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We present a concurrent operational Petri net semantidhégpin-calculus, a process calculus for
specifying concurrent and distributed systems. Therendfiea gap between system specifications
and the actual implementations caused by synchrony asseaman the specification side and asyn-
chronously interacting components in implementations jbm-calculus is promising to reduce this
gap by providing an abstract specification language whielsysichronously distributable. Classical
process semantics establish an implicit order of actuatigpendent actions, by means of an inter-
leaving. So does the semantics of the join-calculus. Towasuch independent actions, step-based
semantics, e. g., as defined on Petri nets, are employed.gunEt semantics for the join-calculus
induces step-behavior in a natural way. We prove our segsgbéhaviorally equivalent to the orig-
inal join-calculus semantics by means of a bisimulation. digeuss how join specific assumptions
influence an existing notion of distributability based onrPeets.

1 Introduction

Specifications for distributed systems usually employ bymigy assumptions to keep the modeling as
simple as possible. Properties of specifications cannatimed for real implementations, because com-
ponents in a distributed system run concurrently and conicatenin an asynchronous fashion. This
leaves a gap between specifications and implementations.

Process calculi, e. g., thecalculus, concentrate on the essential parts in systeaifisp¢ions, keep-
ing in mind that they represent actual systems. Therefbey, tome with a syntax and a semantics to
describe the behavior of a system as precise as possible.asimehronoust-calculus, a restricted
n-calculus, tries to reduce the gap between system speigfisaand implementations. By the asyn-
chronousrt-calculus, we are able describe asynchronously commumgesystems, but implementations
still rely on hard to implement constructs, suchresdezvou®r leader electior[16].

The join-calculus by Fournet and Gonthigr [9] is a processubias equipped with a basic language
and an abstract notion of computation, tielexive chemical abstract machinEournet and Gonthier
extend Berry and Boudolshemical abstract machifg] by explicit reaction sites — similar tocations
in distributed systems —and combine the concepts of réstrjaeception and recursion in one construct
called ajoin definition By join definitions, they force receptors, i. e., names Wwhace used to receive
messages, to reside on one location. In contrastalculus allows the use of sent names as receptors
(cf.scope extrusignwhich enables the calculus to describe the conceptadfility, but makes distributed
implementations of the calculus difficult.

Still, as many other process calculi, the join-calculusyardmes with an interleaving semantics
which makes it hard to reason about the distributed beha¥iprocesses. Although the join-calculus is
equipped with a parallel composition operator, it is ratfhificult to describe independence of actions,
whereas other models, such as Petri riets [19], describpendence explicitly. Therefore, we present
an operational Petri net semantics for the join-calculkmtpadvantage of the parallel structure to obtain
a large degree of independence, i. e., concurrency.
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The general idea of our Petri net semantics is inspired bwiiré of Busi and Gorrieril[6], where
they propose a Petri net semantics with inhibitor arcs fertitalculus. They decomposergterm into
places and construct the nets by transition rules workingemompositions. They solve scoping issues
in the rcalculus by a global renaming. Our semantics does not melguch a renaming as we store
the message scopes in places. As in Busi and Gorrieri's d@rmaall necessary information is encoded
in the initial decomposition corresponding to initially rkaed places. We concentrate on the core join-
calculus which is not equipped with an explicit choice. H®fere, we can also abandon inhibitor arcs
from our semantics. In general, our semantics yields iefibitt 1-safe Petri nets. It also comes with a
bisimulation result to the original join-calculus semastensuring the correctness of our approach.

Petri nets and Petri net related formalisms have already bsed to describe the semantics of the
join-calculus. Buscemi and Sassone propose a type-tieampiroach by suggesting a hierarchy on the
syntax of the join-calculus [5]. For each level, they pravatt if a join-calculus term is typable, i.e., is
satisfying a restriction on the syntax, then the Petri nehefjoin term they construct is bisimilar to the
original join-calculus semantics. They get place/traosinets by restricting processes to top-level join
definitions. To handle more expressive join terms, they wdered, reconfigurable and dynamic Petri
nets. In our work, we cover full expressiveness of the ja@leglus by an infinite construction. Bruni et
al. propose an event structure semantics for the join-teddd]. Their main goal is to establish so called
persistent graph grammaess a tool to describe name passing process calculi. Theg totan encoding
from the asynchronous-calculus into persistent graph grammars. The unfoldinh@frammars yields
event structures. For the join-calculus they yield evenicstires with empty concurrency relations. The
semantics we propose includes concurrency by exploitiegptirallel structure of a join term. There
are also more general approaches which do not give a semémtithe join-calculus, but use the same
ideas to obtain new Petri net classes. Prominent exammaesaile and dynamic Petri netsy Asperti
and Busi[1] andunctional netdy Odersky[[18]. Our approach does not aim at extending Retsi or
introducing new extensions to Petri net theory.

Unfortunately, our net semantics yields infinite nets wtdekms to make it impossible to be useful
for any real-world applications. Due to nice structuralpg®udies of the nets, the semantics could be
directly used for anyunfolding basedechniques on Petri nets. One of such applications is model-
checking. In Petri net unfolding&1[7], it is not necessargdmpute the potentially infinite structure of
the net, but make use of a finite representation catetix In this paper, we want to investigate the join-
calculus in terms of distributability. Recent reseaich, [A3] suggest a notion of distributed systems in
terms of Petri nets and proved a Petri net structure, whiehgéo symmetric confusion, to be impossible
to distribute. If our proposed semantics is reasonable améat, we may argue on the distributability
of the calculus itself.

The rest of the paper is structured as follows. Séct. 2 intred the necessary notions for this paper
including Petri nets (Sedt. 2.1) and an overview of the afeulus (Secf. 212). The following section is
concerned with the definition of our Petri net semanticstierjbin-calculus and its correctness results.
In Sect[4, we discuss a notion of distributability and how jiiin-calculus influences it. In Sefl. 5, we
conclude our work and give some further research directions

2 Preliminaries

In this section, we introduce the basic notions and conaeged in our net semantics. First, we need the
notion of multisets.

Definition 1 (Multisets) Let A be a set. Amultiset M over As a mapping fromAto N. Fora e A,
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M(a) = 0 iff a¢ M. Otherwisea € M. Two multisetsM;, M, overA can be unified by. M1 WM, is a
multiset where for each € A, (M1 Mz)(a) = M1(a) + Mz(a).

Wheneverf is a function from a se to a cartesian produgl’_,A;, then we define the projections
on the result off by f' := 7o f, whererz is the projection function on thiéh component of the product.
id denotes thédentity functiondefined on any set.

In our semantics we need to store scopes for objects. Thepestay be nested. To handle this
nesting of scope we introduce the notionstdicks— a common data structure also used in compilers. A
stack may be emptyl() or filled with elements of an alphabet. Itis equipped witlethoperations. First,
the pushoperation adds an element on top of a stack. Secondpphgperation returns the top element
of a stack. Last, thpopoperation removes the top element of a stack.

Definition 2 (Stack) Let X be an alphabet. Atack s ovek is either L or scontains at least one element
ecZ i.e.,s=[es], wheres is a stack oveE. The set of all stacks oveX is denoted bys. The
following operations are defined affs.

e T:.%5 — 2 denotes the top element of a staokith

e s=1
st '_{ e s=[egs].

e | x L — 5 denotes the push operation. For a staekd a symbog, s| e:= [e 9.
o 11 .% — % denotes the pop operation. For a stack

L os=1
sT= s s=les].

Instead ofley, [e, ..., [en, L]...]] we write[e}, e,...,en, L].

Labeled transition systems serve as the common semantielmbloth formalisms, Petri nets and
the join-calculus. It consists of three components, a ssetatésQ, a labeled relation between states
and a start statgy. The labels for so called transitions are obtained from salpleabet..

Definition 3 (LTS). A labeled transition system (ové&), LTS is a triple, (Q,—,qo) whereQ is a set,
—-CQxZxQ,andq € Q.

In [11], van Glabbeek gives a huge collection of behaviocaliealences fot TSs. Bisimulationis a
very strong equivalence taking the branching structuee, the structure of decisions, of a system into
account. As already mentioned, Petri nets as well as thecgltulus have ahTS semantics. Therefore,
we introduce the notion of bisimulation. Later in Séct]3.8 will prove our semantics introduced in
Sect[3.1 to béisimilar to the original semantics of the join-calculus.

Definition 4 (Bisimulation) LetA; = (Q1,—1,01) andAz = (Q2, —2,02) be labeled transition systems
over some alphabét. A relationZ C Q1 x Qs is called abisimulation between£and A iff

o (O1,02) € Z,
e if (p,g) € Z andp 31 p/, then there existg € Q, such thatj >, of and(p/,q) € #, and
e if (p,q) € Z andq >, ¢, then there existg’ € Q; such thatp 2, p and(p,q) € Z.

If such a relation exists, thedy, andA, arebisimilar.
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2.1 Petri Nets

Petri netswere first introduced by Carl Adam Petri [19]. Petri nets arealed bipartite graphs with
places drawn as circles and transitions drawn as boxesed&u transitions are the nodes of a net.
Directed edges called arcs, either connect places witkitiams or transitions with places. An example
is depicted in Figll5. We assume a universe of places dengte#.bWe later specify?? to meet the
purposes of our semantics. The set of net places is a subsét éfs in labeled transition systems we
have a fixed alphabét for transition labels representing the actions of a systensontrast to classical
net definitions, we directly encode the set of arcs into items.

Definition 5 (Net). The tupleN = (P, T) is called aabeled net ovek iff
e PC Zisasetand
e TC2Px3Ix2P.

The labelrp(t) of a transitiont is also referred to al{t). Here,l is implicitly given and not a part
of the net definition. The preset of a transitibis denoted byt := 75 (t), the postset of is denoted by
t* := i(t). Pre- and postsets of places are definedfpy={t ¢ T|pet®} andp® :={tc T|pe °t}.
The arc relation is obtained By = {(p,t) e Px T |pe*t}U{(t,p) € T xP|pet*}.

A net is calledfiniteiff (PUT) is finite. Otherwise, the net is callédfinite.

The potential state of nets is described markings which are multisets over the set of places.
Tokens, drawn as black dots (cf. HFig. 5), represent the nuwiqglaces in a marking. These states may
change byfiring transitions. Transitions arenablediff there is at least one token on aimput place
p € °t. An enabled transition may fire, which means thatahsume®ne token from each input place
andproducesone token on any output plage= t®. This procedure is formally defined by tfigng rule.

Definition 6 (Enabledness, Firing ruleletN = (P, T) be a net and lan: P — N be a marking oN. A
transitiont € T is enabled under mwrittenmit), iff m(p) > O for all p € *t. An enabled transitiohe T
mayfire. Thesuccessor marking of by firing t is m/, writtenm[t)nY, with

mp) + 1 ifpe(t*\°t)
m(p)=4q mp) - 1 ifpe(*t\t)
m(p) else.

Petri netsare nets with an initial markingy corresponding to the start state of a net.

Definition 7 (Petri net) The tripleN = (P, T,mp) is called aPetri netiff (P, T) is a net andr is a
marking of (P, T).

A marking mis reachablein a netN = (P, T,mp) iff there exists a sequence of transitidns . ., t,
(ti € T) such thatmp[t;) ... [t,)m. The set of all reachable markings Nfis denoted byReactiN). By
relating reachable markings we deriveldrt from a Petri net.

Definition 8. Let N = (P, T,mp) be a Petri net labeled ov&r ThelLTS of N is defined byLTS(N) :=
(ReactiN), —,mg) where

e —C ReactiN) x = x ReacliN) and
e (ma,m) e— iff there existst € T with mt)m’ andl (t) = a.

Instead of(m,a,n) e— we often use the abbreviation— 1.
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P u= 0| x(V) | PIP | defx(u)|y(v)>PinP
Figure 1: Syntax of Zcore

2.2 Join-Calculus

The join-calculus([9] is a process algebra describing thdehof thereflexive chemical abstract machine
based on Berry's and Boudol's chemical abstract machine@2j of the reasons for the development
of the join-calculus was the difficulty to actually implenetistributed CCS or distributed-calculus.

In comparison to thatr-calculus by Milner[[16], the join-calculus combines ragton, recursion and
reception in one construct call¢min definition forcing receptors to reside on olmeation Hence, it is
not possible t@xtrudea name and use the same name for reception. Fournet and &d8fhdentified

a strict subset of the join-calculus which is proven to bexgsessive as the full calculus. This subset is
calledcore join-calculus This section and our Petri net semantics is based on thecatmalus.

For further notions, we assume an infinite set of namés The syntax of the core join-calculus is
defined in Fig[1L.0 stands for thewll process a process with no behaviax(v) represent®utput mes-
sages As in therr-calculus x stands for the channel name and a value passed throughTheparallel
compositionof two processe® andQ is denoted by | Q, whereP andQ work independently. The last
syntactic element is theefinition def x(u)|y(v) > QinP. Definitions combine restriction, reception of
names and recursion in one construdu) | y(v) is called thgoin-pattern x(u) |y(v) > Q is called the
join definitionor, together with a proces3, theenclosing definitiorof P. We denote the set of all join
definitions byZ. P is theenclosed procesd he set of all core join terms is denoted eore.

Variables in a join-term are partitioned into three categgowhich are not necessarily disjoint. The
free variablegfv) are those being visible to the environmeDefined variablegdv) are variables bound
to a join definition, i. e., those channels that are procebyea definition. Received variable&v) are
only locally bound to new processes resulting from the apgilbn of join definitions. These three sets
are defined in Fid.]2 (cf[]8]).

We useos,, 04y, Oy t0 denote a renaming on the set of free, defined and receivabhes.

The core join-calculus has its roots in an abstract machatied: thereflexive chemical abstract
machine Instead of specifying a set of reduction rules, the che@batract machine first defines a
structural congruence and, on top of that, there is only edaation rule. In process calculi this method
is adopted to reduce the number of rules for a structuralatipeal semantics significantly. As we want
to use the structural operational semantics to define ldlied@sition systems of the core join-calculus,
we first need the structural congruence of core join term& ddmgruence defined in F(g. 3 is reduced
to the core join-calculus (cf._]8]).

From the structural congruence we observe that it does nttemahat the exact defined variables
are. In consequence, we may rename them. We thereby neeéécsoma that all occurrences of defined
variables in the enclosed process are renamed as well, batesemantics will keep track of definitions.
To make sure that there are no name clashes, we introduceraahimotion ofnormality on which we
rely. Our normality criterion is concerned with join definits occurring in parallel, i. e., definitions
D4,...,Dk in processes of the form,

defD1inPy| ... | def DxinR.

Definition 9 (Normality of Zcore). We call a proces® € _Zcore Normalif for all definitions D,D’ oc-
curring in parallel inP, it holds thatdv(D) Ndv(D’) = 0.
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fv[X(v1,...,Vn)] Def {XV1,...,Vn}
fu[defDinP] 2= (fv[P]Ufv[D])\ dv[D]
W[PIP] = [P UNP]
o] 2= 0
AP 2 dv[I]U (F]P]\ rv[d))
dvidsP] = v
dvix(yr,....yn)] = {x dv3|3] = dv[I)wdvd]
AR TRS | R (VRN SN TN VA TPV

Figure 2: Free, defined and received variables/Qfe terms

PIO = P
PIQ = QIP
(PIQIR = P|QIR)
P|defDinQ = defDinP|Q if fv(P)Ndv(D) =0
defDindefD'inP = defD'indefDinP  if fv(D)Nfv(D') =0
defDinP = defDay, inPay, if gy, injective
defDinP = defDag,, inP if g,, injective

Figure 3: Structural congruence Qficore

(JOIN) x(9)|ylt) UPVER S et
D
PP
(REACT) ;}
defDinP+— defDinP’
D D
P—P P— P
(PAR1) ?7 (PAR2) %
PIQ=P'|Q PIQ—P'|Q
D
P = P, dv(D)Nfv(D') =
(Jumpl) — P/ dv( D)ﬁ v(D')=0
defD'inP = def D/inP’
D
PP
(JumpP2) ?
defD/inP+— def D/inP’
PP P=0Q PP P=Q
(STRUCTL) + (STRUCT2) +
Q—=>0Q Q—Q

Figure 4: Labeled transition semantics @tore
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We define the semantics of core join processes by their ldkdedmsition systems respecting the
reduction semantics given by Fourrlet [8]. In Fib. 4, we edéshFournet’'s semantics by an extra type of

labeled arrows which represent théabeled steps in Fournet's semantie8. describes potential steps

overD, while 2. describes actual reaction steps. We extended the origgnzdustics to make theTS
of join comparable to the labeled net semantics we propoSean 3.

Definition 10 (LTS of _Zcore). LetP € _Zeore. Thelabeled transition system of iB
LTS(P) = (/Core, |_>, P)

where—C Zeore X Z X _Zeore IS the smallest relation respecting the structural opamatisemantics
in Fig.[4.

In general, this labeled transition system is infinite ansl imareachable parts. Theid rule reveals
potential reactions. The actual reaction rule, i. €ART, introduces the new arrow type. OnlyRfhas a
potentialD step toP’, then the reaction actually takes place. For the remainileg we have one for the
potential arrows and one for the reaction arrow. TAR Riles work as expected. A join definition can be
skipped if a reaction has already taken place, i.@vrp, or the potential step does not interfere with
other free variables, i. e., as iWMP,. The STRUCT rules refer to the structural congruences as defined
in Fig.[3. For a better understanding of the labeled trasiemantics we give two examples.

Example 1. Consider the proce$3= def x(u) | y(v) > u({v)inx(k) | X(j) | y(2). For simplicity, we use the
definition variableD = x(u) | y(v) > u(v). Intuitively, P has two possible executions. Firstk) andy(2)
react withD or secondx(j) andy(2) react undeD. In both cases, one message) remains in the

process. AX(j) |y(2) potentially react witlD, the rule dIN tells thatx(j) | y(2) L, j(2). Now, REACT

can be directly applied, i. edef Dinx(k) | x(])|y(2) 2 def Din x(k)| j(2). From there on, there is no
other step possible. The second execution can be obtainétehyse of $SrRuCTl. We needec(k)
andy(2) in parallel. Due to commutativity and associativity of thergllel operator, this is possible.

Therefore, by $SrRuCTl we obtainx(k) |x(j)|y(2) LN k(2) |x(j). Again, we may apply RACT to
get the actual reaction, i. edef x(uy | y(v) > u(v)inx(k) | X(j) | y(2) -2, def x(u) | y(v) > u(v) ink(2) |x(j).
These are the only—-steps. So, theTS of P is a choice between the messgge) andk(2).

In the last example we already saw hominN, REACT and S RUCT are applied. The application of
the PR rules is as expected. The next example considers a procese tith IMP rules are applied.

Example 2. Consider

P = def x{u) | y(v) > u(v)in def a(v) > v() inx(a) | y(2).
Again, we abbreviate the definitions occurringAni. e.,D1 = x{u) | y(v) > u(v) andD, = a(v) > v(). In
a first step, we need to identify the potential step®.ofConsideringP, there is only one potential step
that matters, namely(a) | y(2) LN a(2). With that knowledge we can applywprl, becausev(D1) N
fv(D2) = 0. This yields the following arrowdef Dyinx(a) | y(2) PL def Dzina(2). The REACT rule
does the rest, i.edef Dyin def Dyinx(a) | y(2) 2L, def D1in defDyina(2). We are almost done. The
REACT rule exhibits the next arrowgef Doina(2) 22, 2(). To transfer this result to the whole process,
we apply IMP2, i. e., def Dyin def Dpina(2) 2 def Dy in def D2in2().

Note that this example is similar to the one at the beginnih@ext.[3. For discussions on the
distributability of the join-calculus in Sedt] 4, we neednt@ntion the notion ofocality. In the join-
calculus, receptors must reside on one location, i. e.,¢hapot be extruded to more than one location.
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Therefore, a join definitiod - P can be seen as such a location and hence, a location furgtiaplicitly
given in core join. We assume each join definition appeanng join process, either directly or by
reduction, to constitute a location. This is an approxioratbecause system modelers might summarize
several join definitions to one location. To express thisdimam, a distributed version of the join-calculus
has been developed. Thgstributed join-calculug10] employs explicit location functions and comes
with a fully abstract encoding into the join-calculus. Ha®we we concentrate on the core join-calculus.
For later discussions, we rely on the above mentioned adsumsn locality.

3 Petri Net Semantics for Join

The semantics operates in two steps. First, the join terrademposed into an initial set of places. Each
place is equipped with a message term of core join, e(g}, and the scopes ofandv, because both
names may have their individual scopes. Exarhple 3 showsabe fior both scopes.

Example 3.

P = def x(V) | y(w) > v(w) in def a(v) > 0 inx(a) | y(2).
——

Dq D2

In P, we have six namesa, 2,x,y,v,w. While x andy are defined byD1, a is defined byD, and 2 is
free. The names andw are received variables and do not occur in a message. X@réas the same
scope ax, buta is scoped byD,. So after aD; step, there is a messagé?), which may react irDs.
Therefore, each place is equipped with both, the scope dfethder and the scope of the sent name.

The decomposition yields only places for message termsllBlacompositions and join definitions
are represented in the net structure.

The second step of our semantics consists of applicatioasti@nsition rule which makes use of
the information stored in places. Given two places reptasgnx(a),y(2) in the example above, our
transition rule ensures that there exists a transitiorgléabby D4, consuming from both places and
producing to places that correspond to the right side ofehetion rule, i. e., the decomposition\giv),
wherev is mapped t@ andw to 2. The just described decomposition yields a p&@ which can react
in D, producing no new messages. The Petri net representatioxaafiile[3 is depicted in Figl 5.

Figure 5: Petri net semantics Bfin Example_3

Note that, although we exploit the parallel structure of@cpss, join definition applications are only
unfolded. Therefore, our semantics yields in general itginet representations.
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3.1 Operational Semantics

Our Petri net definitions in Sed¢t._ 2.1 left two main points mpe&hich need to be defined in advance.
First, the universe of place¥’ and second, the set of transition labElsAs already mentioned in the
last section, places are triples. The first component israrf@ssage, e. g«Vv). The second and third
components are stacks over the set of join definiti@nd he first stack represents the scope of the sender
name, the second stack that of the sent name.

P ={X(V) | X,VE N} X Sy X Ly

denotes the universe of places. Labels for transitionsoamedgfinitions, i.e.Z := 2. In Fig.[B we have
labeled each place with the message it represents.

The decomposition function returning sets of places foegoin terms needs to be equipped with
an auxiliary function to manage the name scoping. In thefadhg, such functions are referred to fis
or f,. f maps names in¥” to names in/” and stacks ove®, i.e., f : A — (A x .Fy). Forne .4,
f1(n) represents a certain renamingrofcf. Definition[12). f2(n) stores the scope df'(n). Initially,
we usef, with f; (n):=(n, L) (ne ¥).

During the application of the decomposition, it is necegsaralter the scopes for names. For this
purpose, we use a special functignoperating on any : .4 — (4" x .%%). This function shall reduce
the stack oh by one elementg,(f) : A" — (A x .5) works like f if the parameter is not. Otherwise,
it returns whatf returns, but the stack component is reduced by one element, i

(gn(£))(X) ::{ (idx Mo f(x) x=n,

f(x) otherwise.

The decomposition functiodecis defined inductively over the structure of core join preess

Definition 11. The functiondec: (_Zeore X (A — (A x 7)) — 27 is calleddecomposition function
Forallx,ve 4 ,P,Qe Zcore, D€ 2, andf : (AN — (A x %)) the decomposition is defined by

(0,f) — 0,

deax(v),gx(f)) f1(x) & dv(f?(x)T)
(x(v),f) { dedx(v),gv(f)) fH(v) g dv(f2(v)T)
{(f[x(W)], f2(x), f2(v))}  otherwise,

(PIQ.f) — dedP, f)udedQ,f),
(defDinP,f) — deqP,(idx | D)o f).

Note that the decomposition always yields finite sets ofggaclhe0 process yields the empty set
of places. The result of the decomposition also correspemdsarkings. Here, the empty marking
represents exactly what we expect from the behavid}, @fe., no behavior. The decomposition of the
parallel operator is represented by the disjoint union ¢l lm@mponents. So, even two equal messages
running in parallel are decomposed into two places. Thezefee use the equality symbelasequality
up to isomorphismwhen we refer to decompositions or markings of the regyltiets, respectively. In
the decomposition of join definitions, we need to adjust gmaming functionf, which also handles
the scoping of names. A join definition is decomposedPabut the renaming function is extended by
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(idx | D), meaning, that each name now has a new scope, in partl2w@#ad all other definitions which
were already stored if.

The decomposition of messagegy) does the main work, because it handles the scopgsanélv.

By several applications ax andgy, it assigns the correct scopes to the resulting place. Nbatievie
assumenedv(L)forallne 4.

The recursive application afeceventually terminates, because in each step, the term®ideh
composition get smaller. Either a parallel operator or a gefinition is removed. Decompositions of
messages also terminate, as the stacks for sender and senarmareduced by one element as long as
they are not empty or the queried name occurs in the set ofedkfizriables. One of the two possibilities
holds eventually.

Given a core join procedd. The decomposition d? yields the set of initially marked places. The
behavior ofP is not mapped to the semantics yet. Instead of giving an iihgorto construct a net, we
give a rule that must be satisfied by a Petri net to be the sésaitP. To reflect the labeled transition
semantics of the core join-calculus, we need to ensure #fatitions can be applied, i. e., transitions
may fire, if their preconditions are satisfied. Definitionsé¢éhe formx(u) | y(v) > Q, where a process
must be able to send messages ovandy to perform the definition, i. e., create a new proc8sastan-
tiated with the received variables. As our places carry gmeasary scoping, we use that information in
Definition[12. A transition consuming from the precondisoof a join definition it represents is forced
to produce to places to which another transition does natym®. By this, we reach that places never
branch backwards, an important condition discussed lat&ect[3.2. Furthermore, a transition must
not produce to the initially marked places. By this, we abtan acyclic structure, i. e., bounded places.
Indeed, the transition rule and the nature of our decomipaditinction ensure our Petri net semantics to
yield 1-safe Petri nets
Definition 12. Let N = (P, T,np) be a labeled Petri net ovér”, 7). N satisfies theransition ruleiff
for every two place®, q € P with

* Pp= (x<a>,s, 56)1 q= (y<b>,S,Sb) and
o ST =x(u) |y(v) >R,
it holds that there exists a transitibe T with
o t=({p,a},x(u)|y(v) >R P,
e PNmy=0and*P = {t}
whereP’ =dedR, f;) and f; : A4 — (A x .%y) withforne 4

(a,%) n=u,
fi(n)=<¢ (b,s) n=yv,
(n,s) otherwise.

In the transition rule, renamings encodedfjirbecome important. As it is possible to have equal
names with different scopes, a reaction, i. e., a transiti@mur nets, needs to respect the scopes although
the names are equal. Therefore, we postponed the renamiing decomposition function to the end of
the procedure. Consider Example 4 as an illustration.

Example 4.

Q = defa(k)|b(k') > k() |K'()inb(c)| defc() > 0ina(c).
Q contains two nameswith different scopes. Thesent ovelbis free inQ. Thec sent ovem is defined.
Our construction respects bots via f;. Instead of renaming the resulting process, hebek'(), to
c() | () first, we decompose the right side of a join definition and afip necessary renaming afterward.
Therefore, our semantics is able to distinguish both viesah
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Given a core join proces$. To construct the Petri net semantics forwe begin with the set of
initially marked places. This set corresponds with theahidlecomposition, i.ededJ, f,). If there
are no applicable definitions il the net construction is finished. Otherwise, there must teaat two
places violating the just defined transition rule. In oradesatisfy the transition rule, we add a transition
and a set of places as described in Definifioh 12. We repesptiocedure until the net satisfies the
transition rule. The resulting Petri net represents theaswics ofJ.

Definition 13. LetJ € _Zcore be some core-join process. The Petri N¢d) = (P, T,mg) represents the
semantics of if it is the smallest Petri net satisfying

1. mp=dedJ, f,) CPand
2. the transition rule.

In this section, we have already seen an example (Exampled3it@Petri net semantics in Fig. 5.
Note that the procedure described above yields exactlethess satisfying Definition 13. The criterion
asking for thesmallestinet ensures that dead transitions and isolated placesfaoate

3.2 Structural Properties

In this section, we investigate the net class of our Petrsagtantics, i. el-safePetri nets. This net class
restricts all places to contain at most one token for anytralsle marking, especially the initial marking.
As our decomposition function relies on disjoint uniongtiéh markings in our netare 1-safe

In order to show the net class, we prove the following praeertalso valid foloccurrence netfl?].

Proposition 1. Let Je _Zcqre be a process. N) = (P, T,my) satisfies the three criteria below.
1. For all pe€ my it holds that*p = 0.
2. For all pe P it holds that|*p| < 1.
3. FT (transitive closure of F) is irreflexive.

The first property states that there are no transitions imétgroducing tokens to initially marked
places inmy. The second states that there is always one and only onenreiaeq a transition, that
produces a token to a place. The last one is concerned wilbsciycthe net structure.

Proof. LetJ € Zcore be a process amd(J) = (P, T,my) its Petri net semantics.

1. We need to show that for all initially marked places, i.@& my, it holds that their presets are
empty. AsN(J) needs to fulfill the transition rule (Definitidn 112), thereris transitiont € T
with °t #= 0 andt®* N"mg # 0. If there are transitionswith *t = @ producing tamg, thenN(J) is
not the smallest net after Definitibn]13. Therefore, themoisransition producing they and in
consequence, the claim holds.

2. We need to show that for all placpse P, there is at most one transitiore *p. By Definition[12,
N(J) needs to satisfy the transition rule. Frbin 1 we know that thiercholds for initially marked
places. For any other plage we need to show that there are no two transitighe T with
p € t*Nt’*. From the transition rule we follow th& = t* andP, =t’*. The transition rule also
ensures thatP, = {t} and*P, = {t'}. If pwas inP;, and inP,, thenP; = P, and in consequence
t =t'. Therefore|*p| < 1.
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3. We need to show that there are no cycles in our net repegger®. By the net construction, we
prove that our nets do not introduce cycles. Starting withgbt of initial places, the transition
rule can only introduce transitions producing to placescilare not initially marked. Otherwise,
this would contradictll. Lep be an arbitrary place in the net. From some placegrto p are no
cycles in the net. Le® be the set of all places betwery andp. A transitiont consuming fronp
produces to a set of plac®. We need to show th&’ is disjoint fromQ. Assuming,P' N Q # 0.
So, there is a placg € Q which is also inP’. q cannot be in the set of initially marked places.
Therefore, there exists a transitiyproducing tog. Now, °q = {ty,t} which contradict§ 12, unless
t #tq. ThereforeF* is irreflexive.

0

Propositior Il enables us to show that our net semantics pesdLisafe Petri nets. We use the fact
that mamo(p) | pe P} <1, forallJ € Zeore With N(J) = (P, T,mg). Furthermore, we have already
proven that there are no cycles in our net semantics and &r gace, there is at most one transition
producing to it. Therefore, we can formulate the followirgyallary.

Corollary 1. LetJe Zcore be a process. Then(N) is 1-safe.

The proof follows directly from Propositidd 1. For furtheisdussions we introduce the notions of
causality, conflict and independence on the basis of Pdgi ne

Definition 14. LetN = (P, T,mp) be a Petri net ant,t, € T. t; andt; are said to be icausal ordeyt;
beforet,, iff there is a reachable marking; with my[t;)m, and a reachable markings from my, with
mg[tz) but no such markings which enalilefirst. t; andt, arein direct conflictiff *t; N *t; # 0. Two
nodesn;,n; € PUT arein conflictiff there exist two transitions,t’ € T which are in conflict and there
exist paths from to n; and fromt’ to n,. If ny = ny,, thenn, is in self-conflict t; andt, areindependent
(or concurreny iff they are neither in a causal order nor in conflict.

Intuitively, the notion of independence describes actiores, transitions, which can always occur
in parallel. There is a remaining property of occurrences mgtich is not satisfied by our nets, namely
irreflexivity of the conflict relation. This property statdsat there are no self-conflicting nodes in the
net.

The join-calculus semantics relies on the structural aomgees of Figll3. Therefore, our net se-
mantics needs to reflect them in a proper way. Indeed, thergisvable correspondence between the
structural congruences of the core join-calculus and the Ret representations. We prove that if two
join terms are structurally congruent, then their net repnéations are isomorphic.

Lemma l. LetRQ € Zcore be processes with 2 Q. Then NP) and N(Q) are isomorphic.

The proof can be found in the technical report to the pape}. [LBmmall also has a side effect
to the following behavioral correspondence. We will showisanbulation between core join terms and
their net representations. One of the proof steps is coadesith structurally congruent join terms. As
isomorphisms imply bisimulation [11], we can assume it asaaly proven by Lemnid 1.

3.3 Behavioral Properties

In this section, we will prove that the semantics we preskrgeorrect with respect to bisimulation. We
already saw TS interleaving semantics for both, Petri nets and the jolotdas. The states of aldl'S

for a Petri net is described by markings. States of coreljdi are core join terms. We need to find a
bisimulationZ C _Zcore X 27 . Note that any subset o describes a valid marking of a Petri net of a
core join term.
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=i ==

Figure 6: The confusion patteivi

Our bisimulation result relies on the observation, thatadezompositions yield valid markings of a
net describing the semantics of a core join term. Each sftadepoocessP is represented by its initial
decompositiordedP, f, ). WhenP evolves toP’, then our Petri net semantics reflects this behavior by
a step fromdedP, f, ) to dedqP’, f, ), because all join definitions & are preserved bf’ and so, they
remain on some stack in the decompositiorPof Conversely, if our net evolves froaledP, f, ) to m,
then thism must be equivalent to sonteqP’, f ), i. e., there is a step frofd to P’. We need to prove
that this is actually true for aP € _Zcore.

Using the just described observation, we formulate a basmbiation as follows,

Z.={(PdedP,f)) |P€ Zeore}-

When considering a proceBsthen we restrictZ to the reachable parts Bf denoted byRp := % [p_.~.
Theorem 1. Let P€ Zcore. ThenLTS(P) andLTS(N(P)) are bisimilar.
The proof can be found in the technical report to this papg}. [1

4 Distributability Issues in the Join Calculus

One of the advantages of Petri net semantics for proceaslidalthe inherent notion of independence. A
set of independent actions, i. e., the labels of independamsitions, is called atep A step is enabled if

all its transitions are enabled. An enabled step may fire.rébiglting marking is the same marking as if
all transitions in a step fired in a sequence. Therefore, fovesider al. TS construction in terms of Petri
net steps, we do not get more states, but more transitionaube independent actions are summarized
in multisets.

The induced steps on the semantics of the core join-caladugspond to independent join defi-
nition applications. Chains of join definitions are are #lated into sequences of transitions. Our net
semantics also recognizes definition chains which are lacindependent, due to the fact that our Petri
net semantics respects the structural congruence (cf. laéfiym

Steps enable our semantics to argue about the distribtadfithe join-calculus, or more precisely,
about the distributability of our net representations efjtiin-calculus. We are interested in a particular
confusionpattern which is depicted in Figl 6. This structure is calMédTheM was introduced by van
Glabbeek et al. as a structure which has a major influencestistributability of a system([13, 12]. A
net is distributable if there exists a behaviorally equanalinet which idistributed Van Glabbeek et al.
call a system distributed if

e it consists of components on different locations,
e the components work concurrently,
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Figure 7: Petri net semantics Bfin Example_b.

e the components interact explicitly, and
e communication between components is asynchronous.

They formalized those criteria in a Petri net class call&@GA nets- locally sequential, globally asyn-
chronous nets. The crucial point of LSGA nets is that pdr&igasitions are not allowed to be on one
location while transitions sharing input places must sloae TheM is not distributed as all transitions
need to reside on one location, buandts may fire in a step, i. e., in parallel. Van Glabbeek et al. pdove
that if a net contains a fully reachalig, i. e., there is a reachable marking containing at least ldmep
in Fig.[d, then the Petri net is not distributable up to bramghime equivalences$ [13]. Schicke-Uffmann
et al. prove that thé is not distributable in terms of causality respecting egl@aces[[20]. Their ar-
guments depend on the chosen notion of distributed systachdistributability. However, we consider
these notions as reasonable, because the described gmnts are important phenomena occurring in
distributed system design and implementation.

Therefore, if we identify such a structure in our net sentantihere is a potential restriction on the
distributability of the join-calculus, i. e., join-calaig processes.

Example 5. Consider the following process,

P = def x(u) |y(v) > u(v) inx(@) | y(1) | x(b) | y(2).
!

The Petri net semantid$(P) of processP is depicted in Fig.]7N(P) contains fouMs as depicted
in Fig.[8. Initially, the process makes a choice between &bffierent join definition applications. After
one application, there is only one possibility for the réagl process to apply the join definition again.
Our Petri net semantics reflects this behavior.

The net semantics of the process in Exaniple 5 yield&gast like the one in Fig.16. It is fully
reachable, as the initial marking enables all fols. We observe that all transitions are labeled by the
same definition. Considering the notion of locality for tlnjcalculus (cf. Secf. 2.2), this structure
remains on one location, although it contains independansitions. This fact makes a distributability
result of the join-calculus incomparable to the resultsli8][ because van Glabbeek et al. forbid such
structures on one location. On the other hand, the implgation function given by join definitions
gives reason to extend the notion of distributability.
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In the following, we refer to amM where all transitions are labeled by the same definitiolveal.
If all Ms in the join-calculus were local, then the join-calculusuldde a distributable process calculus,
because our net semantics respects the behavior of theglinlus and van Glabbeek et al. prove that a
Petri net with no fully reachabl® is distributable([14]. The following proposition gives pifdor this
hypothesis.

Proposition 2. Let Je€ _Zcore. If N(J) contains a fully reachabl#, then it is local.

Proof. We prove the claim by contradiction. Létc Zcore be a process andl(J) = (P, T,mg) be the
Petri net semantics df. Assuming FigLb is a part df(J) and each transition has a different label, i. e.,
I(ti) #1(t;) fori # j andi, j = 1,2,3. From the transition rule, it follows that all preplacesadfansition
have the same stack in their second component. Espedmliop element of these stacks is equal to the
label of the transition. Reconsider Hig. 6. A% °t;, we know thatp = (_,s,_) with ST =1(t1). p € *tp,
sop= (.S, ) with ST =1(t). But, by construction, this is not possiblelit;) # I(t;). Therefore,
eitherts,t, do not exist oi (t;) = I(t2). The case ofy,t3 is analogous, i. el(tz) = | (t3). By transitivity,

we haved (tl) = |(t3). |

It is not possible to have all with different transition labels, i.e., on different loats, in the
join-calculus. The proof steps make use of a property ofdlregalculus which is reflected by our Petri
net semantics. This property is concerned with the assighofenessages to join definitions, i. e., the
number of transitions with different labels in the postsied place. For each join message, there is at
most one applicable join definition.

Van Glabbeek et al[ [13, 12, 14] and Schicke-Uffmann et[aD] fnsider unlabeled nets with no
explicit location function to derive their distributalyli results. If we consider the join-calculus as a
distributable process calculus, then it is a natural stegvéduate their results given the assumptions of
the join-calculus. Best and Darondeal [3] already consadgiven allocation function in their survey
paper to argue on the distributability of Petri nets.

5 Conclusion

In this paper we presented an operational Petri net sersdntithe join-calculus. We proved that our
semantics corresponds to structural congruences and libkedareduction semantics of the calculus.
Furthermore, we investigated issues of distributabilityhie join-calculus.

In future work, we want to understand how an explicit locatfanction, as implied by the join-
calculus, influences the results of [13)20]. Moreover, weailddike to investigate optimizations of
the semantics to possibly reach finite net representatibjwmoterms. The mentioned applications in
unfolding based techniques is not discussed in this papepuf suggested semantics has an unfolding
nature, it is worthwhile to apply such techniques to the-mafculus by first using our semantics to
compute the necessary prefixes of a join term.
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