
Dragan Bošnački, Stefan Edelkamp, Alberto Lluch Lafuente
& Anton Wijs (Eds.): 3rd Workshop on
GRAPH Inspection and Traversal Engineering (GRAPHITE 2014)
EPTCS 159, 2014, pp. 15–29, doi:10.4204/EPTCS.159.3

c© M. Fernández, H. Kirchner and B. Pinaud
This work is licensed under the
Creative Commons Attribution License.

Strategic Port Graph Rewriting:
An Interactive Modelling and Analysis Framework∗

Maribel Fernández
King’s College London, Department of Informatics, Strand, London WC2R 2LS, UK

maribel.fernandez@kcl.ac.uk

Hélène Kirchner
Inria, Domaine de Voluceau, Rocquencourt BP 105, 78153 Le Chesnay Cedex, France

helene.kirchner@inria.fr

Bruno Pinaud
Bordeaux University, LaBRI CNRS UMR5800, 33405 Talence Cedex, France

bruno.pinaud@labri.fr

We present strategic port graph rewriting as a basis for the implementation of visual modelling and
analysis tools. The goal is to facilitate the specification, analysis and simulation of complex systems,
using port graphs. A system is represented by an initial graph and a collection of graph rewriting
rules, together with a user-defined strategy to control the application of rules. The strategy language
includes constructs to deal with graph traversal and management of rewriting positions in the graph.
We give a small-step operational semantics for the language, and describe its implementation in the
graph transformation and visualisation tool PORGY.
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1 Introduction

In this paper we present strategic port graph rewriting as a basis for the design of PORGY – a visual,
interactive environment for the specification, debugging, simulation and analysis of complex systems.
PORGY has a graphical interface [24] and an executable specification language (see Fig. 1), where
a system is modelled as a port graph together with port graph rewriting rules defining its dynamics
(Sect. 2).

Reduction strategies define which (sub)expression(s) should be selected for evaluation and which
rule(s) should be applied (see [20, 8] for general definitions). Strategies are present in programming
languages such as Clean [25], Curry [18], and Haskell [19] and can be explicitly defined to rewrite terms
in languages such as ELAN [7], Stratego [32], Maude [22] or Tom [4]. They are also present in graph
transformation tools such as PROGRES [30], AGG [12], Fujaba [23], GROOVE [29], GrGen [15] and
GP [28]. PORGY’s strategy language draws inspiration from these previous works, but a distinctive
feature is that it allows users to define strategies using not only operators to combine graph rewriting
rules but also operators to define the location in the target graph where rules should, or should not, apply.

The main contribution of this paper is the definition of a strategic graph program (Sect. 3). It consists
of an initial located graph (that is, a port graph with two distinguished subgraphs P and Q specifying the
position where rewriting should take place, and the subgraph where rewriting is banned, respectively),
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Figure 1: Overview of PORGY: (1) editing one state of the graph being rewritten; (2) editing a rule; (3)
all available rewriting rules; (4) portion of the derivation tree, a complete trace of the computing history;
(5) the strategy editor.

and a set of rewrite rules describing its dynamic behaviour, controlled by a strategy. We formalise the
concept of strategic graph program, showing how located graphs generalise the notion of a term with a
rewrite position, and provide a small-step operational semantics (Sect. 4) that specifies, for each strategic
graph program, a set of rewrite derivations (i.e., a derivation tree) generated by applying the rewrite rules
to the initial located graph according to the given strategy.

Strategies are used to control PORGY’s rewrite engine: users can create graph rewriting derivations
and specify graph traversals using the language primitives to select rewriting rules and the position where
the rules apply. A rewriting position is a subgraph, which can be interactively selected (in a visual way),
or can be specified using a focusing expression. Alternatively, rewrite positions could be encoded in
the rewrite rules using markers or conditions [28]. We prefer to deal with positions directly, following
Dijkstra’s separation of concerns principle [11].

PORGY and its strategy language were first presented in [1, 14]. Unlike those papers, the notion
of port graph considered in this paper includes attributes for nodes, ports and also edges, which are
taken into account in the definition of port graph morphism. In addition, the strategy language includes
a sublanguage to deal with properties of graphs, which facilitates the specification of rewrite positions
and banned subgraphs (to be protected during rewriting). Also, in this paper the operational semantics
of the language is formally defined using a transition system that specifies how the derivation tree is
computed for each strategic graph program. In this transition system, configurations represent the part
of the derivation tree that has already been computed and transitions specify the small-step execution
of the commands. Since the language includes non-deterministic and probabilistic constructs, the full
transition system is probabilistic. We give the transition rules for the deterministic sublanguage and
briefly comment on the probabilistic ones.
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2 Port Graph Rewriting

Several definitions of graph rewriting are available, using different kinds of graphs and rewriting rules
(see, for instance, [10, 16, 5, 27, 6, 21]). In this paper we consider port graphs with attributes associated
to nodes, ports and edges, generalising the notion of port graph introduced in [2].

Intuitively, a port graph is a graph where nodes have explicit connection points called ports; edges
are attached to ports. Nodes, ports and edges are labelled each one by a name and attributes. For
instance, a node or a port may have an attribute “state” (e.g., with possible values active/inactive or
principal/auxiliary) or attributes defining some properties such as colour, shape, type, etc. Attributes
may be used to define the behaviour of the modelled system and for visualisation purposes (as illustrated
in Section 5).

Port Graph with Attributes. A labelled port graph with attributes is a tuple G = (VG, lvG,EG, leG)
where:

• VG is a finite set of nodes.

• lvG is a function that returns, for each v ∈ VG with n ports, a node label N (the node’s name), a
set {p1, . . . , pn} of port labels (each with its own set of attribute labels and values), and a set of
attribute labels (each with a value). The node label determines the set of ports and attributes. Thus,
we may write Interface(v) = Interface(N) = {p1, . . . , pn}.

• EG is a finite set of edges; each edge has two attachment ports (v1, p1),(v2, p2), where vi ∈VG, pi ∈
Interface(vi). Edges are undirected, so 〈(v1, p1),(v2, p2)〉 is an unordered pair, and two nodes may
be connected by more than one edge on the same ports.

• leG is a labelling function for edges, which returns for each e ∈ EG an edge label, its attachment
ports (v1, p1),(v2, p2) and its set of attribute labels, each with an associated value.

Variables may be used as labels for nodes, ports, attributes and values in rewrite rules.
Rewriting is defined using a notion of graph morphism:

Port Graph Morphism. Let G and H be two port graphs, where G may contain variables but H
does not. A port graph morphism f : G→ H maps nodes, ports, edges with their respective attributes
and values from G to H, such that all non-variable labels are preserved, the attachment of edges is
preserved and the set of pairs of attributes and values for nodes, ports and edges are also preserved. If G
contains variable labels, the morphism must instantiate the variables. Intuitively, the morphism identifies
a subgraph of H that is equal to G except for variable occurrences. For more details we refer the reader
to [13].

Port Graph Rewrite Rule. Port graphs are transformed by applying port graph rewrite rules. For-
mally, a port graph rewrite rule is a port graph consisting of two port graphs L and R, called the left-hand
side and right-hand side, respectively; an arrow node labelled by ⇒n, where n is the number of ports,
and each port in the arrow node has an attribute type whose value can be bridge, blackhole or wire; and
a set of edges that each connect a port of the arrow node to ports in L or R. This set of edges must satisfy
the following conditions:

1. A port of type bridge must have edges connecting it to L and to R (one edge to L and one or more
to R).
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2. A port of type blackhole must have edges connecting it only to L (at least one edge).

3. A port of type wire must have exactly two incident edges from L and no edges connecting it to R.
The arrow node and arrow-edges are omitted if they are obvious from L and R.

The left-hand side of the rule, also called pattern, is used to identify subgraphs in a given graph,
which are then replaced by the right-hand side of the rule. The arrow node describes the way the new
subgraph should be linked to the remaining part of the graph, to avoid dangling edges [16, 10] during
rewriting.

Derivation. A port graph G rewrites to G′ using the rule r = L⇒ R and a morphism g from L to G,
written G→g

r G′, if G′ is obtained from G by replacing g(L) by g(R) in G and connecting g(R) to the
rest of G as specified by r’s arrow node. We write G→R G′ if G→g

r G′ using r ∈R. This induces a
reflexive and transitive relation on port graphs, called the rewriting relation, denoted by→∗R . Each rule
application is a rewriting step and a derivation, or computation, is a sequence of rewriting steps.

Derivation Tree. Given a port graph G and a set of port graph rewrite rules R, the derivation tree of
G, written DT (G,R), is a labelled tree such that the root is labelled by the initial port graph G, and its
children are the roots of the derivation trees DT (Gi,R) such that G→R Gi. The edges of the derivation
tree are labelled with the rewrite rule and the morphism used in the corresponding rewrite step. We will
use strategies to specify the rewrite derivations of interest.

3 Strategic graph programs

Located graph. A located graph GQ
P consists of a port graph G and two distinguished subgraphs P and

Q of G, called respectively the position subgraph, or simply position, and the banned subgraph.

In a located graph GQ
P , P represents the subgraph of G where rewriting steps may take place (i.e., P is

the focus of the rewriting) and Q represents the subgraph of G where rewriting steps are forbidden. We
give a precise definition below; the intuition is that subgraphs of G that overlap with P may be rewritten,
if they are outside Q. The subgraph P generalises the notion of rewrite position in a term: if G is the tree
representation of a term t then we recover the usual notion of rewrite position p in t by setting P to be
the node at position p in the tree G, and Q to be the part of the tree above P (to force the rewriting step
to apply at p, i.e., downwards from the node P).

When applying a port graph rewrite rule, not only the underlying graph G but also the position and
banned subgraphs may change. A located rewrite rule, defined below, specifies two disjoint subgraphs
M and N of the right-hand side R that are used to update the position and banned subgraphs, respectively.
If M (resp. N) is not specified, R (resp. the empty graph /0) is used as default. Below, we use the operators
∪,∩,\ to denote union, intersection and complement of port graphs. These operators are defined in the
natural way on port graphs considered as sets of nodes, ports and edges.

Located rewrite rule. A located rewrite rule is given by a port graph rewrite rule L⇒ R, and optionally
a subgraph W of L and two disjoint subgraphs M and N of R. It is denoted LW ⇒ RN

M. We write
GQ

P →
g
LW⇒RN

M
G′Q

′

P′ and say that the located graph GQ
P rewrites to G′Q

′

P′ using LW ⇒ RN
M at position P

avoiding Q, if G→L⇒R G′ with a morphism g such that g(L)∩P = g(W ) or simply g(L)∩P 6= /0 if W is
not provided, and g(L)∩Q = /0. The new position subgraph P′ and banned subgraph Q′ in G′ are defined
as P′ = (P\g(L))∪g(M), Q′ = Q∪g(N); if M (resp. N) are not provided then we assume M = R (resp.
N = /0).
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Let L,R be port graphs; M,N positions; n ∈ N; πi=1...n ∈ [0,1];
n
∑

i=1
πi = 1

(Strategies) S ::= A |U | S;S | repeat(S) | while(S)do(S)

| (S)orelse(S) | if(S)then(S)else(S)

| ppick(S1,π1, . . . ,Sn,πn)

(Applications) A ::= Id | Fail | all(T ) | one(T )

(Transformations) T ::= LW ⇒ RN
M

(Position Update) U ::= setPos(F) | setBan(F) | isEmpty(F)

(Focusing) F ::= CrtGraph | CrtPos | CrtBan | AllNgb(F)

| OneNgb(F) | NextNgb(F) | Property(ρ,F)

| F ∪F | F ∩F | F \F | /0

Table 1: Syntax of the strategy language.

Let attribute be an attribute label; a a valid value for the given attribute label;

function-name the name of a built-in or user-defined function.

(Properties) ρ := (Elem,Expr)|(Function, function-name)

Elem := Node | Edge | Port

Expr := Label== a | Label != a | attribute Relop attribute

| attribute Relop a

Relop := == | != | > | < | >= | <=

Table 2: Syntax of the Property Language.

In general, for a given located rule LW ⇒ RN
M and located graph GQ

P , more than one morphism g, such
that g(L)∩P = g(W ) and g(L)∩Q = /0, may exist (i.e., several rewriting steps at P avoiding Q may be
possible). Thus, the application of the rule at P avoiding Q produces a set of located graphs.

To control the application of rewriting rules, we introduce a strategy language whose syntax is shown
in Table 1. Strategy expressions are generated by the grammar rules from the non-terminal S. A strategy
expression combines applications of located rewrite rules, generated by the non-terminal A, and position
updates, generated by the non-terminal U with focusing expressions generated by F . The application
constructs and some of the strategy constructs are strongly inspired by term rewriting languages such as
ELAN [7], Stratego [32] and Tom [4]. Focusing operators are not present in term rewriting languages
where the implicit assumption is that the rewrite position is defined by traversing the term from the root
downwards.

The syntax presented here extends the one in [14] by including a language to define subgraphs of a
given graph by selecting nodes that satisfy some simple properties (see Table 2).



20 Strategic port graph rewriting

The focusing constructs are a distinctive feature of our language. They are used to define positions
for rewriting in a graph, or to define positions where rewriting is not allowed. They denote functions
used in strategy expressions to change the positions P and Q in the current located graph (e.g., to specify
graph traversals). We describe them briefly below.

• CrtGraph, CrtPos and CrtBan, applied to a located graph GQ
P , return respectively G, P and Q.

• AllNgb, OneNgb and NextNgb denote functions that apply to pairs consisting of a located graph
GQ

P and a subgraph G′ of G. If Pos is an expression denoting a subgraph G′ of the current graph
G, then AllNgb(Pos) is the subgraph of G consisting of all immediate successors of the nodes
in G′, where an immediate successor of a node v is a node that has a port connected to a port
of v. OneNgb(Pos) returns a subgraph of G consisting of one randomly chosen node which is
an immediate successor of a node in G′. NextNgb(Pos) computes all successors of nodes in G′

using for each node only the port labelled “next” (so NextNgb(Pos) returns a subset of the nodes
returned by AllNgb(Pos)).

• Property(ρ,F) is used to select a subgraph of a given graph, satisfying a certain property,
specified by ρ . It can be seen as a filtering construct: if the focusing expression F gener-
ates a subgraph G′ then Property(ρ,F) returns a subgraph containing only the nodes and
edges from G′ that satisfy the decidable property ρ . It typically tests a property on nodes,
ports, or edges, allowing us for instance to select the subgraph of nodes with active ports:
Property((Port,State == active),F). It is also possible to specify a function to be used to com-
pute the subgraph: Property((Function,Root),CrtGraph) uses the built-in (or user-defined)
function Root to compute a specific subgraph from the current graph.

• ∪, ∩ and \ are union, intersection and complement of port graphs which may be used to combine
multiple Property operators; /0 denotes the empty graph.

Other operators can be derived from the language constructs. A useful example is the not construct:

• not(S), if(S)then(Fail)else(Id). It fails if S succeeds and succeeds if S fails.

Strategic graph program. A strategic graph program consists of a finite set of located rewrite rules R,
a strategy expression S (built with R using the grammar in Table 1) and a located graph GQ

P . We denote

it
[
SR ,GQ

P

]
, or simply

[
S,GQ

P

]
when R is clear from the context.

4 Semantics of strategic graph programs

Intuitively, a strategic program consists of an initial port graph, together with a set of rules that will be
used to reduce it, following the given strategy. Formally, the semantics of a strategic graph program[
S,GQ

P

]
is specified using a transition system (that is, a set of configurations with a binary relation on

configurations), defining a small step operational semantics in the style of [26].

Configuration. A configuration is a multiset {O1, . . . ,On} where each Oi is a strategic graph program.

Given a strategic graph program
[
SR ,GQ

P

]
, we will define sequences of transitions according to the

strategy S, starting from the initial configuration {
[
S,GQ

P

]
}. A configuration is terminal if no transitions

can be performed.
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We will prove that all terminal configurations in our transition system consist of results, denoted by
V , of the form [Id,GQ

P ] or [Fail,GQ
P ]. In other words, there are no blocked programs: the transition system

ensures that, for any configuration, either there are transitions to perform, or we have reached results.
Below we provide the transition rules for the core sublanguage, that is, the sublanguage that does not

include the non-deterministic operators one(), () orelse (), ppick(), repeat() and OneNgb().

Transitions The transition relation −→ is a binary relation on configurations, defined as follows:

{O1, . . . ,Ok,V1, . . . ,Vj} −→ {O′11, . . . ,O
′
1m1

, . . . ,O′kmk
,V1, . . . ,Vj}

if Oi→{O′i1, . . . ,O′imi
}, for 1≤ i≤ k, where k ≥ 1 and where some of the O′i j might be results.

The auxiliary relation→ is defined below using axioms and rules.

A configuration {O1, . . . ,Ok,V1, . . . ,Vj} is a multiset of graph programs, representing a partially com-
puted derivation tree. Each element in the configuration represents a node in the derivation tree associated
to the initial graph program. Some of the elements may already be results. The transition relation per-
forms reductions in parallel at all the positions in the derivation tree where there is a reducible graph
program Oi.

Definition The transition relation→ on individual strategic graph programs is defined by induction.
There are no axioms/rules defining transitions for a program where the strategy is Id or Fail (these

are terminal).
Axioms for the operator all:

LSLW⇒RN
M
(GQ

P ) = {G1
Q1
P1
, . . . ,Gk

Qk
Pk
}

[all(LW ⇒ RN
M),GQ

P ]→{[Id,G1
Q1
P1
], . . . , [Id,Gk

Qk
Pk
]}

LSLW⇒RN
M
(GQ

P ) = /0
[all(LW ⇒ RN

M),GQ
P ]→{[Fail,G

Q
P ]}

where LSLW⇒RN
M
(GQ

P ), the set of legal reducts of GQ
P for LW ⇒ RN

M, or legal set for short, contains all the

located graphs Gi
Qi
Pi

(1≤ i≤ k) such that GQ
P →

gi
LW⇒RN

M
Gi

Qi
Pi

and g1, . . . ,gk are pairwise different.
As the name of the operator indicates, all possible applications of the rule are considered in one step.

The strategy fails if the rule is not applicable.
Position Update and Focusing. Next we give the semantics of the commands that are used to specify

and update positions via focusing constructs. The focusing expressions generated by the grammar for
the non terminal F in Tab. 1 have a functional semantics (see below). In other words, an expression F
denotes a function that applies to the current located graph, and computes a subgraph of G. Since there
is no ambiguity, the function denoted by the expression F is also called F .

F(GQ
P ) = P′

[setPos(F),GQ
P ]→{[Id,G

Q
P′ ]}

F(GQ
P ) = Q′

[setBan(F),GQ
P ]→{[Id,G

Q′
P ]}

F(GQ
P ) = /0

[isEmpty(F),GQ
P ]→{[Id,G

Q
P ]}

F(GQ
P ) 6= /0

[isEmpty(F),GQ
P ]→{[Fail,G

Q
P ]}
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CrtGraph(GQ
P ) = G CrtPos(GQ

P ) = P CrtBan(GQ
P ) = Q

AllNgb(F)(GQ
P ) = G′ where G′ consists of all immediate successors of

nodes in F(GQ
P )

NextNgb(F)(GQ
P ) = G′ where G′ consists of the immediate successors,

via ports labelled “next”, of nodes in F(GQ
P )

Property(ρ,F)(GQ
P ) = G′ where G′ consists of all nodes in F(GQ

P ) satisfying ρ

(F1 op F2)(G
Q
P ) = F1(G

Q
P ) op F2(G

Q
P ) where op is ∪,∩,\

Note that with the semantics given above for setPos() and setBan(), it is possible for P and Q to
have a non-empty intersection. A rewrite rule can still apply if the redex overlaps P but not Q.

Sequence. The semantics of sequential application, written S1;S2, is defined by two axioms and a
rule:

[Id;S,GQ
P ]→{[S,G

Q
P ]} [Fail;S,GQ

P ]→{[Fail,G
Q
P ]}

[S1,G
Q
P ]→{[S

1
1,G1

Q1
P1
], . . . , [Sk

1,Gk
Qk
Pk
]}

[S1;S2,G
Q
P ]→{[S

1
1;S2,G1

Q1
P1
], . . . , [Sk

1;S2,Gk
Qk
Pk
]}

The rule for sequences ensures that S1 is applied first.
Conditional. The behaviour of the strategy if(S1)then(S2)else(S3) depends on the result of the

strategy S1. If S1 succeeds on (a copy of) the current located graph, then S2 is applied to the current
graph, otherwise S3 is applied.

{[S1,G
Q
P ]} −→

∗ M s.t. [Id,G′] ∈M

[if(S1)then(S2)else(S3),G
Q
P ]→{[S2,G

Q
P ]}

{[S1,G
Q
P ]} −→

∗ {[Fail,G1], . . . , [Fail,Gn]}

[if(S1)then(S2)else(S3),G
Q
P ]→{[S3,G

Q
P ]}

While loop. Iteration is defined using a conditional as follows:

[while(S1)do(S2),G
Q
P ]→{[if(S1)then(S2;while(S1)do(S2))else(Id),G

Q
P ]}

Note that S1 used as a condition in the two constructs above may produce some successes and some
failure results. Also, in general the strategy S1 could be non-deterministic and/or non-terminating. To
avoid non-deterministic conditions in if and while commands, the class Cond of strategies generated by
the following grammar should be used:

Cond ::=Cond;Cond | Id | Fail | all(T ) | isEmpty(F) | not(Cond)

where F should also be deterministic:

F ::= AllNgb(F) | NextNgb(F) | Property(ρ,F) | ∪ | ∩ | \ | /0

However, using non-deterministic constructs in the condition is not necessarily unsafe: if R is a
located rule, we could, for instance, write if(one(R))then(S2)else(S3) to perform either S2 or S3,
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depending on whether R is applicable at the current position or not. Also note that although the strategy
one(R) is non-deterministic, the strategy not(one(R)) is deterministic (we are simply testing whether R
can be applied or not).

We finish this section by giving the intuition for the semantics of the remaining constructs.
To define the semantics of the non-deterministic and probabilistic constructs in the language, we

generalise the transition relation. Let us denote by→π a transition step with probability π . The relation
→ defined above can be seen as a particular case where π = 1, that is,→ corresponds to→1. The relation
−→ on configurations also becomes probabilistic:

{O1, . . . ,Ok,V1, . . . ,Vj} −→π {O′11, . . . ,O
′
1m1

, . . . ,O′kmk
,V1, . . . ,Vj}

if Oi →πi {O′i1, . . . ,O′imi
}, for 1 ≤ i ≤ k (where k ≥ 1 and some of the O′i j might be results) and π =

π1×·· ·×πk.
We write M −→∗π M′ if there is a sequence of transitions−→πi from configuration M to M′, such that

the product of probabilities is π .
We can define transition rules for the remaining constructs in the strategy language as follows.
Probabilistic Choice of Strategy:

[ppick(S1,π1, . . . ,Sn,πn),G
Q
P ]→π j {[S j,G

Q
P ]}

Non-deterministic Choice of Reduct: The non-deterministic one() operator takes as argument a rule.
It randomly selects only one amongst the set of legal reducts LSLW⇒RN

M
(GQ

P ). Since all of them have the

same probability of being selected, in the axiom below π = 1/|LSLW⇒RN
M
(GQ

P )|.

G′Q
′

P′ ∈ LSLW⇒RN
M
(GQ

P )
[one(LW ⇒ RN

M),GQ
P ]→π {[Id,G′Q

′

P′ ]}

LSLW⇒RN
M
(GQ

P ) = /0
[one(LW ⇒ RN

M),GQ
P ]→1 {[Fail,GQ

P ]}

We omit the rules for orelse and repeat, and for the commands setPos(F), setBan(F) and
isEmpty(F), which are non-deterministic if the expression F is non-deterministic. Note that in focusing
constructs, non-determinism is introduced by the operator OneNgb(F).

5 Examples

Using focusing (specifically the Property construct), we can create concise strategies that perform
traversals1. In this way, we can for instance switch between outermost and innermost term rewriting (on
trees). This is standard in term-based languages such as ELAN [7] or Stratego [32, 9]; here we can also
define traversals in graphs that are not trees. More examples can be found in [1, 24, 14].

The following strategy allows us to check if a graph is connected using a standard connectivity test.
Assuming that all nodes of the initial graph have the Boolean attribute state set to false, we just need
one rewriting rule, which simply sets state to true on a node. We start with the strategy pick-one-node to
randomly select a node v as a starting point. Then, the rule is applied to all neighbours of v. When the
rule cannot be applied any longer, the position subgraph is set to all neighbours of the previously used

1Working examples can be downloaded from http://tulip.labri.fr/TulipDrupal/?q=porgy.

http://tulip.labri.fr/TulipDrupal/?q=porgy
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nodes which still have state set to f alse (visit-neighbours-at-any-distance). The strategy continues until
the position subgraph is empty. If the rule can still be applied somewhere in the graph, there is a failure
(check-all-nodes-visited). Note the use of attributes and focusing constructs to traverse the graph. Below
the strategy R is an abbreviation for one(R).

pick-one-node: setPos(CrtGraph);

R;

setPos(Property((Node,state == true),CrtGraph));

visit-neighbours-at-any-distance: setPos(AllNgb(CrtPos));

while(not(isEmpty(CrtPos)))do(

if(R)then(R)else(

setPos(AllNgb(CrtPos)\
Property((Node,state == true),CrtGraph))));

check-all-nodes-visited: setPos(CrtGraph);

not(R)

The next example uses node and edge attributes encoded inside two rules to build a spanning tree
from a graph (see Fig. 2). The rules are: start, which is used to select the root of the tree, and LC0, which
builds a branch of the tree. LC0 works as follows: given an existing node v of the tree, if v is linked to
another node not part of the tree with an edge also not part of the tree, add both of them to the tree. The
strategy used to build one spanning tree is very simple:

one(start);

repeat(one(LC0))

If one wants all possible spanning trees, one() has simply to be replaced by all(). Figure 3 shows
the results for three applications of the strategy.

6 Properties

In this section we discuss termination and completeness of the strategy language.

Termination. A strategic graph program
[
S,GQ

P

]
is terminating if there is no infinite transition sequence

from the initial configuration {
[
S,GQ

P

]
}. It is weakly terminating if a configuration having at least one

result can be reached.

Result set. The result set associated to a sequence of transitions out of the configuration {
[
S,GQ

P

]
} is

the set of all the results in the configurations in the sequence. Given a strategic graph program
[
S,GQ

P

]
,

if the sequence of transitions out of the initial configuration {
[
S,GQ

P

]
} ends in a terminal configuration

then the result set of the sequence is a complete result set for the program
[
S,GQ

P

]
. If a strategic graph

program does not reach a terminal configuration (in case of non-termination) then the complete result set
is undefined (⊥).
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Figure 2: Computation of a spanning tree. Panel 1 shows the rule LC0. It is used to add nodes and edges
to the spanning tree. Panel 2 shows the rule which sets the root of the tree. Panel 3 is the root of the
derivation tree with the graph used for computation.

Note that there may exist more than one sequence of transitions out of the initial configuration
{
[
S,GQ

P

]
} ending in a terminal configuration. However, for the core part of the language (that is, exclud-

ing the non-deterministic constructs ppick(), ()orelse(), repeat(), one(), and OneNgb()), strategic
graph programs have at most one terminal configuration (none if the program is non-terminating). As
a consequence, each strategic graph program in the core language has at most one complete result set
(Prop. 6.4).

Graph programs are not terminating in general, however we can identify a terminating sublanguage
(i.e. a sublanguage for which the transition relation is terminating). We can also characterise the terminal
configurations. The next lemma is useful for the termination proof:

Lemma 6.1 If [S1,G
Q
P ] is terminating and S2 is such that [S2,G′

Q
P ] is terminating for any G′QP , then

[S1;S2,G
Q
P ] is terminating.

Property 6.2 (Termination) The sublanguage that excludes the while() and repeat() constructs is
terminating.

Property 6.3 (Progress: Characterisation of Terminal Configurations) For every strategic graph
program [S,GQ

P ] that is not a result (i.e., S 6= Id and S 6= Fail), there exists a configuration C such that
{[S,GQ

P ]}→C.

Proof By induction on S. According to the definition of transition in Sect. 4, for every strategic graph
program [S,GQ

P ] different from [Id,GQ
P ] or [Fail,GQ

P ], there is an axiom or rule that applies (it suffices to
check all the cases in the grammar for S).

The language contains non-deterministic operators in each of its syntactic categories: OneNgb() for
Position Update, one() for Applications and ppick(), ()orelse() and repeat() for Strategies. For the
sublanguage that excludes them, we have the property:
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Figure 3: Three spanning trees given by applying the strategy three times from G0 (see Fig. 2).

Property 6.4 (Unique Complete Result Set) Each strategic graph program in the sublanguage that ex-
cludes OneNgb(), one(), ppick(), ()orelse() and repeat() has at most one complete result set.

Proof If we exclude those constructs, the transition system is deterministic, so there is at most one
sequence of transitions out of any initial configuration. Hence there is at most one terminal configuration
and therefore at most one complete result set.

With respect to the computation power of the language, it is easy to state the Turing completeness
property. The proof is similar to that in [17].

Property 6.5 (Turing Completeness) The set of all strategic graph programs
[
SR ,GQ

P

]
is Turing com-

plete, i.e. can simulate any Turing machine.

7 Implementation

PORGY is implemented on top of the visualisation framework Tulip [3] as a set of Tulip plugins. The
strategy language is one of these plugins. A version of Tulip bundled with PORGY can be downloaded
from http://tulip.labri.fr/TulipDrupal/?q=porgy.

Our first challenge was to implement port graphs, because Tulip only supports nodes and edges from
a graph theory point of view. We had to develop an abstract layer on top of the Tulip graph library to be
able to easily work with port graphs.

When applying a rule L⇒ R on a graph G, the first operation is to compute the morphism between
the left-hand side L and G. This problem, known as the graph-subgraph isomorphism, still receives
great attention from the community. We have implemented Ullman’s original algorithm [31] because its
implementation is straightforward and it is used as a reference in many papers.

http://tulip.labri.fr/TulipDrupal/?q=porgy
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The derivation tree is implemented with the help of metanodes (a node which represents a graph)
and quotient graph functionalities of Tulip (a graph of metanodes). Each node of the derivation tree
represents a graph G, except red nodes which represent failures (Fail). Inside each node, the user sees an
interactive drawing of the graph (see panel 4 of Fig. 1). See [24] for more details about the interactive
features of PORGY and how we implemented them.

The strategy plugin is developed with the Spirit C++ library from Boost2. This plugin works as a
compiler: its inputs are a strategy defined as a text string and the Tulip graph datastructure, the output
are low-level Tulip graph operations. Boost (precisely its Random library) is also used to generate the
random numbers needed for the probabilistic operators. For instance, we use a non-uniform generator
for ppick() to be able to choose a strategy following the given probabilities.

8 Conclusion

The strategy language defined in this paper is part of PORGY, an environment for visual modelling and
analysis of complex systems through port graphs and port graph rewrite rules. It also offers a visual
representation of rewriting traces as a derivation tree. The strategy language is used in particular to guide
the construction of this derivation tree. The implementation uses the small-step operational semantics of
the language. Some of these steps require a copy of the strategic graph program; this is done efficiently
in PORGY thanks to the cloning functionalities of the underlying TULIP system [3]. Verification and
debugging tools for avoiding conflicting rules or non-termination are planned for future work.
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