
Dragan Bošnački, Stefan Edelkamp, Alberto Lluch Lafuente
& Anton Wijs (Eds.): 3rd Workshop on
GRAPH Inspection and Traversal Engineering (GRAPHITE 2014)
EPTCS 159, 2014, pp. 2–14, doi:10.4204/EPTCS.159.2

© G. Kant & J.C. van de Pol
This work is licensed under the
Creative Commons Attribution License.

Generating and Solving Symbolic Parity Games

Gijs Kant∗ Jaco van de Pol
kant@cs.utwente.nl vdpol@cs.utwente.nl

Formal Methods & Tools

University of Twente, Enschede, The Netherlands

We present a new tool for verification of modal µ-calculus formulae for process specifications, based
on symbolic parity games. It enhances an existing method, that first encodes the problem to a
Parameterised Boolean Equation System (PBES) and then instantiates the PBES to a parity game. We
improved the translation from specification to PBES to preserve the structure of the specification in
the PBES, we extended LTSmin to instantiate PBESs to symbolic parity games, and implemented the
recursive parity game solving algorithm by Zielonka for symbolic parity games. We use Multi-valued
Decision Diagrams (MDDs) to represent sets and relations, thus enabling the tools to deal with
very large systems. The transition relation is partitioned based on the structure of the specification,
which allows for efficient manipulation of the MDDs. We performed two case studies on modular
specifications, that demonstrate that the new method has better time and memory performance than
existing PBES based tools and can be faster (but slightly less memory efficient) than the symbolic
model checker NuSMV.

1 Introduction

When verifying large systems or modelling large games with, say, billions or even trillions of states,
datastructures are needed that can represent such large numbers of states, e.g., Multi-valued Decision
Diagrams (MDDs). We have developed a tool that enables verification of modal µ-calculus formulae for
process algebraic specifications using MDDs. The tool, called pbes2lts-sym, is now part of LTSmin, a
toolset for high performance verification that is language-independent [3]1. The tool can deal with very
large state spaces, provided that the transition relation of the modelled system can be partitioned into
relatively independent groups. LTSmin is used in several application domains, including verification of
railway safety systems. In this paper a case study is included where the presented method is applied to
analysis of the control software used in the Large Hadron Collider at CERN.

An established method for verification of µ-calculus is translation of the problem to a Parity Game
(PG) and then solving the game. Our starting point is a Linear Process Specification (LPS), specified
in the process algebraic language mCRL2. A possible translation of the verification problem to a parity
game is shown as the dotted route through Fig. 1: first instantiating the LPS to a Labelled Transition
System (LTS) and then translating satisfaction of a formula by the LTS to a parity game. We follow the
more symbolic route, taken in the mCRL2 toolset.2 This verification approach corresponds to the solid
line route in Fig. 1. The problem is first translated to a Parameterised Boolean Equation System (PBES)
[12], a sequence of Boolean fixpoint equations with data variables, of which the solution is true if and
only if the specification satisfies the formula. The PBES is instantiated to a parity game with the same

∗Gijs Kant is sponsored by the NWO under grant number 612.000.937 (VOCHS).
1Available from http://fmt.cs.utwente.nl/tools/ltsmin (Open Source).
2See http://mcrl2.org.

http://dx.doi.org/10.4204/EPTCS.159.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://fmt.cs.utwente.nl/tools/ltsmin
http://mcrl2.org

G. Kant & J.C. van de Pol 3

LPS

lps2pbes

PBES

instantiation

instantiation

µ-calculus
formula

LTS

lts2pg

PG solve

Figure 1: Overview.

solution. An advantage of the second approach is that the intermediate step of generating the LTS, which
can be rather large, is not needed. Furthermore, property-specific reduction techniques can be applied to
the PBES, which would result in a smaller parity game.

Parity games are two player games, represented by a game graph where the nodes represent the states
of the game and the edges the possible moves, and each node belongs to one of the players (representing
‘and’ and ‘or’) and has a priority. Solving a parity game (locally) means determining if a winning strategy
from the initial state exists for one of the players. The concepts that are used will be briefly explained in
Section 2.

When the system is very large, also the parity game that encodes satisfaction of a formula for that
system can become very large. Therefore we need efficient data structures and algorithms to generate and
solve the game.

In earlier work [14], we presented an early version of the pbes2lts-sym tool for generating parity
games from PBESs. We use symbolic parity games, in which MDDs are used to represent sets of states
and the relations encoding the moves, partitioned in transition groups. Other existing tools for solving
PBESs, available in the mCRL2 toolset, use an explicit state representation, which severely limits the size
of system that can be verified. The pbes2lts-sym tool is based on technology for generating symbolic
state spaces, as is the tool lps2lts-sym for generating the state space for an LPS, which is described
extensively in [2]. In lps2lts-sym, states are represented as vectors of values and are stored in an MDD.
In order to be efficient, it is required that the specification is modular, i.e., that the transition relation can
be partitioned into transition groups and that each of these groups depend on and influence only a small
part of the state vector. This locality of transitions is expressed in a dependency matrix. When this matrix
is sparse, the relations can be represented very compactly and applied to sets of states efficiently. Because
of that, the structure of a system is more important than its size (we consider locality of transitions to be a
structural property op the system). For pbes2lts-sym, the structure of the PBES is equally important.
The generation of symbolic parity games is described in Section 4.

In the existing translation from specification to PBES, as described in [11] and available in the mCRL2
toolset, the structure of the process specification is not explicitly visible in the generated PBES. One
equation is generated per propositional variable in the formula, disregarding the structure of the system.
This makes it impossible to choose a good partition of the transition relation for generating a parity game.
In the previous version of pbes2lts-sym, we tried to guess a partition by splitting conjunctive equations
in conjuncts and disjunctive equations in disjuncts. That way symbolic data structures could be used, but
far from optimal since it disregards the original process structure, hindering efficient MDD manipulation.
The importance of the partitioned transition relation in symbolic verification is well known in the literature
and the basis of the success of tools like NuSMV [7] and techniques like saturation [6].

In this article we propose a modified translation from LPS to PBES to preserve the structure such

4 Generating and Solving Symbolic Parity Games

that the pbes2lts-sym tool can base the partitioning on the structure of the specification and can benefit
in the same way from a sparse dependency matrix as the symbolic tools for generating LTSs. The new
translation to PBESs is presented in Section 3.

The previous version of pbes2lts-sym did only generate parity games, not solve them. We imple-
mented the recursive algorithm of Zielonka [17] (similar to [1]) for symbolic parity games. The solver is
decribed in Section 5. The combination of generation and solving is now available as part of the LTSmin
toolset.

We performed two large case studies, presented in Section 6, solving the Connect Four game and
verification of control software in use at the CMS particle detector at CERN.3 Both are challenging
problems for model checking tools. The new tools show significant improvement of time and memory
performance over existing tools in the mCRL2 toolset and pbes2lts-sym with the previous translation
from LPS to PBES. For the Connect Four game we also compared to NuSMV, where our tool is faster,
but NuSMV has better memory performance.

2 Background

In this section we will briefly explain Linear Process Specifications, Modal µ-calculus, Parameterised
Boolean Equation Systems and Parity Games. More extensive descriptions can be found in, e.g., [10]
(linear processses), [12] (PBESs), [4] and [9] (parity games).

2.1 Process algebra

The mCRL2 language is a process algebraic modelling language with algebraic data types. Several
analysis techniques are available in the mCRL2 toolset, such as simulation, visualisation and model
checking. For analysis purposes a specification is linearised to Linear Process Specification (LPS) format.
Linearisation removes concatenation of actions, parallel composition, hiding, etc. An LPS consists
of a single process with summands of the form “

∑
d : D guard→ action . next state” and an initial state

of the process. The LPS gives rise to a Labelled Transition System (LTS). The summands model the
nondeterministic choice in the system.

Definition 2.1 (Linear Process). A linear process has the following structure:

proc P(xp : Dp) =
∑
i∈I

∑
y : Ei

ci(xp,y)→ai(fi(xp,y)) . P(gi(xp,y))

The specification consists of m summands i ∈ I with I = {1, . . . ,m}. Each summand may sum over a data sort
Ei, has a guard ci, a parameterised action ai, that is enabled if the guard is satisfied, and the specification
of the behaviour after having executed the action, specified by the recursive definition P(gi(xp,y)). In
examples the +-operator will be used for combining summands instead of the sum notation.

Example 2.2. As an example we give a model of a buffer with two cells:
proc Buffer(q : List(D)) =∑

d : D

(#q < 2)→ read(d) . Buffer(q /d)

+ (q , [])→ send(head(q)) . Buffer(tail(q));
init Buffer([]);

3Instructions on how to install and use the tools and the files used in the case studies are available at http://www.cs.
utwente.nl/~kant/graphite2014/.

http://www.cs.utwente.nl/~kant/graphite2014/
http://www.cs.utwente.nl/~kant/graphite2014/

G. Kant & J.C. van de Pol 5

The process Buffer has a data parameter q, which is a list of elements from D, modelling the contents of
the buffer. The size of q is denoted #q. The process can either read a value d and proceed with Buffer(q/d)
(the same process, but with d appended to q), or send the first element of q and proceed with Buffer(tail(q)).
The system is initialised to the Buffer process with q = [], the empty list, as parameter.

2.2 First order modal µ-calculus

The first order modal µ-calculus is Hennesy-Milner logic extended with fixpoint operators, quantifiers and
data parameters. Formulae are defined by the grammar:

φF b | ¬b | φ∧φ | φ∨φ | [α]φ | 〈α〉φ | Qd : D . φ | Z(e) | σZ(x : DB d) . φ

where b is a boolean data expression, Q ∈ {∀,∃}, σ ∈ {µ,ν} is a minimal (µ) or maximal (ν) fixpoint
operator, with the restriction that each propositional variable Z occurs positively in ϕ in an equation
σZ(x : DB d) . ϕ, i.e., within the scope of an even number of negations. α is some language for specifying
predicates on actions. The class of first order modal µ-calculus formulae is denotedM. The semantics of
formulae interpreted over LTSs is presented in, e.g., [11].

2.3 Parameterised Boolean Equation Systems

Satisfaction of a formula by a linear process specification is first translated to a Parameterised Boolean
Equation System (PBES), a system of first order boolean equations. We propose a new translation in
Section 3; here we first define what a PBES is.

Definition 2.3. Predicate formulae ξ are defined by the following grammar:

ξF b | X(~e) | ¬ξ | ξ⊕ ξ | Qd : D . ξ

where ⊕ ∈ {∧,∨,⇒}, Q ∈ {∀,∃}, b is a data term of sort Bool, X ∈ X is a predicate variable, d is a data
variable of sort D, and ~e is a vector of data terms. We will call any predicate formula without predicate
variables a simple formula. We denote the class of predicate formulae F .

Definition 2.4. A First Order Boolean Equation is an equation of the form: σX(~d : D) = ξ where
σ ∈ {µ,ν} is a fixpoint operator, ~d is a vector of data variables of sort D, and ξ is a predicate formula. The
class of first order boolean equations is denoted E.

Definition 2.5. A Parameterised Boolean Equation System (PBES) is a sequence of First Order Boolean
Equations: S = (σ1X1(~d1 : D1) = ξ1) . . . (σnXn(~dn : Dn) = ξn)

The semantics and solution of PBESs are described in, e.g., [12]. The order of the equations does
matter.

2.4 Parity games

A parity game is a game between two players, player 0 (also called ∃loise or player even) and player 1
(also called ∀belard or player odd), where each player owns a set of places. On one place a token is placed
that can be moved by the owner of the place to an adjacent place. The parity game is represented as a
graph. We borrow notation from [4] and [15].

Definition 2.6 (Parity Game). A parity game is a graph G = 〈V,E,V0,V1,vI ,Ω〉, with

• V the set of vertices (nodes or places or states);

6 Generating and Solving Symbolic Parity Games

• E : V ×V the set of transitions;

• Vp ⊆ V the set of places owned by player p, for p ∈ {0,1}, with V0∪V1 = V and V0∩V1 = ∅;

• vI ∈ V the initial state of the game;

• Ω : V → N assigns a priority Ω(v) to each vertex v ∈ V .

The vertices in the graph represent the instantiated variables from the equation system. The edges
represent possible moves of the token (initially placed on vI) and encode dependencies between variables.
In the parity game, player 0 owns the vertices that represent disjunctions, player 1 the vertices that
represent conjunctions.

Player 0 is the winner of a play π if π is a finite play v0v1 · · ·vr ∈ V+ and vr ∈ V1 and no move is
possible from vr; or π is an infinite play and min(Inf(Ω(π))), the minimum of the priorities that occur
infinitely often in π, is even. A (memoryless) strategy for player a is a function fa : Va → V . A play
π = v0v1 · · · is conform to fa if for every vi ∈ π, vi ∈ Va⇒vi+1 = fa(vi). Player 0 is the winner of the game
if and only if there exists a winning strategy for player 0, i.e., from the initial state every play conforming
to the strategy will be won by player 0.

3 Translating modal µ-calculus and LPS to a modular PBES

In this section we describe the adapted version of the translation from first order modal µ-calculus formulae
and LPSs to PBESs. The original translation for µCRL (of which mCRL2 is an extention) was published
in [11]. It translated the satisfaction of a formula by an LPS to a system of equations that consists of one
equation per propositional variable in the formula. In order to be able to generate a parity game from
the PBES efficiently, the equations have to be partitioned in relatively independent parts. In this section
we present a translation that ensures that the structure of the equation system reflects the structure of
the specification, for the modal operators in the formula. This allows to partition the equations based
on the structure of the input specification. To achieve that, we changed the original translation for the
modal operators 〈α〉 and [α]. In our translation, for these operators new equations are introduced for every
summand in the specification.

The translation is defined for a fixed process specification P, as defined in Def. 2.1, and for formulae
of the form ϕ0 = σX(x f : D f B d) . ϕ, i.e., formulae with a fixpoint operator as outmost operator.

Satisfaction of the formula ϕ0 by process P is defined as T(ϕ0), with the function T as defined below.
Let D be the set of data variables. The function T : M→ E∗ generates a sequence of first order

boolean equations for a formula ϕ ∈M. The function T uses a function RHS : M×D∗×{ν,µ} → F ×E∗

(defined below) that produces the right hand side of the equation and a sequence of equations that are
introduced to be used in the right hand side. RHS(ϕ,~v, ς) has a µ-calculus formula ϕ, a sequence of data
variables ~v and a fixpoint operator ς as arguments. The latter two are needed for the newly introduced
equations.

The function T is specified as follows for the fixpoint operator:

T(σX(x f : D f B d) . ϕ) def
=

(
σX̃(~v) = ψ

)
++ Z ++ T(ϕ)

with 〈ψ,Z〉 = RHS(ϕ,~v,σ) and ~v = [x f : D f , xp : Dp]. The operator ++ denotes concatenation of sequences.
A new equation is produced with ψ as right hand side, which is the result of RHS applied to the formula.
The resulting sequence of equations consists of the new equation together with Z, the equations generated
by RHS, and the result of T applied to the remainder of the formula, T(ϕ).

G. Kant & J.C. van de Pol 7

Table 1: Definition of the RHS function that generates a PBES from a µ-calculus formula, defined for a
process P as in Definition 2.1.

RHS(b,~v, ς) def
= 〈b, []〉

RHS(¬b,~v, ς) def
= 〈¬b, []〉

RHS(ϕ1∧ϕ2,~v, ς) def
= 〈ψ1∧ψ2,Z1 ++ Z2〉 with 〈ψi,Zi〉 = RHS(ϕi,~v, ς) for i ∈ {1,2}.

RHS(∀x : D . ϕ,~v, ς) def
= 〈∀x : D . ψ,Z〉 with 〈ψ,Z〉 = RHS(ϕ,~v ++ [x], ς)

RHS([α]ϕ,~v, ς) def
=

〈
Ỹ(~v),
〈 ςỸ(~v) =

∧
i∈I X̃i(~v),

ςX̃1(~v) = ApplySummand(1,ψ)
· · · ,

ςX̃m(~v) = ApplySummand(m,ψ)
Z 〉

〉
with 〈ψ,Z〉 = RHS(ϕ,~v, ς)

RHS(X(d),~v, ς) def
= 〈X̃(d, xp), []〉

RHS(σX(x f : D f B d) . ϕ,~v, ς) def
= 〈X̃(d, xp), []〉

For other operators, the function T is applied to the subformulae recursively, where the resulting sequences
of equations are concatenated.

The function RHS generates the right hand sides of the equations as defined in Table 1 with the
translation for the modal operator defined per summand i as:

ApplySummand(i,ψ) = ∀y : Ei(ai(fi(xp,y)) ∈ ~α�∧ ci(xp,y))⇒ψ[xp B gi(xp,y)]

The cases for boolean conditions b, negation and conjunction are straightforward. For universal quanti-
fication the quantified variable is added to the list of parameters ~v for equations generated by RHS. For
propositional variables and fixpoint subformulae the corresponding variable is used, where the notation X̃
is used to introduce a fresh variable that is guaranteed to be unique in the equation system.
For the modal operator [α]ϕ, the RHS function generates a new equation for each summand and results
in an expression that is a conjunction of the propositional variables that are the left hand sides of these
equations. Every equation generated for a summand i for a formula [α]ϕ, has a right hand side generated
by ApplySummand(i,ψ), where ci is the guard of summand i, gi is the function that describes the transition
to the next state, ψ is the result of applying RHS to the formula ϕ, and ai(fi(xp,y)) ∈ ~α� means that the
action of summand i satisfies the action formula α.
The cases for disjunction, existential quantification and possibility are similar to those for conjunction,
universal quantification and necessity, respectively.

Example 3.1. For the two place buffer in Example 2.2, we want to verify that if a message d is read
through action ‘read’, it will eventually be sent through action ‘send’, which is expressed by the formula:

νY . (∀d : D . ([read(d)] (µX . (〈true〉 true∧ [¬send(d)]X))))∧ [true]Y

Applying the function T results in the equation system in Figure 2. The equation Y represents the νY part
of the formula (which is the whole formula), X represents the µX part. The system is initialised to the
toplevel variable (Y) with the LPS parameters set to their initial value in the specification (q = []).

8 Generating and Solving Symbolic Parity Games

pbes νY(q : List(D)) = (∀d : D . (#q < 2)⇒X(q /d,d)) ∧Y1(q);
νY1(q : List(D)) = Y11(q)∧Y12(q);
νY11(q : List(D)) = (∀d′ : D . (#q < 2)⇒Y(q /d′))
νY12(q : List(D)) = ((q , [])⇒Y(tail(q)));
µX(q : List(D),d : D) = X1(q)∧X2(q,d);
µX1(q : List(D)) = X11(q)∨X12(q);
µX11(q : List(D)) = (#q < 2)
µX12(q : List(D)) = (q , [])
µX2(q : List(D),d : D) = X21(q,d)∧X22(q,d);
µX21(q : List(D),d : D) = (∀d′ : D . (#q < 2)⇒X(q /d′,d))
µX22(q : List(D),d : D) = (head(q) = d∨q = []∨X(tail(q),d));

init Y([]);

Figure 2: Example PBES.

The equation Y1 represents the “[true]Y” part (at the end) of the formula, a conjunction of Y11 and Y12,
each representing a set of transitions from one of the summands of the LPS, followed by Y with the
parameters updated to reflect the new state after the transitions. The equation X1 represents “〈true〉 true”
(‘some action is enabled’), a disjunction of X11 and X12, representing that of one of the two summands is
enabled. The equation X2 represents “[¬send(d)]X” (‘X should hold after every action other than send(d)’),
a conjunction of X21 and X22, representing the transitions that match the action formula ¬send(d).

Having separate equations representing the different summands now allows the tools to make a
partition based on the summands, thus reflecting the structure of the LPS.

4 Generating Symbolic Parity Games

Instantiation to a parity game is similar to generating the reachable state space from a specification;
both involve generating a large graph out of an abstract description. That is the reason we implemented
instantiation of PBESs to parity games as an extension of the high performance verification toolset LTSmin
[3]. LTSmin is modular in the sense that the core algorithms are separated from the input languages by
using a generic interface in between. We extended LTSmin with a PBES language module for generating
symbolic parity games. We discuss instantiation in this section briefly. Details on the language module,
the dependency matrix for PBESs and instantiation to parity games can be found in [14].

The result of instantiation is a symbolic parity game, in which MDDs are used to represent the set of
reachable states of the game, for each player and for each priority the set of states owned by that player
respectively with that priority, and the relations encoding the moves, partitioned in transition groups.

4.1 Parameterised Parity Games

For the instantiation of PBESs to Parity Games, we assume PBESs to be in a specific form: the Paramet-
erised Parity Game (PPG), an equation system where every equation is either conjunctive or disjunctive.
Not every PBES generated from an LPS and a formula (by the translation in Section 3) is a PPG, but any
PBES can be transformed to an equivalent PPG by a transformation described in [14]. During instantiation
every variable associated with a conjunctive expression will belong to player 1, variables with disjunctive
expressions will be owned by player 0.

G. Kant & J.C. van de Pol 9

4.2 State Vectors and the Partitioned Transition Relation

Instantiated variables (predicate variables with concrete parameters) are the states in the generated parity
game. A variable and its data parameters are stored in what in LTSmin is called a state vector. State
vectors are used to encode states in LTSs and parity games, and are vectors of integers 〈x0, x1, · · · , xK〉

(other value types are stored in a database).
Logical dependencies as expressed by the equations are encoded as transitions in the generated parity

game and are computed by a successor function Next.
During generation, LTSmin builds a symbolic transition relation E from the transitions that are

computed by the language module. In LTSmin, E is a partitioned transition relation E = E1∪ . . .∪EM,
consisting of parts Eg which are called transition groups. The parts Eg are stored as MDDs; the composite
relation E is not stored. For every newly encountered state its successors are computed for every transition
group.

Applying the partitioned transition relation can be much more efficient than applying a monolithic
transition relation if the partition is chosen well, as is well known in the literature (see, e.g., [5], [16]).

Computing the successors of a set of states V is then defined as Next(V) =
⋃

1≤g≤M Nextg(V), i.e.,
iterating over the transition groups, where Nextg(V) is the result of applying the relation Eg to V (and
renaming the variables).

It is known that the order in which the different parts of the transition relation are applied often does
matter for performance. For instance, saturation [6] is a technique for optimising the order of application
to minimise the size of the intermediate decision diagrams. In LTSmin several of such techniques are
available.

There are several ways of choosing transition groups for PPGs; we distinguish two. First, choosing
entire equations to form a transition group (which we call simple). This approach is best when the
equation system is generated by the translation in Section 3: if the summands of the original LPS are
relatively independent, then also the equations in the PBES will be relatively independent. Second,
splitting conjunctive equations in conjuncts and disjunctive equations in disjuncts (which we call splitting)
is an option when such independence is not present in the equation system (e.g., when using the previous
lps2pbes translation). However, as will be demonstrated in the experiments, splitting conjuncts and
disjuncts does not per se result in a good partition.

4.3 Dependency matrix

On top of the partitioning of the transition relation into transition groups, we use a dependency matrix to
store information about the dependence of transition groups on the parts xi of the state vector. A group g
is dependent on part i if the variable that is stored in slot i is read or changed by the expression of group g.
Independence is also referred to as locality: when the dependency matrix is sparse, the effect of transition
groups is relatively local. A detailed description is in [14], we will explain it here using an example.

Example 4.1. Suppose we have an LPS that models the Tic Tac Toe game as a process with parameters
b1 . . . b9 to encode the board configuration and parameter p to encode whose turn it is. Suppose that
the LPS has separate summands for every position on the board, i.e., a summand for placing a piece
on position b1, one for b2, etc. We want to check the property that player X has a winning strategy:
µZ . [wins(O)] false∧ 〈move(X)〉 (〈wins(X)〉 true∨ [move(O)]Z), which for clarity of the example we

10 Generating and Solving Symbolic Parity Games

present as a modal equation system:

µZ = A∧B µB = 〈move(X)〉C

µA = [wins(O)] false µC = 〈wins(X)〉 true∨ [move(O)]Z .

The resulting PBES for this property is:

pbes µZ(b1, . . . ,b9, p) = A(b1, . . . ,b9, p)∧B(b1, . . . ,b9, p);
µA(b1, . . . ,b9, p) = A1(b1, . . . ,b9, p)∧A2(b1, . . . ,b9, p)∧ · · ·
. . .
µB(b1, . . . ,b9, p) = B1(b1, . . . ,b9, p)∨B2(b1, . . . ,b9, p)∨ · · ·
µB1(b1, . . . ,b9, p) = (b1 = −)∧C(p,b2, . . . ,b9,Opponent(p))
. . .
µB9(b1, . . . ,b9, p) = (b9 = −)∧C(b1, . . . ,b8, p,Opponent(p))
µC(b1, . . . ,b9, p) = . . .
. . .

init Z(−,−,−,−,−,−,−,−,−,X);

Equation A is a conjunction of the equations Ai for 1 ≤ i ≤ 9, where each equation Ai means that
[wins(O)] false holds for summand i in the LPS; in other words, that there is no action wins(O) enabled in
that summand. Equation B is a disjunction of the equations Bi for 1 ≤ i ≤ 9, where each equation Bi means
that 〈move(X)〉C holds for summand i; in other words, that there is an action move(X) enabled, which is
true if bi = −, and that afterwards C holds for the state resulting from the action.

Each of B1 to B9 represents a single move on the board, and is computed by a single transition group
touching only a small number of parameters.

g Var b1 b2 b3 . . . b9 p
Z + − − − − −

A + − − − − −

. . .
B + − − − − −

B1 + + − − − +

B2 + − + − − +

. . .
B9 + − − − + +

C + − − − − −

. . .

Figure 3: Dependency matrix for the
Tic Tac Toe game.

The resulting dependency matrix is in Figure 3. For the
transition groups B1 to B9, repectively the board parameters
b1 to b9 are marked as dependent (+). The group of equation
Z only changes the predicate variable Var and none of the
parameters. This way the matrix is very sparse and transitions
can be encoded efficiently.

If a transition group g is only dependent on, for instance,
parameters 1 and 3 (as for B2 in the example), then a transition
〈0,0,1,1,1, . . .〉 →g 〈2,0,2,1,1, . . .〉 is simply stored as a vec-
tor of tuples of old and new values for dependent parameters:
〈〈0,2〉 , 〈1,2〉〉 Also, once a state has been visited with values
〈0,2〉 for parameters 1 and 3, for future fresh states with the
same values for these parameters, transitions for group g do not
have to be computed for that state again. The MDDs used to store the partitioned transition relation only
use these shorter vectors of integers, allowing for a compact representation of the transition relation.

5 Symbolic Parity Game Solver

We implemented the recursive algorithm for solving parity games by Zielonka [17] for symbolic parity
games. The recursive algorithm is widely used in practice and easy to implement symbolically. Although
its worst-case complexity is worse than some other algorithms, its performance is very good in practice
[8] (at least for explicit representations of the game). Our solver is similar to the symbolic parity game

G. Kant & J.C. van de Pol 11

solver by Bakera et al. [1]. Our own implementation allows us to reuse the partitioned transition relation
from the instantiation tool directly.

The algorithm returns the set of winning states for player 1 and the set of winning states for player
0 as MDDs. The algorithm makes heavy use of the successor function Next and predecessor function
Prev, which use the partitioned transition relation in the tool. However, in the solver currently available in
pbes2lts-sym no saturation or similar techniques are used; the relations of transition groups are always
applied in the order 1..M.

6 Experiments

We performed experiments to compare our new tool to existing methods for solving PBESs (available in
the mCRL2 toolset), previous versions of our tool and NuSMV 2 [7].

As benchmarks we verified properties for two models. First, we created a model of the well
known Connect Four game (four) in both mCRL2 and NuSMV with different board sizes (the ori-
ginal is 7×6). We verified whether player Yellow has a winning strategy: µX . [wins(Red)] false∧
〈move〉 (〈wins(Yellow)〉 true∨ [move]X). For NuSMV, we used an SMV model and a CTL property
equivalent to the µ-calculus property: EX(yellowwins∨AX(¬redwins∧EX(yellowwins∨AX(. . .)))).

Second, we verified several properties for Finite State Machines (FSMs) that are used in the Compact
Muon Solenoid (CMS) detector, part of the Large Hadron Collider (LHC) at CERN. These state machines
are used to control all the components of the detector, which are organised in a hierarchical manner.
Components send commands to their children, which send status updates to their parent, asynchronously.
In the experiments, we used the wheel subsystem, consisting of 8 FSMs, which we checked for four
properties: absence of deadlocks (nodeadlock), absence of intermediate states in the when phase
(absence), progress and responsiveness. The FSMs, the translation from FSMs to mCRL2, and the
properties have been reported in [13]. We did not compare to NuSMV for this model.

The mCRL2 models are translated to PBESs using the function T, described in Section 3, which
preserves the structure of the LPS (structured), and using the unstructured earlier version of the
translation (unstructured). Both are available in the mCRL2 toolset. The structured version can be
used by passing the -s option to the lps2pbes tool. We compared three tool combinations4:

• pbes2bool, one of the explicit state PBES solvers in the mCRL2 toolset, which instantiates to a
Boolean Equation System (BES) and solves the BES using approximation. We used the unstructured
lps2pbes as the tool performed better with that translation.

• The LTSmin toolset – in particular the tool pbes2lts-sym in combination with our new symbolic
parity game solver spgsolver. We compared three combinations of lps2pbes translations and
transition partitioning (see Section 4.2): simple: unstructured lps2pbes with one group per
equation; split: unstructured lps2pbes with the equations split into conjuncts/disjuncts; and
structured: structured lps2pbes with one group per equation.

• NuSMV 2.5.4 with the -dynamic option to enable dynamic reordering of variables, which appeared
to give better performance.

The experiments were performed on a machine with two quad-core Intel Xeon E5520 CPUs @ 2.27
GHz and 24GB memory. Every tool was given a 20 GB memory limit and a 24 h time limit. We report

4Details on versions of the tools and options passed to the tools can be found on http://www.cs.utwente.nl/~kant/
graphite2014/.

http://www.cs.utwente.nl/~kant/graphite2014/
http://www.cs.utwente.nl/~kant/graphite2014/

12 Generating and Solving Symbolic Parity Games

Table 2: Experimental results for ConnectFour and the CERN case study. Time is measured in seconds,
memory usage in multiples of 1,000 KiB. ‘gen’ indicates time and memory used for generating a parity
game, ‘solve’ solving and ‘total’ and ‘max’ indicate the total time and maximum memory used in all steps
combined.

MDD Trans. Time (s) Memory (×1,000 KiB)
System Tool #States nodes nodes gen solve total gen solve max

four.5x4 NuSMV 74 67
pbes2bool 1.8 ·106 118 1,678
LTSmin simple 1.3 ·107 5.4 ·105 2.0 ·106 1,136 171 1,307 215 298 298
LTSmin split 2.1 ·107 8.5 ·104 3.1 ·103 19 84 103 52 118 118
LTSmin struct 1.3 ·107 4.5 ·104 6.6 ·102 7.3 37 44 49 76 76

four.6x4 NuSMV 2,657 432
pbes2bool – >20,000
LTSmin split 7.1 ·108 2.8 ·105 4.3 ·103 94 1,435 1,529 65 1,242 1,242
LTSmin struct 3.8 ·108 1.5 ·105 8.9 ·102 13 565 586 50 770 770

four.6x5 NuSMV >86,400 –
LTSmin split 4.6 ·1010 1.8 ·106 6.3 ·103 949 37,697 38,646 328 13,706 13,706
LTSmin struct 2.6 ·1010 1.6 ·106 1.3 ·103 574 17,139 17,713 324 13,706 13,706

four.7x5 NuSMV >86,400 –
LTSmin split 3.1 ·1012 5.1 ·106 8.4 ·103 6,988 – – 1,300 >20,000 >20,000
LTSmin struct 1.6 ·1012 3.3 ·106 1.7 ·103 1,122 – – 520 >20,000 >20,000

four.6x6 LTSmin struct 1.6 ·1012 2.2 ·107 1.8 ·103 10,750 – – 5,439 >20,000 >20,000

four.7x6 LTSmin struct 2.0 ·1014 7.2 ·107 2.2 ·103 81,116 >86,400 >86,400 14,340 >20,000 >20,000

wheel pbes2bool 4.6 ·106 2,190 9,894
nodeadlock LTSmin split 4.6 ·106 2.7 ·105 2.6 ·106 16,856 247 17,103 340 187 340

LTSmin struct 1.4 ·107 3.1 ·105 1.2 ·104 190 47 237 98 118 118

wheel pbes2bool 5.9 ·106 4,420 14,779
absence LTSmin split 2.0 ·107 1.2 ·106 1.1 ·107 28,769 477 29,246 889 770 889

LTSmin struct 2.4 ·107 8.5 ·105 1.3 ·104 1,142 172 1,314 215 118 215

wheel pbes2bool – >20,000
progress LTSmin split 3.2 ·107 1.4 ·107 1.3 ·108 61,156 9,078 70,234 9,050 8,474 9,050

LTSmin struct 6.5 ·107 3.1 ·105 1.2 ·104 1,266 2,471 3,737 142 299 299

the number of states of the generated symbolic parity game, the number of MDD nodes used to store the
set of states and the number of MDD nodes used for storing the relations.

6.1 Results

The results are in Table 2. The models are ordered by their number of states. When a tool was not able to
complete within the constraints, the larger model was skipped for that tool. For the responsiveness
property the pbes2bool did not complete within the 20 GB memory bound and pbes2lts-sym could
not generate the parity game within 24 h. Also, four.7x6 could not be solved by any of the tools.

We can make the following observations. From the results we see that of the different options for
pbes2lts-sym, our new approach performs always best, both in time and memory, compared to the
splitting and simple approach. For both Connect Four and the Wheel model, pbes2bool is up to 9 times
slower and uses up to more than 80 times more memory than the structured approach with pbes2lts-sym,
for cases where both tools finished within the constraints. Comparison with NuSMV shows a mixed

G. Kant & J.C. van de Pol 13

picture. Structured pbes2lts-sym is up to 4.5 times faster, but NuSMV uses up to 1.9 times less memory
(considering the structured approach). Also, NuSMV exceeds the time limit for four.6x5 and larger
and pbes2lts-sym exceeds the memory limit for four.7x5 and larger. That NuSMV is slower can be
explained by the the conjunctive partitioning that is used in the tool, while the non-determinism in the
Connect Four gives rise to a disjunctive specification, which is exploited by the disjunctive partitioning in
pbes2lts-sym. The better memory performance of NuSMV is due to the encoding of the board using
two bits per field, where pbes2lts-sym uses a 32-bit integer for every field.

There is a large difference between the different models in that for the Connect Four game most time
and memory is spent on solving the generated game, not on generating it; for the wheel FSMs it is the
other way around.

7 Conclusions

We have presented an improved method for verifying modal µ-calculus for process algebraic specification,
consisting of an improved translation of the verification problem to a PBES (lps2pbes), an efficient tool
for symbolic instantiation of the PBES to a symbolic parity game based on LTSmin (pbes2lts-sym),
and a new symbolic parity game solver tool (spgsolver). The combination of these tools allows for
high performance model checking of large systems, using MDDs as data structures. The structure of
the specification is used for choosing a good partition of the transition relation, allowing for efficient
application of operations on these data structures.

We compared the performance of the new solution to the existing tool pbes2bool and the symbolic
model checker NuSMV. The new LTSmin based tools perform much better than the previous version
and than pbes2bool both in execution time and memory usage. NuSMV is more memory efficient, but
slower, in comparison to our approach.

We intend to experiment with combinations of disjunctive and conjunctive partitioning in the
pbes2lts-sym tool and the symbolic parity game solver. We want to extend LTSmin to allow for
translation to a parity game for any supported input language. Furthermore, we want to apply optimisa-
tions like saturation and the parallel application of MDD operations in the parity game solver.

References

[1] M. Bakera, S. Edelkamp, P. Kissmann & C.D. Renner (2009): Solving µ-Calculus Parity Games by Symbolic
Planning. In: MoChArt 2008, LNCS 5348, Springer, doi:10.1007/978-3-642-00431-5_2.

[2] S.C.C Blom & J.C. van de Pol (2008): Symbolic Reachability for Process Algebras with Recursive Data Types.
In: ICTAC 2008, LNCS 5160, Springer, doi:10.1007/978-3-540-85762-4_6.

[3] S.C.C. Blom, J.C. van de Pol & M. Weber (2010): LTSmin: Distributed and Symbolic Reachability. In: CAV
2010, LNCS 6174, Springer, doi:10.1007/978-3-642-14295-6_31.

[4] J.C. Bradfield & C. Stirling (2001): Modal logics and mu-calculi: An introduction. In J.A. Bergstra, A. Ponse
& S.A. Smolka, editors: Handbook of Process Algebra, chapter 4, Elsevier, pp. 293–330, doi:10.1016/B978-
044482830-9/50022-9.

[5] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan & D.L. Dill (1994): Symbolic Model Checking for
Sequential Circuit Verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 13(4), pp. 401–424, doi:10.1109/43.275352.

[6] G. Ciardo, G. Lüttgen & R. Siminiceanu (2001): Saturation: An Efficient Iteration Strategy for Symbolic
State-Space Generation. In: TACAS 2001, LNCS 2031, Springer, doi:10.1007/3-540-45319-9_23.

http://dx.doi.org/10.1007/978-3-642-00431-5_2
http://dx.doi.org/10.1007/978-3-540-85762-4_6
http://dx.doi.org/10.1007/978-3-642-14295-6_31
http://dx.doi.org/10.1016/B978-044482830-9/50022-9
http://dx.doi.org/10.1016/B978-044482830-9/50022-9
http://dx.doi.org/10.1109/43.275352
http://dx.doi.org/10.1007/3-540-45319-9_23

14 Generating and Solving Symbolic Parity Games

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani & A. Tacchella
(2002): NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In: CAV 2002, LNCS 2404,
Springer, doi:10.1007/3-540-45657-0_29.

[8] O. Friedmann & M. Lange (2009): Solving Parity Games in Practice. In: ATVA 2009, LNCS 5799, Springer,
doi:10.1007/978-3-642-04761-9_15.

[9] E. Grädel, W. Thomas & T. Wilke, editors (2002): Automata Logics, and Infinite Games. LNCS 2500, Springer,
doi:10.1007/3-540-36387-4.

[10] J.F. Groote & M.A. Reniers (2001): Algebraic process verification. In J.A. Bergstra, A. Ponse & S.A. Smolka,
editors: Handbook of Process Algebra, chapter 17, Elsevier, pp. 1151–1208, doi:10.1016/B978-044482830-
9/50035-7.

[11] J.F. Groote & T.A.C. Willemse (2005): Model-checking processes with data. Science of Computer Program-
ming 56(3), doi:10.1016/j.scico.2004.08.002.

[12] J.F. Groote & T.A.C. Willemse (2005): Parameterised boolean equation systems. Theoretical Computer
Science 343(3), doi:10.1016/j.tcs.2005.06.016.

[13] Y.L. Hwong, J.J.A. Keiren, V.J.J. Kusters, S. Leemans & T.A.C. Willemse (2013): Formalising and analysing
the control software of the Compact Muon Solenoid Experiment at the Large Hadron Collider. Science of
Computer Programming, doi:10.1016/j.scico.2012.11.009.

[14] G. Kant & J.C. van de Pol (2012): Efficient Instantiation of Parameterised Boolean Equation Systems to Parity
Games. In: Graphite 2012, EPTCS 99, doi:10.4204/EPTCS.99.7.

[15] R. Mazala (2002): Infinite Games. In: [9], pp. 197–204, doi:10.1007/3-540-36387-4_2.
[16] R.K. Ranjan, A. Aziz, R.K. Brayton, B. Plessier & C. Pixley (1995): Efficient BDD Algorithms for FSM

Synthesis and Verification. In: IEEE/ACM Proceedings International Workshop on Logic Synthesis, Lake
Tahoe (NV).

[17] W. Zielonka (1998): Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite
Trees. Theoretical Computer Science 200(1–2), doi:10.1016/S0304-3975(98)00009-7. doi:10.1016/S0304-
3975(98)00009-7.

http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-642-04761-9_15
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1016/B978-044482830-9/50035-7
http://dx.doi.org/10.1016/B978-044482830-9/50035-7
http://dx.doi.org/10.1016/j.scico.2004.08.002
http://dx.doi.org/10.1016/j.tcs.2005.06.016
http://dx.doi.org/10.1016/j.scico.2012.11.009
http://dx.doi.org/10.4204/EPTCS.99.7
http://dx.doi.org/10.1007/3-540-36387-4_2
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

	1 Introduction
	2 Background
	2.1 Process algebra
	2.2 First order modal -calculus
	2.3 Parameterised Boolean Equation Systems
	2.4 Parity games

	3 Translating modal -calculus and LPS to a modular PBES
	4 Generating Symbolic Parity Games
	4.1 Parameterised Parity Games
	4.2 State Vectors and the Partitioned Transition Relation
	4.3 Dependency matrix

	5 Symbolic Parity Game Solver
	6 Experiments
	6.1 Results

	7 Conclusions

