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In model-driven development, an ordered model transformation is a nested set of transformations
between source and target classes, in which each transformation is governed by its own pre and post-
conditions, but structurally dependent on its parent. Following the proofs-as-model-transformations
approach, in this paper we consider a formalisation in Constructive Type Theory of the concepts of
model and model transformation, and show how the correctness proofs of potentially large ordered
model transformations can be systematically assembled from the proofs of the specifications of their
parts, making them easier to derive.

1 Introduction

In this paper, we outline a mechanism to assemble correctness proofs of model transformations in the
context of Model Driven Development (MDD). Although MDD is in widespread use, it is essentially an
informal approach to software development which does not guarantee the correctness of model transfor-
mations. High-trust solutions are essential if MDD is to be used in safety critical systems and beyond.

The problem of establishing the correctness of a model transformation is well established, and work
has been done towards formalising the process using for instance rewriting languages (e.g. Maude [4]))
or typed multigraphs [24]. However, these approaches are first-order and do not reflect the higher-order
nature of the UML-based techniques. The aim of our research is to lay the foundations on which a range
of certified model transformations might be built, following a line of work that started in [17], where
the use of constructive type theory to implement model transformations was first discussed. The notion
of an ordered model transformation was introduced in [18], to describe how a complex transformation
between models, built from a potentially large number of interrelated classes, might be derived from the
specification of a series of mappings between classes, via a partially ordered traversal of the source and
target models. This paper represents a significant advance on that work in that it a) formally defines
the specification of an ordered model transformation in type theory, and b) provides a mechanism for
assembling the proofs of ordered model transformations from their constituent parts.

In this paper, a model is a Unified Modelling Language (UML) [7] class model, and a model trans-
formation is a function which maps the artefacts of a source model (classes, attributes and relationships)
onto the artefacts of a target model [12]]. UML is a graphical language for specifying the structure
and behaviour of object oriented systems. It is also a pillar of the Object Management Group’s (OMG)
Model Driven Architecture (MDA) [6] (a particular brand of MDD), along with the transformation lan-
guage Query/View/Transform (QVT) [8] .

Consider a transformation between two models (see Fig. [T)) in which each object of X is transformed
into an object of Y, via a precondition at X and a postcondition at Y. In general, the postcondition at Y
is composed of three components: Data asserts a relation between the attributes of X and Y'; Link asserts
a relation between Y and the class that contains it; and Nest defines the specification (in context) of the
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64 Ordered Model Transformations

Figure 1: A transformation between classes X and Y, which is subject to a precondition on X and a
postcondition on X and Y.

transformation between the classes that X and Y contain (clearly, if Y were a root class, the postcondition
would not have a Link component, and if ¥ were a leaf class, the postcondition would not have a Nest
component).

While Data components vary significantly between transformations (there is no reason why they
should be the same), the Link and Nest components are generally quite similar. In fact the only assertion
that a Link component can make is that Y participates in a relationship with the class that contains it;
and all that a Nest component can do is pass control of the specification to the classes that X and Y
contain. This opens up the prospect of removing from users the tedious task of proving Link components
by handEl Of course, this prospect only presents itself by virtue of the ordered nature of the models and
transformations under consideration, where order is defined by containment. However, such transforma-
tions are sufficiently common in practice (see, for instance, for examples) to make this a worthwhile
pursuit.

In this paper, we focus on a particular but nonetheless ubiquitous kind of model transformation, in
which the source and target models are either partially or totally orderedEl In particular, based on the
definitions of model and model transformation given in [[I7]], we show that the proofs of the specifications
of large ordered model transformations can be systematically assembled from their parts, making them
easier to derive. Our main contribution is a method to derive correctness proofs for ordered model
transformations by assembling the proofs of their parts, within constructive type theory. We illustrate the
method with examples.

The proofs in this paper have all been implemented in the Coq Proof Assistant [1]], see the Coq scripts
athttp://www.inf .kcl.ac.uk/pg/terrelljl

The paper is organised as follows: In Section[2} we give a brief introduction to MDA and type theory,
to try to make the paper self contained. In Section[3] we show how to formalise a model transformation
(the specification and its correctness proof) in constructive type theory, including the key notion of a
parametric proof (a proof with a hole over which it is possible to quantify and hence parametrise). We
then use this idea to formally specify ordered model transformations in general in Section[d} In Section[3]
there is a concrete example of an assembled proof. Finally, in Section [f] we sum up and discuss future
developments.

IThe proof of an assertion involving a many-valued relationship requires a proof by list induction, and the proof of a chain
of many-valued relationships, which is not uncommon, requires a nested set of proofs by list induction.

2Hierarchical models are the rule rather than the exception in industry (the UML metamodel is fundamentally hierarchical),
where transformations are notable for their size rather than their complexity.
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2 Preliminaries

We recall the basic notions of Model Driven Architecture (MDA) and Constructive Type Theory (CTT)
that are used in the paper. We refer the reader to and for more details on MDA and CTT,
respectively.

2.1 Model Driven Architecture

The movement away from the machine to a higher level of abstraction began in earnest in the early 1990s,
with the advent of a number of object-oriented analysis and design methodologies. The most influential,
in the authors’ view, was the one proposed by Shlaer and Mellor in [21} 22], for it played a huge part in
shaping the MDA a decade later. The aims of the MDA are two-fold: first, that software systems should
be developed independently of the platforms on which they will eventually run, and second, that they
should be translated into specific implementations using standard parts, namely model to text and model
to model transformations.

In its simplest form, a model transformation takes as input a model, written in a source modelling
language (IL), and outputs a new model, written in a possibly different target modelling language (OL).
The transformation should be applicable to any model written in IL, therefore it can be seen as a mapping
from elements of IL to elements of OL.

In MDA, both the input and output languages are defined as metamodels within the Meta-Object
Facility (MOF) [13]. Metamodelling in the MOF is usually done according to a four level hierarchy [14]].
The levels are related by an object-oriented style class/object instantiation relationship: classes at level
M, provide descriptions of objects at level M;. Roughly speaking, we can think of entities at the M
level as objects representing instances of an M; UML class. The M, level is where metamodels are
defined. Metamodels are collections of instances of the M3 level classes (meta-meta-classes). The M3
level of the MOF model is used to classify the elements that make up an M; level metamodel.

Following [18]], in this paper we will consider model transformations as higher-order functional
programs satisfying certain pre and post conditions.

2.2 Constructive Type Theory

The type theory below is based on the one proposed by Martin-Lof [13]]. A type is defined by prescribing
how its inhabitants are formed. For example, if S is the successor function, then the inhabitants of the
type Nat are given by
n: Nat
0: Nat (Sn): Nat

If A and B are types, then AAB, AV B and A — B are defined to be types too, where A A B is
inhabited by a pair of inhabitants of A and B, AV B is inhabited by an inhabitant of A or B, together with
an indication as to whether it is an inhabitant of A (on the left) or B (on the right), and A — B is inhabited
by a function from A to B, i.e.

[a:.A]

a:A b:B a: A b: B b: B .
(a,b): ANB inla: AVB inrb: AVB Aa: A.b:A—B
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If a is an inhabitant of A, and B(a) is a type whose inhabitants depend on a, then Va: A.B(a) and
Jda: A.B(a) are defined to be types, where Va: A.B(a) is inhabited by a function that takes A to B(a),
and Ja: A.B(a) is inhabited by a pair of inhabitants of A and B(a), i.e.

[a:‘A]
b:é(a) a:A b: B(a)
Aa: A.b:Va: A.B(a) (a,b): 3a: A.B(a)

One particular type that we shall meet often in this paper is
Va: A.P(a) — 3b: B.Q(a,b)

which defines the specification of a transformation that takes a source class A to a target class B, subject to
precondition P(a) and postcondition Q(a,b). Note that types A A B and A — B are special cases of types
Va: A.B(a) and 3a: A.B(a) where B is independent of a. A term Aa: A.b of type A — B represents a
function from A to B.

Application is written simply as juxtaposition:

t:Va:A.B(a) s:A
(t5): B(s) ’

Further, the reduction relation is generated by the 3-rule:
(Aa: At)s — t{a+> s}

The reflexive and transitive closure of the one-step reduction relation — is denoted by —».

We shall also add to our language a predicate =, which we can use to build dependent types like
x =0, where x: Nar. When 0 is substituted for x, the type becomes 0 = 0, which is inhabited by r(0)
(see for more details); when 1 is substituted for x, the type becomes 1 = 0, which is uninhabited.
Lastly, we shall add the type [E] of lists of elements of type E to our language, and two distinguished
types Set and Prop, which will be used to classify types.

3 Type Theory for Model Transformations

In this section, we formalise UML classes and objects using constructive type theory.

Definition 1. A UML class C is encoded as a type, that is, an inhabitant of type Set; and a UML object of
C is encoded as an inhabitant of type C. Furthermore, a base attribute of C is encoded as an inhabitant
of type C — T, where 7| is a ground type, e.g. Nat; and a referential attribute of C is encoded as an
inhabitant of type C — To, where Ty is the type of some other UML class or class list.

We shall assume that every UML class C has a single base attribute Id¢ of type Nat, and as many
referential attributes as it needs to encode the relationships in which it participates. For example, if C
is linked by a one-valued relationship to UML class D, and a many-valued relationship to UML class
E, then the rule for constructing the inhabitants of C is as follows, where @ denotes an anonymous

constructor of C.
n:Nat d:D 1I:[E]

@cndl: C
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Figure 2: A transformation between A and P.

The judgement a: A admits several different readings: « is an inhabitant of type A (as above), a is
a program whose specification is A (which may be that of a model transformation), and a is a proof of
proposition A (which may be that of a precondition). In the last reading, A is defined to be an inhabitant
of type Prop, where A is considered to be true if and only if it is inhabited. The relationship between
propositions and types, which was first discovered by Curry [5]] and later extended by Howard [9], is
known as the Curry-Howard isomorphism.

In this paper, we describe a technique to derive proofs of potentially large ordered model transforma-
tions. To illustrate the ideas underlying this technique, we consider first a simple model transformation,
where each object of class A (see Fig. [2)) is transformed into an object of class P, subject to a precondition
Prey of type A — Prop and a postcondition Postp of type A — P — Prop. El The specification of the
transformation is formalised as a type, i.e.

Ya: A.Preaa — dp: P.Postpap , (D
and its proof is given by

[a: A]'  [h: Prea)?
Hole
u: Postap

a7

(p,u): 3p: P.Postap (30
Ah.(p,u): Prea— 3p: P.Postap
Aa.Ah.(p,u):Va: A.Prea— 3p: P.Postap

—)I)Q
Vi),

2

i.e. a function that takes an object a of A and a proof & of Prey a, and returns as a pair the corresponding
object p of P and a proof u of Postpap. There is a hole in the proof above because the transformation
is under specified. However, given suitable definitions of A, P, Pre4 and Postp, the hole could be filled
and the proof completed. Furthermore, given a second transformation with a different set of definitions
of A, P, Preys and Postp, we could apply the same procedure. However, the proofs would be so similar,
at least in outline, that it should be possible to capture them all in a parametrised proof, by quantifying
over all source and target classes, pre and postconditions, and proofs of holes, in the specification of the
transformation. Based on this idea, we define the following correctness condition.

Definition 2 (Correct Model Transformation). A correct model transformation from X to'Y should ensure
that for each x in X that satisfies the precondition there is a 'y in Y that satisfies the postcondition. This
is formalised using the following type:

VX: Set.VY: Set .¥Pre: X — Prop .NPost: X —Y — Prop.
Vf:X =Y .VHole: (Vx: X .Prex — Postx(fx)).
Vx: X.Prex— Jy: Y .Postxy. 3)

3 Preconditions serve several purposes. First, to allow a choice of rules in different cases, e.g. by checking that a class is
a root class, if root classes are transformed by a different rule to non-root classes. Second, to ensure that a postcondition is
well-defined, e.g. by insisting that x > 0 if the postcondition takes the square root of x. Third, to ensure that only certain source
elements are transformed, e.g. by checking that a class is persistent, if only persistent classes are mapped to database tables. In
the first and second cases, we might expect the precondition to contribute to the proof of the postcondition.
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The proof of (3) is little more than two eliminations and a sequence of introductions, i.e.

[X: Set]!
[Y: Ser]?
[Pre: X — Prop)?
[Post: X —Y — Prop
[f: X —=Y]°

}4

[Hole: (Vx: X.Préx—) Postx (fx))]® [x: X]7

VE
Prex — Post x (f x) (VE) [h: Prex]® (S E)
Post x (f x)
=7 ooy D
dy: Y.Postxy (1)
Prex — 3dy: Y .Postx s
g s Iy

Vx: X.Prex— Jy: Y .Postxy

VHole: (Vx: X .Prex — Postx(fx)).Vx: X.... (W();I)
Vf:X —Y.VHole: (Vx: X .Prex — Postx(fx)).... (VI)S
VPost: X —Y — Prop Nf: X =Y ... D) 4
VPre: X — Prop.VPost: X —Y — Prop....
(VI)2

VY : Set.VPre: X — Prop....
VX: Set VY : Set....

(VD)1 . @)

The fixed outline shape of the proof is captured by rules (37) to (VI)7, and the variable proof of the
hole is captured by assumption 6. Furthermore, the function K defined below can easily be shown to
inhabit (3).

K =45 AX.AY .APre . APost. Af .AHole. . Ax.Ah.((fx),u). 5)
Note that the arguments X and Y are arbitrary source and target classes; Pre and Post are arbitrary pre
and postconditions; f is a function that maps source objects to target objects; Hole is a proof of the hole
(see (2)); x is a source object; and / is a proof that the precondition holds on the source object. K returns
a target object (f x), and a proof u that the postcondition holds on the source and target objects.

We shall now apply K to a particular transformation, i.e. the one between A and P. Let Prey be a
predicate that holds on all objects of A, and let Postp be a predicate that holds on all objects of A and P
which have the same base attribute values. Formally, let

Prey =q¢ Aa. T
Postp =4 Aa.Ap.(ldya=1dpp) .
Now, if
fa =ar Aa.@p(ldya),
then the proof of the hole is
[a: Al [h: T)?
"Idy: A — Nat” la: A]!
Idsa: Nat
r(Idysa): Idsa=1Idsa (un
Ah.r(ldya): T —Idya=1dsa
Aa.Ah.r(ldya): Ya: A. T —Ildya=1Idya
Aa.Ah.r(Idya): Ya: A.Presa — Postpa(fsa) (=ar)-

(—E)

(—>I)2
(VD)
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Ar———-———— > P
iRl isl
B Preli 77777 Pgﬁ'tg Q

Figure 3: A two-runged transformation

Furthermore, if
Holey =45 Aa.Ah.r(ldsa) ,

then
K AP Preyg Postp fyHoles (@4 1) Triv— ((@p 1), r(lds (@4 1))) .

Therefore, @p 1 is the transform of @4 1, and r(Ids (@4 1)) is the term that proves it.
In the next sections we generalise these ideas to families of ordered model transformations.

4 Ordered Model Transformations

In the previous section, we showed how the specification of a small transformation could be abstracted
into the specification of a family of transformations, by quantifying over all possible source and target
classes, pre and postconditions and holes. The proof that resulted contained a fixed part, common to all
members of the family, and a variable part, specific to a particular member. In this section, we extend
these ideas to ordered model transformations in general.

There are two kinds of ordered transformations: totally and partially ordered. Informally, a totally
ordered set of transformations is one that has the shape of a ladder, in which the source and target models
are the verticals, and the transformations are the rungs. A partially ordered set of transformations has the
shape of a tree of ladders, in which the branches between nodes are totally ordered transformations. We
give examples before presenting the formal definitions.

Consider the two-runged transformation in Fig. 3] in which A is transformed to P subject to condi-
tions Prey and Postp, and B is transformed to Q subject to conditions Prep and Postg. If an object a of
A is transformed to an object p of P, then the object R; a of B is transformed to the object S p of Q. In
other words, the transformation of B to Q is nested within the transformation of A to P. As before, we
shall define the specification of the transformation as a type, outline its proof, and abstract over classes,
conditions and holes. The transformation along each rung is similar to the one between A and P earlier.
However, the transformation between the verticals (relationships) is new.

The specification of the transformation that is depicted in Figure [3is formalised as a type as follows
(for ease of readability, we write one rung per line).

Va: A.Presa— 3p: P.(Postpap N\
Vb: B.Pregb A (Rya) =b— 3q: Q.Postpbq N(S1p) =q) . (6)

The transformation along the second rung is nested within the first rung, and has stronger pre and post-
conditions in virtue of the connectivity constraints placed on objects of B and . Note that a third or
fourth rung would have the same shape as the second rung.
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X———==——-- > fx
lR Com \LS
Rx— =L =5(fx) = f'(Rx)

Figure 4: The commutative square Com.

In outline, the proof of (@) is

la: A] [a: Al
[b: B] [b: B]
[PreBb /\Rla:b} [PreBb /\R1a=b]
"Pregb’ (NEY) "Ria=Db" ("E2)
: Holeg : Comy
la: A] Postgbq Sip=q (AD)
[Pres a] (Postgbgq NS1P = q)[q/q]
. Holey Fixed
Postpap (Vb: B.Pregb ARya=b— ...)[p/p] (AD)
(Postpap ANb: B.Pregb NRya=b— ...)[p/p]
. Fixed

Va: A.Preqsa — EI;;: P.Postpap ...

The fixed parts of the proof exist in virtue of the structure of the specification, whereas the variable parts
exist in virtue of its under-specification. The variable parts are either of the Hole kind, i.e. proofs that
postconditions are derived from preconditions, or the Com kind, i.e. proofs that adjacent rungs are linked.

Quantifying over all variables in (6), including proofs of variable parts, and changing the names of
bound variables where appropriate, we obtain the specification of an arbitrary two-runged transformation.

Definition 3 (Two-Runged Model Transformation). An arbitrary two-runged model transformation is
formalised in constructive type theory by the following type:

VX: Set.VY: Set .NPre: X — Prop .NPost: X —Y — Prop.
Vf:X =Y .VHole: (Vx: X .Prex — Postx(fx)).
VX': Set NY': Set .NPre': X' — Prop.VPost': X' —Y' — Prop.
Vf': X' —Y' .VHole': (Vx': X'.Prex' — Postx' (f'x')).
VR: X - X' . VS:Y =Y.
VCom: (Vx: X.S(fx) = f (Rx)).
Vx: X.Prex — dy: Y.Postxy
Vx': X'.Pré X ARx=x"— 3y : Y .Post' X'y NSy=1y'. (7)

This formalisation is similar to the one in (3) except that it also quantifies over Com, i.e. a proof
that starting from every object x of X (X being the source end of the first rung) and navigating to
some object y' of Y’ (Y’ being the target end of the second rung), first via f and S, and then via R
and f’, the same y’ is obtained. The commutative square, after which Com is named, is shown in
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Fig. @ Furthermore, given a proof of Com, it is a trivial matter to prove that the rungs are linked,
ie.
[x: X] [Com:V¥x:X.S(fx)=f (Rx)]

S(fx)=f (Rx)

(VE)

TRx=x""

SR =77 Ve

Property 1. The function that inhabits (7)) is
AXY PrePost f HoleX'Y' Pre’ Post' f' Hole' RS Comxh.{((f x), u)

Proof. Direct, using the typing rules given in Section[2] Note that the first element of the output pair is
the result of applying the root function f to an arbitrary root object x, reflecting the fact that an ordered
transformation is essentially a transformation between root classes. O

We are now ready to formalise the notion of ordered model transformation. First we consider totally
ordered transformations, and later we extend the results to partially ordered transformations.

4.1 Totally Ordered Transformations

In order to formalise totally ordered model transformations, we will define a dependent type 7 XY f,
where T is the type name, and X, Y and f are the parameters on which it depends, i.e. root source class,
root target class and root function respectively. A totally ordered transformation is an inhabitant of this
dependent type. The inhabitants of 7" are defined inductively, in much the same way as Nat, by means of
a base rule and a step rule.

Definition 4. (Type T XY f) The type T is defined inductively, with a rule defining the base case and a
rule defining the inductive step, as follows:

X:Set Y:Set f:X—=Y

X':Set Y':Set f:X' —Y

Pre': X' — Prop Post': X' —Y' — Prop

Hole' : Vx': X' .Pre' X' — Post' X' (f'X')

R:X—X S:Y—=Y' Com:Vx:X.f (Rx)=S(fx)
Tgase XY fX'Y' f' Pré’ Post' Hole RSCom: TXY f

(Th)

X:Set Y:Set f:X—=Y
X':Set Y':Set f:X' —Y
Pre': X' — Prop Post': X' —Y' — Prop
Holé': Vx': X' .Pre’ x' — Post' X' (f'x')
R:X—=X S:Y—=Y' Com:Vx:X.f (Rx)=S(fx)
7 TX'Y f
Tsep XY fX'Y' f' Pre’ Post’ Hole' RS Comt': TXY f

(Th)

The base rule constructs a transformation of the kind shown in Fig. |§] (left). Note that the root hole
and root pre and postconditions (to clarify, the root is at the top) are not part of the construction. The step
rule constructs the successor of a transformation ¢/, of the kind shown in Fig. [5|(middle). Again, the root
hole and root pre and postconditions are not part of the construction.
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Ja

X >Y A > P
R Com S J/Rl Com, J/Sl
f yPre ' Post' Preg fp Postg
X ¥ X~ ¥ B ey
R Com S U TX'Y' f le Comy S,
X/ Pre’. 7f/7 BO“;[.IY’ X" v C Prec fe Pgst;R
Hole' Holec

Figure 5: From left to right: representations of the base and step rules of type 7', followed by an inhabitant
of type T AP f,, namely 4p.

To construct an inhabitant of 7', we first apply the base rule and then repeatedly apply the step rule.
For example, the transformation #4p in Fig. |§] (right) is constructed as follows:

Ipo =af TBase BQ f CR f. Prec Postg Holec Ry Sy Com
tap =df TS,epAPfaBbePreBPostQHoleBRl S1 Comy Ipo -

By extension of (6), it would be easy to write down the specification of 74p, including the root
transformation we have so assiduously excluded. However, much more useful would be to write down
a function that could compute it, not only for z4p but also for every other inhabitant of 7 X Y f as well.
Such a function is given below.

Definition 5. (Spec)

Spec: VX : Set VY : Set Nf: X -Y.TXY f— (X =Y — Prop)

SpecXY f(Tpase XY fX'Y' f' Pre’ Post' Hole' RS Com) =4
Ax: X Ay: Y VX' X' .Pré XY NX =Rx — 3y : Y .Post' X'y Ny =Sy

SpecXY f(Tsep XY fX'Y' f' Pre' Post' Hole' RS Comt') =44
Ax: X Ay: Y X X' . Pré X A\X =Rx— 3y : Y .Post' X'y Ay =Sy
SpecX'Y' f't'x'y . ®)
Now, the specification of a transformation is an inhabitant of Prop. However, Spec returns an inhab-
itant of type X — Y — Prop. Why? To allow it to be integrated with the root objects of type X and Y,

passed down to it by the root transformation.
In its general form, an ordered model transformation is formalised as follows.

Definition 6. (Ordered Model Transformation) An ordered model transformation is an inhabitant of
type

VX: Set VY: Set Vf: X - Y.Vt: TXY f.
VPre: X — Prop .NPost: X —Y — Prop.
VHole: ¥x: X .Prex — Postx (f x).
Vx: X.Prex — dy: Y .Postxy ANSpecXY ftxy. )
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X >Y
/ d >< e \
X/ Y/ X// Y//

Figure 6: A representation of the join rule of type 7.

A proof of (9) (an inhabitant of the type) has the form:
AX.AY .Af.At.APre.APost AHole . Ax.Ah.{(fx),u), (10)

where u is a proof of
Postx(fx) NSpecXY ftx(fx).

According to (I0), if we could construct an inhabitant of type T from suitable values of Hole (a proof
of the root hole), X and Y (the root classes), f (the root function), and Pre and Post (the root conditions),
then we could justifiable claim that ((f x), u) is a certified implementation of the transformation, for an
arbitrary source object x. In other words, constructing a suitable value of ¢ is tantamount to proving the
specification.

4.2 Partially Ordered Transformations

We generalise the construction to take into account the case where transformations are partially ordered.
Without loss of generality, we assume that a partially ordered transformation can be constructed from
two ordered transformations, as shown in Fig. @ Thus, we extend the definition of T X Y f in DeﬁnitionEI
with a join rule, i.e.

W:TXYf 0:TXYf
Tiointit2: TXY f

(Tk)v

and extend the definition of Spec (Definition E[) with a case for Tj,;,, which returns the conjunction of
the specifications of #; and 1,, i.e.

Spec XY f(Tioint112) =ar Ax: X.Ay:Y .SpecXY ftixy NSpecXY ftyxy .

See Fig. [7]for an example.

5 Concrete Example

Consider a transformation between the UML and SQL models in Fig. [§] in which
e cach model m is mapped to a schema s of the same name;

e cach class ¢ in m is mapped to a table ¢ in s of the same name, and a primary key column in ¢ of
the same name;

e cach attribute in ¢ is mapped to a non-primary key column in ¢ of the same name;

e the mappings are unconditional, i.e. the preconditions always hold.



74 Ordered Model Transformations

Affj>P
:
B--~0Q
/XN
C 5 E-->S§
/ :
D—-—->R F-->=T
/ ’ \
G- - > H-->V J-—=W

Figure 7: An example of a partially ordered transformation, in which A, B, ...,J are the source classes,
P Q,...,W are the target classes, and A is transformed to P, B to Q and so on. The transformation (minus
the root artefacts) is given by #7, where 11 =47 Tpuse ---, 12 =daf TBase -+, 13 =df TBase .-+, 1123 =df
T1oin (Troint12) 13, ta =af Tsiep--- 11235 15 =df TBase---> t6 =af Tsiep---tas ts6 =dy Tiointsts, and t; =4y
Tsiep - - - 156. The specification of the transformation is given by SpecAP f, t;.

The specification of the transformation is given by

Vm: Model . Preyoge0 m — 3s: Schema . Postsepemq M S /\

Spec Model Schema fModel IModel—Schema ™S

where
IModel—Schema T Model Schema fM()del—Schema .

If

mi =af @poger1[c1,02,¢3]

1 =df @Class 2[ @ pstribute 55 @ pstrivute 0, @ astrivure 7)
Cl =daf @Class 3 [ @ gstribute 8}

3 =af @ciae4(],

i.e. a model with 3 classes and 4 attributes, then
K Model Schema fyrodqe1 Presodel PoStschema Holeyjoger my Triv

reduces to (s, p), where s; is given by

ST =df @schema 1 [t1,12,13]
3] —df @rapie 2 [ @Column 2”'”37 @Column 5 false, @Column 6false, @Column 7false,]
h =df @rapre 3 [@Column 3 true, @ cotumn Sfalse]

4]

13 =df @7aple @Column4true] 5
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Schema
Model & schema_name: string
@ model_name: string @ tables : list Table
@ classes : list Class
*# | tables
* | classes Table

Class @ table_name: string
@ class_name: string @ columns: list Column
@ attributes : list Attribute

* | columns
* | attributes Column

Attribute & column_name: string
& attribute_name: string & is_primary_key: bool

Figure 8: The UML and SQL models.

i.e. a schema with 3 tables and 7 columns (3 of which are primary keys), and p is an unspecified proof
(through lack of space) that sy is indeed the transform of m;.

6 Related Work and Conclusions

A number of authors have attempted to provide a formal understanding of metamodelling and model
transformations. Ruscio et al. have made some progress towards formalizing the KM3 metamodelling
language using Abstract State Machines [20]; and Rivera and Vallecillo have exploited the class-based
nature of the Maude specification language to formalize metamodels written in KM3 [19]]. Further, a
related algebraic approach is given by Boronat and Meseguer in [2]. More recently, Calegari et al.
proposed a framework for encoding models and metamodels in the Calculus of Inductive Constructions
(CIC) [1]], and in doing so showed how parts of the ATL model transformation language could be
expressed in the CIC, including matched rules, helpers and expressions based on the Object Constraint
Language (OCL) [16].

In this paper, we have shown how to assemble the proof of a potentially large ordered model transfor-
mation, by decomposing it into a number of smaller proofs which are easier to derive. El We focused on a
particular kind of transformation with uniform characteristics, which we hope to extend to other kinds of
transformations in the future, although we have already incorporated a number of additional variants into
the scheme outlined above, including support for many-valued relationships, unmapped source classes
(of which C is an example in Fig. [7) and multiple target classes.

In future work, we will extend the techniques to a larger class of model transformations, by abstract-
ing over the non-hierarchical parts of models too. One way of achieving this would be to quantify over
arbitrary propositions in each postcondition so that users could include a non-hierarchical proof frag-
ment where necessary. To a certain extent, this is already supported because the Data component of a
postcondition is user-defined and therefore arbitrary. However, another option would be to add a separate
conjunct to the postcondition.

4 The reader should note that this approach could never be fully automatised in virtue of the unlimited scope of pre and
postconditions. However, once the smaller proofs are available, the process of assembling them into a proof of the whole could
indeed be automatised.
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Clearly, we do not exclude the possibility of an ordered model being embedded within a larger
model, like an ordered core with an unordered covering (for example, see Fig. ). In fact, our experience
suggests that the majority of industrial models (which are characterised by their size rather than their
complexity) are like this, and that the algorithms which transform them invariably perform preorder
traversals of the ordered cores of the source models. That is not say that every model transformation
fits this mould. However, it is reasonable to suppose that the lessons learnt from this study may also be

applicable to other kinds of model transformations.
== %
=1

=3
Figure 9: An industrial strength model (of executable UML, courtesy of Abstract Solutions Ltd) com-
prising a strongly ordered core (admittedly, one defined by generalisation—an area for further study—as

well as containment, and visually apparent only to a subject matter expert) surrounded by an unordered
covering.
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