
B. Buhnova, L. Happe, J. Kofroň:
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In model-driven development, an ordered model transformation is a nested set of transformations
between source and target classes, in which each transformation is governed by its own pre and post-
conditions, but structurally dependent on its parent. Following the proofs-as-model-transformations
approach, in this paper we consider a formalisation in Constructive Type Theory of the concepts of
model and model transformation, and show how the correctness proofs of potentially large ordered
model transformations can be systematically assembled from the proofs of the specifications of their
parts, making them easier to derive.

1 Introduction

In this paper, we outline a mechanism to assemble correctness proofs of model transformations in the
context of Model Driven Development (MDD). Although MDD is in widespread use, it is essentially an
informal approach to software development which does not guarantee the correctness of model transfor-
mations. High-trust solutions are essential if MDD is to be used in safety critical systems and beyond.

The problem of establishing the correctness of a model transformation is well established, and work
has been done towards formalising the process using for instance rewriting languages (e.g. Maude [4])
or typed multigraphs [24]. However, these approaches are first-order and do not reflect the higher-order
nature of the UML-based techniques. The aim of our research is to lay the foundations on which a range
of certified model transformations might be built, following a line of work that started in [17], where
the use of constructive type theory to implement model transformations was first discussed. The notion
of an ordered model transformation was introduced in [18], to describe how a complex transformation
between models, built from a potentially large number of interrelated classes, might be derived from the
specification of a series of mappings between classes, via a partially ordered traversal of the source and
target models. This paper represents a significant advance on that work in that it a) formally defines
the specification of an ordered model transformation in type theory, and b) provides a mechanism for
assembling the proofs of ordered model transformations from their constituent parts.

In this paper, a model is a Unified Modelling Language (UML) [7] class model, and a model trans-
formation is a function which maps the artefacts of a source model (classes, attributes and relationships)
onto the artefacts of a target model [11, 12]. UML is a graphical language for specifying the structure
and behaviour of object oriented systems. It is also a pillar of the Object Management Group’s (OMG)
Model Driven Architecture (MDA) [6] (a particular brand of MDD), along with the transformation lan-
guage Query/View/Transform (QVT) [8] .

Consider a transformation between two models (see Fig. 1) in which each object of X is transformed
into an object of Y , via a precondition at X and a postcondition at Y . In general, the postcondition at Y
is composed of three components: Data asserts a relation between the attributes of X and Y ; Link asserts
a relation between Y and the class that contains it; and Nest defines the specification (in context) of the
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Figure 1: A transformation between classes X and Y , which is subject to a precondition on X and a
postcondition on X and Y .

transformation between the classes that X and Y contain (clearly, if Y were a root class, the postcondition
would not have a Link component, and if Y were a leaf class, the postcondition would not have a Nest
component).

While Data components vary significantly between transformations (there is no reason why they
should be the same), the Link and Nest components are generally quite similar. In fact the only assertion
that a Link component can make is that Y participates in a relationship with the class that contains it;
and all that a Nest component can do is pass control of the specification to the classes that X and Y
contain. This opens up the prospect of removing from users the tedious task of proving Link components
by hand.1 Of course, this prospect only presents itself by virtue of the ordered nature of the models and
transformations under consideration, where order is defined by containment. However, such transforma-
tions are sufficiently common in practice (see, for instance, [11] for examples) to make this a worthwhile
pursuit.

In this paper, we focus on a particular but nonetheless ubiquitous kind of model transformation, in
which the source and target models are either partially or totally ordered.2 In particular, based on the
definitions of model and model transformation given in [17], we show that the proofs of the specifications
of large ordered model transformations can be systematically assembled from their parts, making them
easier to derive. Our main contribution is a method to derive correctness proofs for ordered model
transformations by assembling the proofs of their parts, within constructive type theory. We illustrate the
method with examples.

The proofs in this paper have all been implemented in the Coq Proof Assistant [1], see the Coq scripts
at http://www.inf.kcl.ac.uk/pg/terrellj.

The paper is organised as follows: In Section 2, we give a brief introduction to MDA and type theory,
to try to make the paper self contained. In Section 3, we show how to formalise a model transformation
(the specification and its correctness proof) in constructive type theory, including the key notion of a
parametric proof (a proof with a hole over which it is possible to quantify and hence parametrise). We
then use this idea to formally specify ordered model transformations in general in Section 4. In Section 5,
there is a concrete example of an assembled proof. Finally, in Section 6, we sum up and discuss future
developments.

1The proof of an assertion involving a many-valued relationship requires a proof by list induction, and the proof of a chain
of many-valued relationships, which is not uncommon, requires a nested set of proofs by list induction.

2Hierarchical models are the rule rather than the exception in industry (the UML metamodel is fundamentally hierarchical),
where transformations are notable for their size rather than their complexity.

http://www.inf.kcl.ac.uk/pg/terrellj
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2 Preliminaries

We recall the basic notions of Model Driven Architecture (MDA) and Constructive Type Theory (CTT)
that are used in the paper. We refer the reader to [11] and [13] for more details on MDA and CTT,
respectively.

2.1 Model Driven Architecture

The movement away from the machine to a higher level of abstraction began in earnest in the early 1990s,
with the advent of a number of object-oriented analysis and design methodologies. The most influential,
in the authors’ view, was the one proposed by Shlaer and Mellor in [21, 22], for it played a huge part in
shaping the MDA a decade later. The aims of the MDA are two-fold: first, that software systems should
be developed independently of the platforms on which they will eventually run, and second, that they
should be translated into specific implementations using standard parts, namely model to text and model
to model transformations.

In its simplest form, a model transformation takes as input a model, written in a source modelling
language (IL), and outputs a new model, written in a possibly different target modelling language (OL).
The transformation should be applicable to any model written in IL, therefore it can be seen as a mapping
from elements of IL to elements of OL.

In MDA, both the input and output languages are defined as metamodels within the Meta-Object
Facility (MOF) [15]. Metamodelling in the MOF is usually done according to a four level hierarchy [14].
The levels are related by an object-oriented style class/object instantiation relationship: classes at level
Mi+1 provide descriptions of objects at level Mi. Roughly speaking, we can think of entities at the M0
level as objects representing instances of an M1 UML class. The M2 level is where metamodels are
defined. Metamodels are collections of instances of the M3 level classes (meta-meta-classes). The M3
level of the MOF model is used to classify the elements that make up an M2 level metamodel.

Following [17, 18], in this paper we will consider model transformations as higher-order functional
programs satisfying certain pre and post conditions.

2.2 Constructive Type Theory

The type theory below is based on the one proposed by Martin-Löf [13]. A type is defined by prescribing
how its inhabitants are formed. For example, if S is the successor function, then the inhabitants of the
type Nat are given by

0: Nat
n : Nat

(S n) : Nat
.

If A and B are types, then A∧ B, A∨ B and A→ B are defined to be types too, where A∧ B is
inhabited by a pair of inhabitants of A and B, A∨B is inhabited by an inhabitant of A or B, together with
an indication as to whether it is an inhabitant of A (on the left) or B (on the right), and A→ B is inhabited
by a function from A to B, i.e.

a : A b : B
〈a, b〉 : A∧B

a : A
inl a : A∨B

b : B
inr b : A∨B

[a : A]....
b : B

λa : A .b : A→ B
.
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If a is an inhabitant of A, and B(a) is a type whose inhabitants depend on a, then ∀a : A .B(a) and
∃a : A .B(a) are defined to be types, where ∀a : A .B(a) is inhabited by a function that takes A to B(a),
and ∃a : A .B(a) is inhabited by a pair of inhabitants of A and B(a), i.e.

[a : A]....
b : B(a)

λa : A .b : ∀a : A .B(a)
a : A b : B(a)
〈a, b〉 : ∃a : A .B(a)

.

One particular type that we shall meet often in this paper is

∀a : A .P(a)→∃b : B .Q(a,b) ,

which defines the specification of a transformation that takes a source class A to a target class B, subject to
precondition P(a) and postcondition Q(a,b). Note that types A∧B and A→ B are special cases of types
∀a : A .B(a) and ∃a : A .B(a) where B is independent of a. A term λa : A.b of type A→ B represents a
function from A to B.

Application is written simply as juxtaposition:

t : ∀a : A.B(a) s : A
(t s) : B(s)

.

Further, the reduction relation is generated by the β -rule:

(λa : A.t)s→ t{a 7→ s}

The reflexive and transitive closure of the one-step reduction relation→ is denoted by�.
We shall also add to our language a predicate =, which we can use to build dependent types like

x = 0, where x : Nat. When 0 is substituted for x, the type becomes 0 = 0, which is inhabited by r(0)
(see [25] for more details); when 1 is substituted for x, the type becomes 1 = 0, which is uninhabited.
Lastly, we shall add the type [E] of lists of elements of type E to our language, and two distinguished
types Set and Prop, which will be used to classify types.

3 Type Theory for Model Transformations

In this section, we formalise UML classes and objects using constructive type theory.

Definition 1. A UML class C is encoded as a type, that is, an inhabitant of type Set; and a UML object of
C is encoded as an inhabitant of type C. Furthermore, a base attribute of C is encoded as an inhabitant
of type C→ τ1, where τ1 is a ground type, e.g. Nat; and a referential attribute of C is encoded as an
inhabitant of type C→ τ2, where τ2 is the type of some other UML class or class list.

We shall assume that every UML class C has a single base attribute IdC of type Nat, and as many
referential attributes as it needs to encode the relationships in which it participates. For example, if C
is linked by a one-valued relationship to UML class D, and a many-valued relationship to UML class
E, then the rule for constructing the inhabitants of C is as follows, where @C denotes an anonymous
constructor of C.

n : Nat d : D l : [E ]

@C n d l : C
.
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A �PreA PostP // P

Figure 2: A transformation between A and P.

The judgement a : A admits several different readings: a is an inhabitant of type A (as above), a is
a program whose specification is A (which may be that of a model transformation), and a is a proof of
proposition A (which may be that of a precondition). In the last reading, A is defined to be an inhabitant
of type Prop, where A is considered to be true if and only if it is inhabited. The relationship between
propositions and types, which was first discovered by Curry [5] and later extended by Howard [9], is
known as the Curry-Howard isomorphism.

In this paper, we describe a technique to derive proofs of potentially large ordered model transforma-
tions. To illustrate the ideas underlying this technique, we consider first a simple model transformation,
where each object of class A (see Fig. 2) is transformed into an object of class P, subject to a precondition
PreA of type A→ Prop and a postcondition PostP of type A→ P→ Prop. 3 The specification of the
transformation is formalised as a type, i.e.

∀a : A .PreA a→∃p : P .PostP a p , (1)

and its proof is given by

[a : A]1 [h : Pre a]2
.... Hole

u : Post a p
〈p, u〉 : ∃p : P .Post a p

(∃ I)

λh .〈p, u〉 : Pre a→∃p : P .Post a p
(→ I)2

λa .λh .〈p, u〉 : ∀a : A .Pre a→∃p : P .Post a p
(∀I)1 , (2)

i.e. a function that takes an object a of A and a proof h of PreA a, and returns as a pair the corresponding
object p of P and a proof u of PostP a p. There is a hole in the proof above because the transformation
is under specified. However, given suitable definitions of A, P, PreA and PostP, the hole could be filled
and the proof completed. Furthermore, given a second transformation with a different set of definitions
of A, P, PreA and PostP, we could apply the same procedure. However, the proofs would be so similar,
at least in outline, that it should be possible to capture them all in a parametrised proof, by quantifying
over all source and target classes, pre and postconditions, and proofs of holes, in the specification of the
transformation. Based on this idea, we define the following correctness condition.

Definition 2 (Correct Model Transformation). A correct model transformation from X to Y should ensure
that for each x in X that satisfies the precondition there is a y in Y that satisfies the postcondition. This
is formalised using the following type:

∀X : Set .∀Y : Set .∀Pre : X → Prop .∀Post : X → Y → Prop .

∀ f : X → Y .∀Hole : (∀x : X .Pre x→ Post x ( f x)) .

∀x : X .Pre x→∃y : Y .Post x y . (3)

3 Preconditions serve several purposes. First, to allow a choice of rules in different cases, e.g. by checking that a class is
a root class, if root classes are transformed by a different rule to non-root classes. Second, to ensure that a postcondition is
well-defined, e.g. by insisting that x≥ 0 if the postcondition takes the square root of x. Third, to ensure that only certain source
elements are transformed, e.g. by checking that a class is persistent, if only persistent classes are mapped to database tables. In
the first and second cases, we might expect the precondition to contribute to the proof of the postcondition.
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The proof of (3) is little more than two eliminations and a sequence of introductions, i.e.

[X : Set]1

[Y : Set]2

[Pre : X → Prop]3

[Post : X → Y → Prop]4

[ f : X → Y ]5
....

[Hole : (∀x : X .Pre x→ Post x ( f x))]6 [x : X ]7

Pre x→ Post x ( f x)
(∀E)

[h : Pre x]8

Post x ( f x)
(→E)

∃y : Y .Post x y
(∃ I)

Pre x→∃y : Y .Post x y
(→ I)8

∀x : X .Pre x→∃y : Y .Post x y
(∀I)7

∀Hole : (∀x : X .Pre x→ Post x ( f x)) .∀x : X . . . .
(∀I)6

∀ f : X → Y .∀Hole : (∀x : X .Pre x→ Post x ( f x)) . . . .
(∀I)5

∀Post : X → Y → Prop .∀ f : X → Y . . . .
(∀I)4

∀Pre : X → Prop .∀Post : X → Y → Prop . . . .
(∀I)3

∀Y : Set .∀Pre : X → Prop . . . .
(∀I)2

∀X : Set .∀Y : Set . . . .
(∀I)1 . (4)

The fixed outline shape of the proof is captured by rules (∃ I) to (∀I)7, and the variable proof of the
hole is captured by assumption 6. Furthermore, the function K defined below can easily be shown to
inhabit (3).

K =d f λX .λY .λPre .λPost .λ f .λHole .λx .λh .〈( f x), u〉 . (5)

Note that the arguments X and Y are arbitrary source and target classes; Pre and Post are arbitrary pre
and postconditions; f is a function that maps source objects to target objects; Hole is a proof of the hole
(see (2)); x is a source object; and h is a proof that the precondition holds on the source object. K returns
a target object ( f x), and a proof u that the postcondition holds on the source and target objects.

We shall now apply K to a particular transformation, i.e. the one between A and P. Let PreA be a
predicate that holds on all objects of A, and let PostP be a predicate that holds on all objects of A and P
which have the same base attribute values. Formally, let

PreA =d f λa .>
PostP =d f λa .λ p .(IdA a = IdP p) .

Now, if
fA =d f λa .@P (IdA a) ,

then the proof of the hole is

pIdA : A→ Natq

[a : A]1 [h : >]2
....

[a : A]1

IdA a : Nat
(→E)

r(IdA a) : IdA a = IdA a
(II)

λh .r(IdA a) : >→ IdA a = IdA a
(→ I)2

λa .λh .r(IdA a) : ∀a : A .>→ IdA a = IdA a
(∀I)1

λa .λh .r(IdA a) : ∀a : A .PreA a→ PostP a ( fA a)
(=d f ) .
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A �PreA PostP //

R1
��

P

S1
��

B �PreB PostQ // Q

Figure 3: A two-runged transformation

Furthermore, if

HoleA =d f λa .λh .r(IdA a) ,

then

K A P PreA PostP fA HoleA (@A 1)Triv� 〈(@P 1), r(IdA (@A 1))〉 .

Therefore, @P 1 is the transform of @A 1, and r(IdA (@A 1)) is the term that proves it.
In the next sections we generalise these ideas to families of ordered model transformations.

4 Ordered Model Transformations

In the previous section, we showed how the specification of a small transformation could be abstracted
into the specification of a family of transformations, by quantifying over all possible source and target
classes, pre and postconditions and holes. The proof that resulted contained a fixed part, common to all
members of the family, and a variable part, specific to a particular member. In this section, we extend
these ideas to ordered model transformations in general.

There are two kinds of ordered transformations: totally and partially ordered. Informally, a totally
ordered set of transformations is one that has the shape of a ladder, in which the source and target models
are the verticals, and the transformations are the rungs. A partially ordered set of transformations has the
shape of a tree of ladders, in which the branches between nodes are totally ordered transformations. We
give examples before presenting the formal definitions.

Consider the two-runged transformation in Fig. 3, in which A is transformed to P subject to condi-
tions PreA and PostP, and B is transformed to Q subject to conditions PreB and PostQ. If an object a of
A is transformed to an object p of P, then the object R1 a of B is transformed to the object S1 p of Q. In
other words, the transformation of B to Q is nested within the transformation of A to P. As before, we
shall define the specification of the transformation as a type, outline its proof, and abstract over classes,
conditions and holes. The transformation along each rung is similar to the one between A and P earlier.
However, the transformation between the verticals (relationships) is new.

The specification of the transformation that is depicted in Figure 3 is formalised as a type as follows
(for ease of readability, we write one rung per line).

∀a : A .PreA a→∃p : P .(PostP a p∧
∀b : B .PreB b ∧ (R1 a) = b→∃q : Q .PostQ b q ∧ (S1 p) = q) . (6)

The transformation along the second rung is nested within the first rung, and has stronger pre and post-
conditions in virtue of the connectivity constraints placed on objects of B and Q. Note that a third or
fourth rung would have the same shape as the second rung.
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x
f //

R
��

Com

f x

S
��

R x
f ′ // S ( f x) = f ′ (R x)

Figure 4: The commutative square Com.

In outline, the proof of (6) is

[a : A]
[PreA a]

.... HoleA
PostP a p

[a : A]
[b : B]

[PreB b ∧R1 a = b]
pPreB bq

(∧E1)
.... HoleB

PostQ b q

[a : A]
[b : B]

[PreB b ∧R1 a = b]
pR1 a = bq

(∧E2)
.... ComA

S1 p = q
(PostQ b q ∧S1 p = q) [q/q]

(∧ I)
.... Fixed

(∀b : B .PreB b ∧R1 a = b→ . . .) [p/p]
(PostP a p ∧∀b : B .PreB b ∧R1 a = b→ . . .) [p/p]

(∧ I)
.... Fixed

∀a : A .PreA a→∃p : P .PostP a p ∧ . . .

The fixed parts of the proof exist in virtue of the structure of the specification, whereas the variable parts
exist in virtue of its under-specification. The variable parts are either of the Hole kind, i.e. proofs that
postconditions are derived from preconditions, or the Com kind, i.e. proofs that adjacent rungs are linked.

Quantifying over all variables in (6), including proofs of variable parts, and changing the names of
bound variables where appropriate, we obtain the specification of an arbitrary two-runged transformation.

Definition 3 (Two-Runged Model Transformation). An arbitrary two-runged model transformation is
formalised in constructive type theory by the following type:

∀X : Set .∀Y : Set .∀Pre : X → Prop .∀Post : X → Y → Prop .

∀ f : X → Y .∀Hole : (∀x : X .Pre x→ Post x ( f x)) .

∀X ′ : Set .∀Y ′ : Set .∀Pre′ : X ′→ Prop .∀Post ′ : X ′→ Y ′→ Prop .

∀ f ′ : X ′→ Y ′ .∀Hole′ : (∀x′ : X ′ .Pre x′→ Post x′ ( f ′ x′)) .

∀R : X → X ′ .∀S : Y → Y ′ .

∀Com : (∀x : X .S ( f x) = f ′ (R x)) .

∀x : X .Pre x→∃y : Y .Post x y∧
∀x′ : X ′ .Pre′ x′ ∧R x = x′→∃y′ : Y ′ .Post ′ x′ y′ ∧S y = y′ . (7)

This formalisation is similar to the one in (3) except that it also quantifies over Com, i.e. a proof
that starting from every object x of X (X being the source end of the first rung) and navigating to
some object y′ of Y ′ (Y ′ being the target end of the second rung), first via f and S, and then via R
and f ′, the same y′ is obtained. The commutative square, after which Com is named, is shown in
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Fig. 4. Furthermore, given a proof of Com, it is a trivial matter to prove that the rungs are linked,
i.e.

[x : X ] [Com : ∀x : X .S ( f x) = f ′ (R x)]
S ( f x) = f ′ (R x)

(∀E)
pR x = x′q

S ( f x) = f ′ x′
(IE) .

Property 1. The function that inhabits (7) is

λX Y Pre Post f Hole X ′Y ′ Pre′ Post ′ f ′Hole′ R SCom x h.〈( f x), u〉

Proof. Direct, using the typing rules given in Section 2. Note that the first element of the output pair is
the result of applying the root function f to an arbitrary root object x, reflecting the fact that an ordered
transformation is essentially a transformation between root classes.

We are now ready to formalise the notion of ordered model transformation. First we consider totally
ordered transformations, and later we extend the results to partially ordered transformations.

4.1 Totally Ordered Transformations

In order to formalise totally ordered model transformations, we will define a dependent type T X Y f ,
where T is the type name, and X , Y and f are the parameters on which it depends, i.e. root source class,
root target class and root function respectively. A totally ordered transformation is an inhabitant of this
dependent type. The inhabitants of T are defined inductively, in much the same way as Nat, by means of
a base rule and a step rule.

Definition 4. (Type T X Y f ) The type T is defined inductively, with a rule defining the base case and a
rule defining the inductive step, as follows:

X : Set Y : Set f : X → Y
X ′ : Set Y ′ : Set f ′ : X ′→ Y ′

Pre′ : X ′→ Prop Post ′ : X ′→ Y ′→ Prop
Hole′ : ∀x′ : X ′ .Pre′ x′→ Post ′ x′ ( f ′ x′)
R : X → X ′ S : Y → Y ′ Com : ∀x : X . f ′ (R x) = S ( f x)

TBase X Y f X ′Y ′ f ′ Pre′ Post ′Hole′ R SCom : T X Y f
(T I1)

X : Set Y : Set f : X → Y
X ′ : Set Y ′ : Set f ′ : X ′→ Y ′

Pre′ : X ′→ Prop Post ′ : X ′→ Y ′→ Prop
Hole′ : ∀x′ : X ′ .Pre′ x′→ Post ′ x′ ( f ′ x′)
R : X → X ′ S : Y → Y ′ Com : ∀x : X . f ′ (R x) = S ( f x)
t ′ : T X ′Y ′ f ′

TStep X Y f X ′Y ′ f ′ Pre′ Post ′Hole′ R SComt ′ : T X Y f
(T I2)

The base rule constructs a transformation of the kind shown in Fig. 5 (left). Note that the root hole
and root pre and postconditions (to clarify, the root is at the top) are not part of the construction. The step
rule constructs the successor of a transformation t ′, of the kind shown in Fig. 5 (middle). Again, the root
hole and root pre and postconditions are not part of the construction.
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X
f //

R
��

Com

Y

S
��

A
fa //

R1
��

Com1

P

S1
��

X
f //

R
��

Com

Y

S
��

X ′
f ′

Hole′
Pre′ Post ′//

t ′ : T X ′Y ′ f ′

Y ′ B
PreB PostQfb

HoleB

//

R2
��

Com2

Q

S2
��

X ′
f ′

Hole′
Pre′ Post ′// Y ′ X ′′ Y ′′ C

PreC PostRfc

HoleC

// R

Figure 5: From left to right: representations of the base and step rules of type T , followed by an inhabitant
of type T A P fa, namely tAP.

To construct an inhabitant of T , we first apply the base rule and then repeatedly apply the step rule.
For example, the transformation tAP in Fig. 5 (right) is constructed as follows:

tBQ =d f TBase B Q fb C R fc PreC PostR HoleC R2 S2 Com2 ,

tAP =d f TStep A P fa B Q fb PreB PostQ HoleB R1 S1 Com1 tBQ .

By extension of (6), it would be easy to write down the specification of tAP, including the root
transformation we have so assiduously excluded. However, much more useful would be to write down
a function that could compute it, not only for tAP but also for every other inhabitant of T X Y f as well.
Such a function is given below.

Definition 5. (Spec)

Spec : ∀X : Set .∀Y : Set .∀ f : X → Y .T X Y f → (X → Y → Prop)

Spec X Y f (TBase X Y f X ′Y ′ f ′ Pre′ Post ′Hole′ R SCom) =d f

λx : X .λy : Y .∀x′ : X ′ .Pre′ x′∧ x′ = R x→∃y′ : Y ′ .Post ′ x′ y′∧ y′ = S y

Spec X Y f (TStep X Y f X ′Y ′ f ′ Pre′ Post ′Hole′ R SComt ′) =d f

λx : X .λy : Y .∀x′ : X ′ .Pre′ x′∧ x′ = R x→∃y′ : Y ′ .Post ′ x′ y′∧ y′ = S y∧
Spec X ′Y ′ f ′ t ′ x′ y′ . (8)

Now, the specification of a transformation is an inhabitant of Prop. However, Spec returns an inhab-
itant of type X → Y → Prop. Why? To allow it to be integrated with the root objects of type X and Y ,
passed down to it by the root transformation.

In its general form, an ordered model transformation is formalised as follows.

Definition 6. (Ordered Model Transformation) An ordered model transformation is an inhabitant of
type

∀X : Set .∀Y : Set .∀ f : X → Y .∀t : T X Y f .

∀Pre : X → Prop .∀Post : X → Y → Prop .

∀Hole : ∀x : X .Pre x→ Post x ( f x) .

∀x : X .Pre x→∃y : Y .Post x y ∧Spec X Y f t x y . (9)
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X
f //

t1

Y

t2

X ′ Y ′ X ′′ Y ′′

Figure 6: A representation of the join rule of type T .

A proof of (9) (an inhabitant of the type) has the form:

λX .λY .λ f .λ t .λPre .λPost .λHole .λx .λh .〈( f x), u〉 , (10)

where u is a proof of
Post x ( f x) ∧Spec X Y f t x ( f x) .

According to (10), if we could construct an inhabitant of type T from suitable values of Hole (a proof
of the root hole), X and Y (the root classes), f (the root function), and Pre and Post (the root conditions),
then we could justifiable claim that 〈( f x), u〉 is a certified implementation of the transformation, for an
arbitrary source object x. In other words, constructing a suitable value of t is tantamount to proving the
specification.

4.2 Partially Ordered Transformations

We generalise the construction to take into account the case where transformations are partially ordered.
Without loss of generality, we assume that a partially ordered transformation can be constructed from
two ordered transformations, as shown in Fig. 6. Thus, we extend the definition of T X Y f in Definition 4
with a join rule, i.e.

t1 : T X Y f t2 : T X Y f
TJoin t1 t2 : T X Y f

(T I3) ,

and extend the definition of Spec (Definition 5) with a case for TJoin, which returns the conjunction of
the specifications of t1 and t2, i.e.

Spec X Y f (TJoin t1 t2) =d f λx : X .λy : Y .Spec X Y f t1 x y ∧Spec X Y f t2 x y .

See Fig. 7 for an example.

5 Concrete Example

Consider a transformation between the UML and SQL models in Fig. 8, in which

• each model m is mapped to a schema s of the same name;

• each class c in m is mapped to a table t in s of the same name, and a primary key column in t of
the same name;

• each attribute in c is mapped to a non-primary key column in t of the same name;

• the mappings are unconditional, i.e. the preconditions always hold.
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A
fa //

t7

P

B //

t5

t6

Q

C E //

t4

S

D // R F //

t1 t2 t3

T

G // U H // V J //W

I

Figure 7: An example of a partially ordered transformation, in which A,B, . . . ,J are the source classes,
P,Q, . . . ,W are the target classes, and A is transformed to P, B to Q and so on. The transformation (minus
the root artefacts) is given by t7, where t1 =d f TBase . . ., t2 =d f TBase . . ., t3 =d f TBase . . ., t123 =d f
TJoin (TJoin t1 t2) t3, t4 =d f TStep . . . t123, t5 =d f TBase . . ., t6 =d f TStep . . . t4, t56 =d f TJoin t5 t6, and t7 =d f
TStep . . . t56. The specification of the transformation is given by Spec A P fa t7.

The specification of the transformation is given by

∀m : Model .PreModel m→∃s : Schema .PostSchema m s∧
Spec Model Schema fModel tModel−Schema m s ,

where
tModel−Schema : T Model Schema fModel−Schema .

If

m1 =d f @Model 1 [c1,c2,c3 ]

c1 =d f @Class 2 [@Attribute 5,@Attribute 6,@Attribute 7 ]

c1 =d f @Class 3 [@Attribute 8 ]

c3 =d f @Class 4 [ ] ,

i.e. a model with 3 classes and 4 attributes, then

K Model Schema fModel PreModel PostSchema HoleModel m1 Triv

reduces to 〈s1, p〉, where s1 is given by

s1 =d f @Schema 1 [ t1, t2, t3 ]

t1 =d f @Table 2 [@Column 2 true,@Column 5 f alse,@Column 6 f alse,@Column 7 f alse, ]

t1 =d f @Table 3 [@Column 3 true,@Column 8 f alse ]

t3 =d f @Table 4 [@Column 4 true ] ,
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Model
model_name: string
classes : list Class

Class
class_name: string
attributes : list Attribute

Attribute
attribute_name: string

* classes

* attributes

Schema
schema_name: string
tables : list Table

Table
table_name: string
columns: list Column

Column
column_name: string
is_primary_key: bool

* tables

* columns

Figure 8: The UML and SQL models.

i.e. a schema with 3 tables and 7 columns (3 of which are primary keys), and p is an unspecified proof
(through lack of space) that s1 is indeed the transform of m1.

6 Related Work and Conclusions

A number of authors have attempted to provide a formal understanding of metamodelling and model
transformations. Ruscio et al. have made some progress towards formalizing the KM3 metamodelling
language using Abstract State Machines [20]; and Rivera and Vallecillo have exploited the class-based
nature of the Maude specification language to formalize metamodels written in KM3 [19]. Further, a
related algebraic approach is given by Boronat and Meseguer in [2]. More recently, Calegari et al. [3]
proposed a framework for encoding models and metamodels in the Calculus of Inductive Constructions
(CIC) [23, 1], and in doing so showed how parts of the ATL model transformation language [10] could be
expressed in the CIC, including matched rules, helpers and expressions based on the Object Constraint
Language (OCL) [16].

In this paper, we have shown how to assemble the proof of a potentially large ordered model transfor-
mation, by decomposing it into a number of smaller proofs which are easier to derive. 4 We focused on a
particular kind of transformation with uniform characteristics, which we hope to extend to other kinds of
transformations in the future, although we have already incorporated a number of additional variants into
the scheme outlined above, including support for many-valued relationships, unmapped source classes
(of which C is an example in Fig. 7) and multiple target classes.

In future work, we will extend the techniques to a larger class of model transformations, by abstract-
ing over the non-hierarchical parts of models too. One way of achieving this would be to quantify over
arbitrary propositions in each postcondition so that users could include a non-hierarchical proof frag-
ment where necessary. To a certain extent, this is already supported because the Data component of a
postcondition is user-defined and therefore arbitrary. However, another option would be to add a separate
conjunct to the postcondition.

4 The reader should note that this approach could never be fully automatised in virtue of the unlimited scope of pre and
postconditions. However, once the smaller proofs are available, the process of assembling them into a proof of the whole could
indeed be automatised.
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Clearly, we do not exclude the possibility of an ordered model being embedded within a larger
model, like an ordered core with an unordered covering (for example, see Fig. 9). In fact, our experience
suggests that the majority of industrial models (which are characterised by their size rather than their
complexity) are like this, and that the algorithms which transform them invariably perform preorder
traversals of the ordered cores of the source models. That is not say that every model transformation
fits this mould. However, it is reasonable to suppose that the lessons learnt from this study may also be
applicable to other kinds of model transformations.
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{no=169, kl=TMS}
Test Method Set*
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analysis area id [ID] (R228,R229)

{no=168, kl=TM}Test Method*
attributes

method 
name 
number [ID]
analysis area id [ID] (R227)

{no=167, kl=ISEQC}
Initialisation Sequence Component*
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next position in sequence (R236)
initialisation segment number (R235)
position in sequence [ID]
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analysis area id [ID] (R234,R235,R236,R239)
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attributes

sequence name [ID]
analysis area id [ID] (R230,R232)

{no=165, kl=SEG}
Initialisation Segment*

attributes

method 
name 
number [ID]
analysis area id [ID] (R233)

{no=164, kl=AA}Analysis Area*

attributes

has population errors 
analysis area id [ID]

{no=163, kl=DOMOP}
Domain Operation*

attributes

analysis area id [ID] (R222,R215)
operation id [ID] (R215)

{no=162, kl=NCTOP}

Non Counterpart Terminator 
Operation

attributes

terminator key letter (R218)
analysis area id [ID] (R218,R215)
operation id [ID] (R215)

{no=161, kl=STOP}

Specialisation Terminator 
Operation

attributes

terminator key letter (R217)
analysis area id [ID] (R217,R215)
operation id [ID] (R215)

{no=160, kl=ATOP}

Association Terminator 
Operation

attributes

terminator key letter (R216)
analysis area id [ID] (R216,R215)
operation id [ID] (R215)

{no=159, kl=COP}Class Operation
attributes

class key letter (R219)
is instance based 
analysis area id [ID] (R219,R215)
operation id [ID] (R215)

{no=158, kl=STERM}
Specialisation Terminator

attributes

class key letter (R211)
description 
name 
terminator key letter [ID]
analysis area id [ID] (R211)

{no=157, kl=ATERM}
Association Terminator

attributes

class key letter (R210)
description 
name 
terminator key letter [ID]
analysis area id [ID] (R210)

{no=155, kl=OPP}Operation Parameter*

attributes

linked class key letter (R203)
data type name (R207)
linked attribute name (R203)
data type mode 
position 
is a set 
name [ID]
analysis area id [ID] (R203,R207,R201,R202)
operation id [ID] (R201,R202)

{no=153, kl=IHT}Instance Handle Type
attributes

class key letter (R188)
data type name [ID] (R74)
analysis area id [ID] (R188,R74)

{no=151, kl=OP}Operation*

attributes

operation subclass 
method 
is externally visible 
description 
name 
operation number 
analysis area id [ID] (R238)
operation id [ID]

{no=149, kl=DSMEM}
Data Structure Member*

attributes

linked attribute name (R184)
linked class key letter (R184)
member type name (R185)
data type mode 
position in structure 
is a set 
structure member name [ID]
data structure type name [ID] (R189)
analysis area id [ID] (R184,R189,R185)

{no=148, kl=DST}
Data Structure Type*

attributes

data type name [ID] (R74)
analysis area id [ID] (R74)

{no=147, kl=SSPCBS}

Supplementary Signal Parameter 
Carried By UML Signal

attributes

position 
parameter name [ID] (R151)
signal number [ID] (R151)
target spc type [ID] (R151,R151)
target spc key letter [ID] (R151,R151)
analysis area id [ID] (R151,R151)

{no=144, kl=TSIG}Terminator Signal
attributes

target spc type (R128)
method 
signal number [ID] (R128)
target terminator key letter [ID] (R128)
analysis area id [ID] (R128)

{no=140, kl=ISPC}Instance SPC
attributes

identifier number (R199)
spc type [ID] (R157)
class key letter [ID] (R157,R168,R199)
analysis area id [ID] (R157,R168,R199)

{no=139, kl=ASPC}Assigner SPC
attributes

spc type [ID] (R157)
class key letter [ID] (R157,R169)
analysis area id [ID] (R157,R169)

{no=138, kl=STR}Signal Transmission
attributes

target spc type (R171)
signal number (R171)
consuming spc type [ID] (R170)
consuming spc key letter [ID] (R170)
producing spc type [ID] (R170)
producing spc key letter [ID] (R170)
target spc key letter (R171)
analysis area id [ID] (R170,R170,R171)

{no=136, kl=NCTERM}
Non Counterpart Terminator

attributes

is foreign 
spc type (R157)
description 
name 
terminator key letter [ID] (R157)
analysis area id [ID] (R157,R223)

{no=135, kl=SPC}Signal Producer Consumer
attributes

spc type [ID]
key letter [ID]
analysis area id [ID] (R237)

{no=134, kl=SES}
Signal Entering State

attributes

signal number [ID] (R156)
target class key letter [ID] (R156)
state number [ID] (R156)
class key letter [ID] (R156)
analysis area id [ID] (R156,R156)

{no=121, kl=SU}Signal Usage
attributes

signal number [ID] (R135)
target class key letter [ID] (R135)
class key letter [ID] (R135)
analysis area id [ID] (R135,R135)

{no=120, kl=NS}
Nonexistent State

attributes

class key letter [ID] (R132)
state number [ID] (R132)
analysis area id [ID] (R132)

{no=119, kl=IS}
Instance State

attributes

state number [ID]
class key letter [ID] (R133)
analysis area id [ID] (R133)

{no=118, kl=UMLS}UML Signal
attributes

description 
signal name 
signal number [ID]
target spc type [ID] (R166)
target spc key letter [ID] (R166)
analysis area id [ID] (R166)

{no=81, kl=SIGP}Signal Parameter
attributes

linked class key letter (R192)
linked attribute name (R192)
data type name (R191)
is a set 
data type mode 
parameter name [ID]
spc type [ID] (R190)
owning spc key letter [ID] (R190)
analysis area id [ID] (R192,R191,R190)

{no=80, kl=EE}
Enumeration Element

attributes

enumeration value set 
enumeration value 
enumeration name [ID]
data type name [ID] (R75)
analysis area id [ID] (R75)

{no=75, kl=UDDT}
User Defined Data Type*

attributes

data type subclass 
constraint 
description 
data type name [ID] (R73)
analysis area id [ID] (R73)

{no=74, kl=PDT}
Provided Data Type*

attributes

data type name [ID] (R73)
analysis area id [ID] (R73)

{no=73, kl=CTODT}

Constrained Time Of Day 
Type

*

attributes

data type name [ID] (R74)
analysis area id [ID] (R74)

{no=72, kl=CDT}
Constrained Date Type*

attributes

data type name [ID] (R74)
analysis area id [ID] (R74)

{no=71, kl=CRT}
Constrained Real Type*

attributes

data type name [ID] (R74)
analysis area id [ID] (R74)

{no=70, kl=CIT}
Constrained Integer Type*

attributes

data type name [ID] (R74)
analysis area id [ID] (R74)

{no=69, kl=CTT}
Constrained Text Type*

attributes

data type name [ID] (R74)
analysis area id [ID] (R74)

{no=68, kl=ET}Enumeration Type*

*

attributes

data type name [ID] (R74)
analysis area id [ID] (R74)

{no=67, kl=DT}Deferred Type*

attributes

data type name [ID] (R74)
analysis area id [ID] (R74)

{no=61, kl=ISM}
Instance State Model

attributes

status attribute name 
class key letter [ID] (R61)
analysis area id [ID] (R61)

{no=55, kl=AE}Assigner Effect
attributes

effect type 
destination state number (R195)
signal number [ID] (R53)
state number [ID] (R53)
target assigner key letter [ID] (R53,R53,R195)
analysis area id [ID] (R53,R195,R53)

{no=54, kl=ASSIG}Assigner Signal
attributes

target spc type (R128)
signal number [ID] (R128)
target assigner key letter [ID] (R128,R200)
analysis area id [ID] (R128,R200)

{no=53, kl=AST}Assigner State
attributes

description 
method 
is start state 
state name 
state number [ID]
class key letter [ID] (R54)
analysis area id [ID] (R54)

{no=52, kl=ASM}
Assigner State Model

attributes

status attribute name 
class key letter [ID] (R60)
analysis area id [ID] (R60)

{no=51, kl=SIG}Signal
attributes

target spc type (R128)
signal number [ID] (R128)
target class key letter [ID] (R128)
analysis area id [ID] (R128)

{no=34, kl=EF}Effect
attributes

signal number [ID] (R193)
target class key letter [ID] (R193)
effect type 
destination state number (R196)
creation state number (R145)
class key letter [ID] (R193,R145,R196,R193)
state number [ID] (R193)
analysis area id [ID] (R193,R145,R196,R193)

{no=28, kl=EIS}Existing Instance State
attributes

description 
is terminal 
is creation 
method 
state name 
class key letter [ID] (R132)
state number [ID] (R132)
analysis area id [ID] (R132)

{no=26, kl=DAT}Data Type*

attributes

data type name [ID]
analysis area id [ID] (R221)

{no=22, kl=AR}Attribute Reference
attributes

relationship end (R28)
relationship number (R28)
referenced attribute name [ID] (R23)
referenced class key letter [ID] (R23)
referencing attribute name [ID] (R23)
referencing class key letter [ID] (R23)
analysis area id [ID] (R28,R23,R23)

{no=21, kl=RAIRI}

Referential Attribute In Referential 
Identifier

attributes

relationship end [ID] (R19)
relationship number [ID] (R19)
referencing class key letter [ID] (R19)
referential attribute name [ID] (R19)
analysis area id [ID] (R19,R19)

{no=20, kl=AII}
Attribute in Identifier

attributes

attribute name [ID] (R16)
class key letter [ID] (R16,R16)
identifier number [ID] (R16)
analysis area id [ID] (R16,R16)

{no=19, kl=POLOP}
Polymorphic Operation

attributes

deferring relationship number (R242)
class key letter (R17)
analysis area id [ID] (R215,R17,R242)
operation id [ID] (R215)

{no=18, kl=FOPD}
Further Operation Deferral

attributes

child relationship number (R243)
subclass class key letter [ID] (R241)
operation id [ID] (R241)
analysis area id [ID] (R241,R243)

{no=17, kl=I}Identifier
attributes

preferred 
class key letter [ID] (R14)
identifier number [ID]
analysis area id [ID] (R14)

{no=16, kl=SP}
Subclass Participation

attributes

relationship end (R220)
subclass class key letter [ID] (R13)
relationship number [ID] (R13,R220)
analysis area id [ID] (R13,R13,R220)

{no=15, kl=GEN}Generalisation
attributes

superclass class key letter (R12)
relationship number [ID]
analysis area id [ID] (R12)

{no=14, kl=RI}Referential Identifier
attributes

referenced identifier class key letter (R20)
referenced identifier number (R20)
relationship end [ID]
relationship number [ID] (R22,R21)
analysis area id [ID] (R22,R21,R20)

{no=13, kl=NRA}

Non Referential 
Attribute

attributes

class key letter [ID] (R10)
attribute name [ID] (R10)
analysis area id [ID] (R10)

{no=12, kl=RA}Referential Attribute
attributes

referencing class key letter [ID] (R10)
referential attribute name [ID] (R10)
analysis area id [ID] (R10)

{no=11, kl=DE}Derivation Element
attributes

element relationship number [ID] (R8)
derived relationship number [ID] (R8)
analysis area id [ID] (R8,R8)

{no=10, kl=DA}
Derived Association

attributes

relationship number [ID] (R7)
analysis area id [ID] (R7)

{no=9, kl=FA}
Formalised Association

attributes

location of formalisation 
relationship number [ID] (R7)
analysis area id [ID] (R7)

{no=8, kl=NAC}
Non Association Class

attributes

class key letter [ID] (R5)
analysis area id [ID] (R5)

{no=7, kl=AC}Association Class
attributes

relationship number (R29)
association multiplic ity 
class key letter [ID] (R5)
analysis area id [ID] (R5,R29)

{no=6, kl=DEFOPI}

Deferred Operation 
Implementation

attributes

description 
method 
subclass class key letter [ID] (R241)
operation id [ID] (R241)
analysis area id [ID] (R241)

{no=5, kl=A}Attribute
attributes

default value 
data type name (R71)
description 
attribute name [ID]
class key letter [ID] (R9)
analysis area id [ID] (R9,R71)

{no=4, kl=UMLA}UML Association
attributes

is foreign 
B end class key letter (R3)
A end class key letter (R2)
B end role name 
A end role name 
B end multiplicity 
A end multiplicity 
B end conditionality 
A end conditionality 
description 
relationship number [ID]
analysis area id [ID] (R225,R2,R3)

{no=3, kl=DEFOP}Deferred Operation
attributes

parent class key letter (R244)
subclass class key letter [ID] (R245)
operation id [ID] (R244,R240)
analysis area id [ID] (R244,R240,R245)

{no=2, kl=C}Class
attributes

is foreign 
description 
class name 
class number 
class key letter [ID]
analysis area id [ID] (R224)
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Figure 9: An industrial strength model (of executable UML, courtesy of Abstract Solutions Ltd) com-
prising a strongly ordered core (admittedly, one defined by generalisation—an area for further study—as
well as containment, and visually apparent only to a subject matter expert) surrounded by an unordered
covering.
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