ fv(D′) = /0

defD′ inP
D
−→ defD′ inP′

(JUMP2)
P

D
7−→ P′

defD′ inP
D

7−→ defD′ inP′

(STRUCT1)
P

D
−→ P′,P≡ Q

Q
D
−→ Q′

(STRUCT2)
P

D
7−→ P′,P≡ Q

Q
D

7−→ Q′

Figure 4: Labeled transition semantics ofJcore
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We define the semantics of core join processes by their labeled transition systems respecting the
reduction semantics given by Fournet [8]. In Fig. 4, we extended Fournet’s semantics by an extra type of

labeled arrows which represent theτ-labeled steps in Fournet’s semantics.
D

−→ describes potential steps

overD, while
D

7−→ describes actual reaction steps. We extended the original semantics to make theLTS
of join comparable to the labeled net semantics we propose inSect. 3.

Definition 10 (LTS of Jcore). Let P∈ Jcore. Thelabeled transition system of Pis

LTS(P) := (Jcore, 7−→,P)

where 7−→⊆ Jcore×D ×Jcore is the smallest relation respecting the structural operational semantics
in Fig. 4.

In general, this labeled transition system is infinite and has unreachable parts. The JOIN rule reveals
potential reactions. The actual reaction rule, i. e., REACT, introduces the new arrow type. Only ifP has a
potentialD step toP′, then the reaction actually takes place. For the remaining rules we have one for the
potential arrows and one for the reaction arrow. The PAR rules work as expected. A join definition can be
skipped if a reaction has already taken place, i. e., JUMP2, or the potential stepD does not interfere with
other free variables, i. e., as in JUMP2. The STRUCT rules refer to the structural congruences as defined
in Fig. 3. For a better understanding of the labeled transition semantics we give two examples.

Example 1. Consider the processP= def x〈u〉 |y〈v〉 ⊲ u〈v〉 inx〈k〉 |x〈 j〉 |y〈2〉. For simplicity, we use the
definition variableD = x〈u〉 |y〈v〉 ⊲ u〈v〉. Intuitively, P has two possible executions. First,x〈k〉 andy〈2〉
react withD or second,x〈 j〉 andy〈2〉 react underD. In both cases, one messagex〈 〉 remains in the

process. Asx〈 j〉 |y〈2〉 potentially react withD, the rule JOIN tells thatx〈 j〉 |y〈2〉
D

−→ j〈2〉. Now, REACT

can be directly applied, i. e.,defD inx〈k〉 |x〈 j〉 |y〈2〉
D

7−→ defD inx〈k〉 | j〈2〉. From there on, there is no
other step possible. The second execution can be obtained bythe use of STRUCT1. We neededx〈k〉
andy〈2〉 in parallel. Due to commutativity and associativity of the parallel operator, this is possible.

Therefore, by STRUCT1 we obtainx〈k〉 |x〈 j〉 |y〈2〉
D

−→ k〈2〉 |x〈 j〉. Again, we may apply REACT to

get the actual reaction, i. e.,def x〈u〉 |y〈v〉 ⊲ u〈v〉 inx〈k〉 |x〈 j〉 |y〈2〉
D

7−→ def x〈u〉 |y〈v〉 ⊲ u〈v〉 ink〈2〉 |x〈 j〉.
These are the only7−→-steps. So, theLTS of P is a choice between the messagej〈2〉 andk〈2〉.

In the last example we already saw how JOIN, REACT and STRUCT are applied. The application of
the PAR rules is as expected. The next example considers a process where both JUMP rules are applied.

Example 2. Consider

P= def x〈u〉 |y〈v〉 ⊲ u〈v〉 in def a〈v〉 ⊲ v〈〉 inx〈a〉 |y〈2〉.

Again, we abbreviate the definitions occurring inP, i. e.,D1 = x〈u〉 |y〈v〉 ⊲ u〈v〉 andD2 = a〈v〉 ⊲ v〈〉. In
a first step, we need to identify the potential steps ofP. ConsideringP, there is only one potential step

that matters, namelyx〈a〉 |y〈2〉
D1−→ a〈2〉. With that knowledge we can apply JUMP1, becausedv(D1)∩

fv(D2) = /0. This yields the following arrow,defD2 inx〈a〉 |y〈2〉
D1−→ defD2 ina〈2〉. The REACT rule

does the rest, i. e.,defD1 in defD2 inx〈a〉 |y〈2〉
D17−→ defD1 in defD2 ina〈2〉. We are almost done. The

REACT rule exhibits the next arrow,defD2 ina〈2〉
D27−→ 2〈〉. To transfer this result to the whole process,

we apply JUMP2, i. e.,defD1 in defD2 ina〈2〉
D27−→ defD1 in defD2 in2〈〉.

Note that this example is similar to the one at the beginning of Sect. 3. For discussions on the
distributability of the join-calculus in Sect. 4, we need tomention the notion oflocality. In the join-
calculus, receptors must reside on one location, i. e., theycannot be extruded to more than one location.
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Therefore, a join definitionJ ⊲ Pcan be seen as such a location and hence, a location function is implicitly
given in core join. We assume each join definition appearing in a join process, either directly or by
reduction, to constitute a location. This is an approximation, because system modelers might summarize
several join definitions to one location. To express this freedom, a distributed version of the join-calculus
has been developed. Thedistributed join-calculus[10] employs explicit location functions and comes
with a fully abstract encoding into the join-calculus. However, we concentrate on the core join-calculus.
For later discussions, we rely on the above mentioned assumptions on locality.

3 Petri Net Semantics for Join

The semantics operates in two steps. First, the join term is decomposed into an initial set of places. Each
place is equipped with a message term of core join, e. g.,x〈v〉, and the scopes ofx andv, because both
names may have their individual scopes. Example 3 shows the need for both scopes.

Example 3.

P= def x〈v〉 |y〈w〉 ⊲ v〈w〉
︸ ︷︷ ︸

D1

in def a〈v〉 ⊲ 0
︸ ︷︷ ︸

D2

inx〈a〉 |y〈2〉.

In P, we have six names:a,2,x,y,v,w. While x andy are defined byD1, a is defined byD2 and 2 is
free. The namesv andw are received variables and do not occur in a message. Herex〈a〉 has the same
scope asx, but a is scoped byD2. So after aD1 step, there is a messagea〈2〉, which may react inD2.
Therefore, each place is equipped with both, the scope of thesender and the scope of the sent name.

The decomposition yields only places for message terms. Parallel compositions and join definitions
are represented in the net structure.

The second step of our semantics consists of applications ofa transition rule which makes use of
the information stored in places. Given two places representing x〈a〉,y〈2〉 in the example above, our
transition rule ensures that there exists a transition, labeled byD1, consuming from both places and
producing to places that correspond to the right side of the reaction rule, i. e., the decomposition ofv〈w〉,
wherev is mapped toa andw to 2. The just described decomposition yields a placea〈2〉 which can react
in D2 producing no new messages. The Petri net representation of Example 3 is depicted in Fig. 5.

x〈a〉

y〈2〉

D1

a〈2〉

D2

Figure 5: Petri net semantics ofP in Example 3

Note that, although we exploit the parallel structure of a process, join definition applications are only
unfolded. Therefore, our semantics yields in general infinite net representations.
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3.1 Operational Semantics

Our Petri net definitions in Sect. 2.1 left two main points open, which need to be defined in advance.
First, the universe of placesP and second, the set of transition labelsΣ. As already mentioned in the
last section, places are triples. The first component is a join message, e. g.,x〈v〉. The second and third
components are stacks over the set of join definitionsD . The first stack represents the scope of the sender
name, the second stack that of the sent name.

P := {x〈v〉 |x,v ∈ N }×SD ×SD

denotes the universe of places. Labels for transitions are join definitions, i. e.,Σ := D . In Fig. 5 we have
labeled each place with the message it represents.

The decomposition function returning sets of places for core join terms needs to be equipped with
an auxiliary function to manage the name scoping. In the following, such functions are referred to asf
or f⊥. f maps names inN to names inN and stacks overD , i. e., f : N → (N ×SD ). Forn∈ N ,
f 1(n) represents a certain renaming ofn (cf. Definition 12). f 2(n) stores the scope off 1(n). Initially,
we usef⊥ with f⊥(n) := (n,⊥) (n∈ N ).

During the application of the decomposition, it is necessary to alter the scopes for names. For this
purpose, we use a special functiongn operating on anyf : N → (N ×SD ). This function shall reduce
the stack ofn by one element.gn( f ) : N → (N ×SD) works like f if the parameter is notn. Otherwise,
it returns whatf returns, but the stack component is reduced by one element, i. e.,

(gn( f ))(x) :=

{
(id× ↑)◦ f (x) x= n,
f (x) otherwise.

The decomposition functiondecis defined inductively over the structure of core join processes.

Definition 11. The functiondec: (Jcore×(N → (N ×SD)))→ 2P is calleddecomposition function.
For all x,v∈ N , P,Q∈ Jcore, D ∈ D , and f : (N → (N ×SD)) the decomposition is defined by

(0, f ) 7→ /0,

(x〈v〉, f ) 7→







dec(x〈v〉,gx( f )) f 1(x) 6∈ dv( f 2(x)⊤)
dec(x〈v〉,gv( f )) f 1(v) 6∈ dv( f 2(v)⊤)
{( f 1[x〈v〉], f 2(x), f 2(v))} otherwise,

(P|Q, f ) 7→ dec(P, f )⊎dec(Q, f ),

(defD inP, f ) 7→ dec(P,(id× ↓ D)◦ f ).

Note that the decomposition always yields finite sets of places. The0 process yields the empty set
of places. The result of the decomposition also correspondsto markings. Here, the empty marking
represents exactly what we expect from the behavior of0, i. e., no behavior. The decomposition of the
parallel operator is represented by the disjoint union of both components. So, even two equal messages
running in parallel are decomposed into two places. Therefore, we use the equality symbol= asequality
up to isomorphism, when we refer to decompositions or markings of the resulting nets, respectively. In
the decomposition of join definitions, we need to adjust the renaming functionf , which also handles
the scoping of names. A join definition is decomposed asP, but the renaming function is extended by
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(id× ↓ D), meaning, that each name now has a new scope, in particularD and all other definitions which
were already stored inf .

The decomposition of messagesx〈v〉 does the main work, because it handles the scopes ofx andv.
By several applications ofgx andgv, it assigns the correct scopes to the resulting place. Note that we
assumen∈ dv(⊥) for all n∈ N .

The recursive application ofdeceventually terminates, because in each step, the terms in the de-
composition get smaller. Either a parallel operator or a join definition is removed. Decompositions of
messages also terminate, as the stacks for sender and sent name are reduced by one element as long as
they are not empty or the queried name occurs in the set of defined variables. One of the two possibilities
holds eventually.

Given a core join processP. The decomposition ofP yields the set of initially marked places. The
behavior ofP is not mapped to the semantics yet. Instead of giving an algorithm to construct a net, we
give a rule that must be satisfied by a Petri net to be the semantics of P. To reflect the labeled transition
semantics of the core join-calculus, we need to ensure that definitions can be applied, i. e., transitions
may fire, if their preconditions are satisfied. Definitions have the formx〈u〉 |y〈v〉 ⊲ Q, where a process
must be able to send messages overx andy to perform the definition, i. e., create a new processQ instan-
tiated with the received variables. As our places carry the necessary scoping, we use that information in
Definition 12. A transition consuming from the preconditions of a join definition it represents is forced
to produce to places to which another transition does not produce. By this, we reach that places never
branch backwards, an important condition discussed later in Sect. 3.2. Furthermore, a transition must
not produce to the initially marked places. By this, we obtain an acyclic structure, i. e., bounded places.
Indeed, the transition rule and the nature of our decomposition function ensure our Petri net semantics to
yield 1-safe Petri nets.
Definition 12. Let N = (P,T,m0) be a labeled Petri net over(P,D). N satisfies thetransition rule iff
for every two placesp,q∈ P with

• p= (x〈a〉,s,sa), q= (y〈b〉,s,sb) and

• s⊤= x〈u〉 |y〈v〉 ⊲ R,
it holds that there exists a transitiont ∈ T with

• t = ({p,q},x〈u〉 |y〈v〉 ⊲ R,P′),

• P′∩m0 = /0 and•P′ = {t}
whereP′ = dec(R, ft) and ft : N → (N ×SD) with for n∈ N

ft(n) =







(a,sa) n= u,
(b,sb) n= v,
(n,s) otherwise.

In the transition rule, renamings encoded inft become important. As it is possible to have equal
names with different scopes, a reaction, i. e., a transitionin our nets, needs to respect the scopes although
the names are equal. Therefore, we postponed the renaming inthe decomposition function to the end of
the procedure. Consider Example 4 as an illustration.
Example 4.

Q= def a〈k〉 |b〈k′〉 ⊲ k〈〉 |k′〈〉 inb〈c〉 | def c〈〉 ⊲ 0ina〈c〉.

Q contains two namesc with different scopes. Thec sent overb is free inQ. Thec sent overa is defined.
Our construction respects bothcs via ft . Instead of renaming the resulting process, herek〈〉 |k′〈〉, to
c〈〉 |c〈〉 first, we decompose the right side of a join definition and apply the necessary renaming afterward.
Therefore, our semantics is able to distinguish both variablesc.
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Given a core join processJ. To construct the Petri net semantics forJ, we begin with the set of
initially marked places. This set corresponds with the initial decomposition, i. e.,dec(J, f⊥). If there
are no applicable definitions inJ, the net construction is finished. Otherwise, there must be at least two
places violating the just defined transition rule. In order to satisfy the transition rule, we add a transition
and a set of places as described in Definition 12. We repeat this procedure until the net satisfies the
transition rule. The resulting Petri net represents the semantics ofJ.

Definition 13. Let J ∈ Jcore be some core-join process. The Petri netN(J) = (P,T,m0) represents the
semantics ofJ if it is the smallest Petri net satisfying

1. m0 = dec(J, f⊥)⊆ P and

2. the transition rule.

In this section, we have already seen an example (Example 3) and its Petri net semantics in Fig. 5.
Note that the procedure described above yields exactly those nets satisfying Definition 13. The criterion
asking for thesmallestnet ensures that dead transitions and isolated places are left out.

3.2 Structural Properties

In this section, we investigate the net class of our Petri netsemantics, i. e.,1-safePetri nets. This net class
restricts all places to contain at most one token for any reachable marking, especially the initial marking.
As our decomposition function relies on disjoint unions, initial markings in our netsare 1-safe.

In order to show the net class, we prove the following properties, also valid foroccurrence nets[17].

Proposition 1. Let J∈ Jcore be a process. N(J) = (P,T,m0) satisfies the three criteria below.

1. For all p∈ m0 it holds that•p= /0.

2. For all p∈ P it holds that|•p| ≤ 1.

3. F+ (transitive closure of F) is irreflexive.

The first property states that there are no transitions in thenet producing tokens to initially marked
places inm0. The second states that there is always one and only one reason, i. e., a transition, that
produces a token to a place. The last one is concerned with cycles in the net structure.

Proof. Let J ∈ Jcore be a process andN(J) = (P,T,m0) its Petri net semantics.

1. We need to show that for all initially marked places, i. e.,p ∈ m0, it holds that their presets are
empty. AsN(J) needs to fulfill the transition rule (Definition 12), there isno transitiont ∈ T
with •t 6= /0 andt• ∩m0 6= /0. If there are transitionst with •t = /0 producing tom0, thenN(J) is
not the smallest net after Definition 13. Therefore, there isno transition producing them0 and in
consequence, the claim holds.

2. We need to show that for all placesp∈ P, there is at most one transitiont ∈ •p. By Definition 12,
N(J) needs to satisfy the transition rule. From 1 we know that the claim holds for initially marked
places. For any other placep, we need to show that there are no two transitiont, t ′ ∈ T with
p∈ t•∩ t ′•. From the transition rule we follow thatP1 = t• andP2 = t ′•. The transition rule also
ensures that•P1 = {t} and•P2 = {t ′}. If p was inP1 and inP2, thenP1 = P2 and in consequence
t = t ′. Therefore,|•p| ≤ 1.
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3. We need to show that there are no cycles in our net representations. By the net construction, we
prove that our nets do not introduce cycles. Starting with the set of initial places, the transition
rule can only introduce transitions producing to places which are not initially marked. Otherwise,
this would contradict 1. Letp be an arbitrary place in the net. From some place inm0 to p are no
cycles in the net. LetQ be the set of all places betweenm0 andp. A transitiont consuming fromp
produces to a set of placesP′. We need to show thatP′ is disjoint fromQ. Assuming,P′∩Q 6= /0.
So, there is a placeq ∈ Q which is also inP′. q cannot be in the set of initially marked places.
Therefore, there exists a transitiontq producing toq. Now, •q= {tq, t} which contradicts 2, unless
t 6= tq. Therefore,F+ is irreflexive.

Proposition 1 enables us to show that our net semantics produces 1-safe Petri nets. We use the fact
that max{m0(p) | p∈ P} ≤ 1, for all J ∈ Jcore with N(J) = (P,T,m0). Furthermore, we have already
proven that there are no cycles in our net semantics and for each place, there is at most one transition
producing to it. Therefore, we can formulate the following corollary.

Corollary 1. Let J∈ Jcore be a process. Then N(J) is 1-safe.

The proof follows directly from Proposition 1. For further discussions we introduce the notions of
causality, conflict and independence on the basis of Petri nets.

Definition 14. Let N = (P,T,m0) be a Petri net andt1, t2 ∈ T. t1 andt2 are said to be incausal order, t1
beforet2, iff there is a reachable markingm1 with m1[t1〉m2 and a reachable markingm3 from m2 with
m3[t2〉 but no such markings which enablet2 first. t1 andt2 are in direct conflictiff •t1∩ •t2 6= /0. Two
nodesn1,n2 ∈ P∪T arein conflict iff there exist two transitionst, t ′ ∈ T which are in conflict and there
exist paths fromt to n1 and fromt ′ to n2. If n1 = n2, thenn1 is in self-conflict. t1 andt2 areindependent
(or concurrent) iff they are neither in a causal order nor in conflict.

Intuitively, the notion of independence describes actions, i. e., transitions, which can always occur
in parallel. There is a remaining property of occurrence nets which is not satisfied by our nets, namely
irreflexivity of the conflict relation. This property statesthat there are no self-conflicting nodes in the
net.

The join-calculus semantics relies on the structural congruences of Fig. 3. Therefore, our net se-
mantics needs to reflect them in a proper way. Indeed, there isa provable correspondence between the
structural congruences of the core join-calculus and the Petri net representations. We prove that if two
join terms are structurally congruent, then their net representations are isomorphic.

Lemma 1. Let P,Q∈ Jcore be processes with P≡ Q. Then N(P) and N(Q) are isomorphic.

The proof can be found in the technical report to the paper [15]. Lemma 1 also has a side effect
to the following behavioral correspondence. We will show a bisimulation between core join terms and
their net representations. One of the proof steps is concerned with structurally congruent join terms. As
isomorphisms imply bisimulation [11], we can assume it as already proven by Lemma 1.

3.3 Behavioral Properties

In this section, we will prove that the semantics we presented is correct with respect to bisimulation. We
already sawLTS interleaving semantics for both, Petri nets and the join-calculus. The states of anLTS
for a Petri net is described by markings. States of core joinLTS are core join terms. We need to find a
bisimulationR ⊆ Jcore×2P . Note that any subset ofP describes a valid marking of a Petri net of a
core join term.
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p q

t1 t2 t3

Figure 6: The confusion patternM

Our bisimulation result relies on the observation, that ourdecompositions yield valid markings of a
net describing the semantics of a core join term. Each state of a processP is represented by its initial
decompositiondec(P, f⊥). WhenP evolves toP′, then our Petri net semantics reflects this behavior by
a step fromdec(P, f⊥) to dec(P′, f⊥), because all join definitions ofP are preserved byP′ and so, they
remain on some stack in the decomposition ofP′. Conversely, if our net evolves fromdec(P, f⊥) to m,
then thism must be equivalent to somedec(P′, f⊥), i. e., there is a step fromP to P′. We need to prove
that this is actually true for allP∈ Jcore.

Using the just described observation, we formulate a base bisimulation as follows,

R := {(P,dec(P, f⊥)) |P∈ Jcore} .

When considering a processP, then we restrictR to the reachable parts ofP, denoted byRP :=R ↾P7−→∗ .

Theorem 1. Let P∈ Jcore. ThenLTS(P) andLTS(N(P)) are bisimilar.

The proof can be found in the technical report to this paper [15].

4 Distributability Issues in the Join Calculus

One of the advantages of Petri net semantics for process calculi is the inherent notion of independence. A
set of independent actions, i. e., the labels of independenttransitions, is called astep. A step is enabled if
all its transitions are enabled. An enabled step may fire. Theresulting marking is the same marking as if
all transitions in a step fired in a sequence. Therefore, if weconsider anLTS construction in terms of Petri
net steps, we do not get more states, but more transitions, because independent actions are summarized
in multisets.

The induced steps on the semantics of the core join-calculuscorrespond to independent join defi-
nition applications. Chains of join definitions are are translated into sequences of transitions. Our net
semantics also recognizes definition chains which are actually independent, due to the fact that our Petri
net semantics respects the structural congruence (cf. Lemma 1).

Steps enable our semantics to argue about the distributability of the join-calculus, or more precisely,
about the distributability of our net representations of the join-calculus. We are interested in a particular
confusionpattern which is depicted in Fig. 6. This structure is calledM. TheM was introduced by van
Glabbeek et al. as a structure which has a major influence to the distributability of a system [13, 12]. A
net is distributable if there exists a behaviorally equivalent net which isdistributed. Van Glabbeek et al.
call a system distributed if

• it consists of components on different locations,

• the components work concurrently,
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x〈a〉

y〈1〉 x〈b〉 y〈2〉

a〈1〉 b〈1〉 b〈2〉 a〈2〉

D D D D

Figure 7: Petri net semantics ofP in Example 5.

• the components interact explicitly, and

• communication between components is asynchronous.

They formalized those criteria in a Petri net class calledLSGA nets– locally sequential, globally asyn-
chronous nets. The crucial point of LSGA nets is that parallel transitions are not allowed to be on one
location while transitions sharing input places must shareone. TheM is not distributed as all transitions
need to reside on one location, butt1 andt3 may fire in a step, i. e., in parallel. Van Glabbeek et al. proved
that if a net contains a fully reachableM, i. e., there is a reachable marking containing at least the places
in Fig. 6, then the Petri net is not distributable up to branching-time equivalences [13]. Schicke-Uffmann
et al. prove that theM is not distributable in terms of causality respecting equivalences [20]. Their ar-
guments depend on the chosen notion of distributed systems and distributability. However, we consider
these notions as reasonable, because the described points above are important phenomena occurring in
distributed system design and implementation.

Therefore, if we identify such a structure in our net semantics, there is a potential restriction on the
distributability of the join-calculus, i. e., join-calculus processes.

Example 5. Consider the following process,

P= def x〈u〉 |y〈v〉 ⊲ u〈v〉
︸ ︷︷ ︸

D

inx〈a〉 |y〈1〉 |x〈b〉 |y〈2〉.

The Petri net semanticsN(P) of processP is depicted in Fig. 7.N(P) contains fourMs as depicted
in Fig. 6. Initially, the process makes a choice between fourdifferent join definition applications. After
one application, there is only one possibility for the resulting process to apply the join definition again.
Our Petri net semantics reflects this behavior.

The net semantics of the process in Example 5 yields anM just like the one in Fig. 6. It is fully
reachable, as the initial marking enables all fourMs. We observe that all transitions are labeled by the
same definition. Considering the notion of locality for the join-calculus (cf. Sect. 2.2), this structure
remains on one location, although it contains independent transitions. This fact makes a distributability
result of the join-calculus incomparable to the results in [13], because van Glabbeek et al. forbid such
structures on one location. On the other hand, the implicit location function given by join definitions
gives reason to extend the notion of distributability.
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In the following, we refer to anM where all transitions are labeled by the same definition aslocal.
If all Ms in the join-calculus were local, then the join-calculus would be a distributable process calculus,
because our net semantics respects the behavior of the join-calculus and van Glabbeek et al. prove that a
Petri net with no fully reachableM is distributable [14]. The following proposition gives proof for this
hypothesis.

Proposition 2. Let J∈ Jcore. If N(J) contains a fully reachableM, then it is local.

Proof. We prove the claim by contradiction. LetJ ∈ Jcore be a process andN(J) = (P,T,m0) be the
Petri net semantics ofJ. Assuming Fig. 6 is a part ofN(J) and each transition has a different label, i. e.,
l(ti) 6= l(t j) for i 6= j andi, j = 1,2,3. From the transition rule, it follows that all preplaces ofa transition
have the same stack in their second component. Especially, the top element of these stacks is equal to the
label of the transition. Reconsider Fig. 6. Asp∈ •t1, we know thatp= ( ,s, ) with s⊤= l(t1). p∈ •t2,
so p = ( ,s′, ) with s′⊤ = l(t2). But, by construction, this is not possible ifl(t1) 6= l(t2). Therefore,
eithert1, t2 do not exist orl(t1) = l(t2). The case oft2, t3 is analogous, i. e.,l(t2) = l(t3). By transitivity,
we havel(t1) = l(t3).

It is not possible to have anM with different transition labels, i. e., on different locations, in the
join-calculus. The proof steps make use of a property of the join-calculus which is reflected by our Petri
net semantics. This property is concerned with the assignment of messages to join definitions, i. e., the
number of transitions with different labels in the postset of a place. For each join message, there is at
most one applicable join definition.

Van Glabbeek et al. [13, 12, 14] and Schicke-Uffmann et al. [20] consider unlabeled nets with no
explicit location function to derive their distributability results. If we consider the join-calculus as a
distributable process calculus, then it is a natural step toevaluate their results given the assumptions of
the join-calculus. Best and Darondeau [3] already considera given allocation function in their survey
paper to argue on the distributability of Petri nets.

5 Conclusion

In this paper we presented an operational Petri net semantics for the join-calculus. We proved that our
semantics corresponds to structural congruences and the labeled reduction semantics of the calculus.
Furthermore, we investigated issues of distributability in the join-calculus.

In future work, we want to understand how an explicit location function, as implied by the join-
calculus, influences the results of [13, 20]. Moreover, we would like to investigate optimizations of
the semantics to possibly reach finite net representations of join terms. The mentioned applications in
unfolding based techniques is not discussed in this paper. As our suggested semantics has an unfolding
nature, it is worthwhile to apply such techniques to the join-calculus by first using our semantics to
compute the necessary prefixes of a join term.
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