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Entity-linking is a natural-language—processing task tmnsists in identifying the entities men-
tioned in a piece of text, linking each to an appropriate iiansome knowledge base; when the
knowledge base is Wikipedia, the problem comes to be knowvilafication (in this case, items are
wikipedia articles). One instance of entity-linking canfbemalized as an optimization problem on
the underlying concept graph, where the quantity to be apéichis the average distance between
chosen items. Inspired by this application, we define a naptyproblem which is a natural variant
of the Maximum Capacity Representative Set. We prove thapoblem is NP-hard for general
graphs; nonetheless, under some restrictive assumptidosns out to be solvable in linear time.
For the general case, we propose two heuristics: one triesfayce the above assumptions and an-
other one is based on the notion of hitting distance; we shaermentally how these approaches
perform with respect to some baselines on a real-world datas

1 Introduction

Wikipedia@ is a free, collaborative, hypertextual encyclopedia tirasat collecting articles on different
(virtually, all) branches of knowledge. The usage of wikigefor automatically tagging documents is
a well-known methodology, that includes in particular &tealled wikification [13]. Wikification is a
special instance antity-linking a textual document is given and within the document variagments
are identified (either manually or automatically) as b&mgmed) entitie¢e.g., names of people, brands,
places...); the purpose of entity-linking is assigning ec#iic reference (a wikipedia article, in the case
of wikification) as a tag to each entity in the document.

Entity-linking happens typically in two stages: in a firstagle, every entity is assigned to a set
of items, e.g., wikipedia articles (thmandidate node$or that entity); then a second phase consists in
selecting a single node for each entity, from within the $etodidates. The latter task, calleandidate
selection is the topic on which this paper focuses.

To provide a concrete example, suppose that the target dotwrantains the entity “jaguar” and the
entity “jungle”. Entity “jaguar” is assigned to a set of cégates that contains (among others) both the
wikipedia article about the feline living in America and tbee about the Jaguar car producer. On the
other hand, “jungle” is assigned to the article about trabforests and to the one about the electronic
music genre. Actually, there are more than 30 candidate§aiguar”, and more about 20 for “jungle”.

In this paper, we study an instance of the candidate sefeptioblem in which the selection takes
place based on some cost function that depends on the awiistaece between the selected candidates,
where the distance is measured on the wikipedia &aple rationale should be clear enough—concepts
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appearing in the same text are related, and so we shouldeh@mo®ng the possible candidates for each
entity, those that are more closely related to one another.

Getting back to the example above, there is an edge congégiguar” the feline with “jungle” the
tropical forest, whereas the distance between, say, tiiefahd the music genre is much larger.

The approach we assume here highlightsciitectivenature of the entity-linking problem, as men-
tioned already in[[10]: accuracy of the selection can be awed by a global (rather than local) opti-
mization of the choices. A5[10] observes, however, trymgyitimize all-pair compatibility is a compu-
tationally difficult problem.

In this paper, we prove that the problem itself, even in thep# instance we take into consideration,
is NP-hard; however, it becomes efficiently solvable unaenes special assumptions. We prove that,
although these assumptions fail to hold in real-world sdeeawe can still provide heuristics to solve
real instances.

We test our proposals on a real-world dataset showing thatobmur heuristics is very effective,
actually more effective than other methods previously pseyl in the literature, and more than a simple
greedy approach using the same cost function adopted here.

2 Related Work

Named-entity linking (NEL)- also referred to aamed entity disambiguatiogrounds mentions of en-
tities in text Gurface formpinto some knowledge base (e.g. Wikipedia, Freebase)y Bpfroaches to
NEL [13] make use of measures derived from the frequencyekélywords to be linked in the text and in
different Wikipedia pages. These inclutédf, x2 andkeyphrasenessvhich stands for a measure of how
much a certain word is used in Wikipedia links in relationt®frequency in general text. Cucerzan [7]
employed the context in which words appears and Wikipedig gategories in order to create a richer
representation of the input text and candidate entitieses&tapproaches were extended by Milne and
Witten [14] who combined commonness (i.e., prior probabilof an entity with its relatedness to the
surrounding context using machine learning. Further, Bond4] employed alisambiguationkernel
which uses the hierarchy of classes in Wikipedia along wittwiord contents to derive a finer-grained
similarity measure between the candidate text and its gbmigh the potential named entities to link
to. In this paper we will make use of Kulkarni et al.'s datafddl]. They propose a general collective
disambiguation approach, under the premise that coheceninuents refer to entities from one or a few
related topics. They introduce formulations that accoonttlie trade-off between local spot-to-entity
compatibility and measures of global coherence betwegtiesntMore recently, Han et al. [10] propose
a graph-based representation which exploits the globatdependence of different linking decisions.
The algorithm infers jointly the disambiguated named nweTgiby exploiting the graph.

It is worth to remark that NEL is a task somehow similar to W&ehse Disambiguation (deter-
mining the right sense of a word given its context) in which tble of the knowledge base is played
by Wordnet[[8]. WSD is a problem that has been extensivelglistland its explicitly connection with
NEL was made by Hachey et all[9]. WSD has been an area of intessarch in the past, so we will
review here the approaches that are directly relevant tavotk. Graph-based approaches to word sense
disambiguation are pervasive and yield state of the arbpmdnce([15]; however, its use for NEL has
been restricted to ranking candidate named entities witrdnt flavors of centrality measures, such as
in-degree or PageRanik [9].

Mihalcea [12] introduced an unsupervised method for disgoating the senses of words using
random walks on graphs that encode the dependencies betvoegisenses.
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Navigli and Lapatal[18, 16, 17] present subsequent appesatth WSD using graph connectivity
metrics, in which nodes are ranked with respect to theirllsonportance which is regarded using cen-
trality measures like in-degree, centrality, PageRankldiSlamong others.

Importantly, even if the experimental section of this pageals with a NEL dataset exclusively,
the theoretical findings could be equally applied to WSDesproblems. Ougreedyalgorithm is an
adaptation of Navigli and Velardi’s Structural Semantitehsonnections algorithms for WSD 18, 6].
The original algorithm receives an ordered list of wordsigachbiguate. The procedure first selects the
unambiguousvords from the set (the ones with only one synset), and theevery ambiguous word, it
iteratively selects the sense thatleserto the sense of disambiguated words, and adds the word to the
unambiguous set. This works in the case that a sufficientipected amount of words is unambiguous;
this is not the case in NEL and in our experimental set-up revtieere could potentially exists hundreds
of candidates for a particular piece of text.

3 Problem statement and NP-completeness

In this section we will introduce the general formal defmitiof the problem, in the formulation we
decided to take into consideration. We will make use of thesital graph notation: in particular, given
an undirected grapt® = (V,E), we will denote withG|W] the graph induced by the verticesw, and
with d(u,Vv) the distance between the nodesndyv, that is, the number of edges in the shortest path from
uto v (or the sum of the weights of the lightest pathGifs weighted).

If Gis a graph anct is an edge of5, G — e is the graph obtained by removimgfrom G; we say
thateis abridgeif the number of connected componentsG#- eis larger than that o&. A connected
bridgeless graph is calldiiconnecteda maximal set of vertices @ inducing a biconnected subgraph
is called abiconnected componenft G.

We call our main problem thiglinimum Distance Representatjyva short MNDR, and we define it
as follows. Given an undirected gragh= (V,E) (possibly weighted) ankl subsets of its set of vertices,
X1,...,Xk CV, afeasible solution for MMDR is a sequence of vertices Gf x4, .. . , Xk, such that for any
i, with 1 <i <k, x € X (i.e., the solution contains exactly one element from ewaty possibly with
repetitions).

Given the instancés, {Xy,..., X}, the measure (thdistance cogtof a solutionS, xg,...,X, iS
f(S =35, z‘j(:ld(xi,xj). The goal is finding the solution of minimum distance co4,, ia feasible
solutionSsuch thatf (S) is minimum.

We call the restriction of this problem, in which the sets eftices in input{Xy,..., X} are disjoint,
MINDIR(Minimum Independent Distance Representative). Is ta@se, for the sake of simplicity, we
will refer to a solution as the multiset composed by its ele

3.1 NP-completeness of MiDR

The MINDIR problem seems to be similar and related to the so-calledifdum Capacity Represen-
tatives [5], in short MX CRS. The Maximum Capacity Representatives problem is dkfisefollows:
given some disjoint setsy, ..., X, and for anyi # j, X € X;, andy € X;, a nonnegative capacitfx,y), a

SWe shall make free use of multiset membership, interseatimhunion with their standard meaning: in particularA f
and B are multisets with multiplicity functiora andb, respectively, the multiplicity functions AU B andANB arex —
max(a(x), b(x)) andx — min(a(x),b(x)), respectively.
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solution is a seB= {xy, ... Xm}, such that, for any, x; € X;; such a solution is calleslystem of representa-
tives The measure of a solution is the capacity of the system oéseptatives, that i$,.s ¥ yesC(X,Y),
and the MaxCRS problem aims ahaximizingit. The MAX CRS problem was introduced Ky [1], who
showed that it is NP-complete and gave some non-approxiityat@sults. Successively, in [19], tight
inapproximability results for the problem were presented.

The MINDIR problem differs from Max CRS just for in the sense that we are dealing with distances
instead of capacities, and therefore we ask for a minimuteaagsof a maximum. Nonetheless the fol-
lowing Lemma, whose proof is given in Appendix A, shows tHabaMINDIR problem is NP-complete.

Lemma 1. TheMINDIR (hence MINDR) problem is NP-complete.

4 The decomposable case

In this section we study the MDR problem under some restrictive hypothesis and we wilstiat in
this case a linear exact algorithm exists.

Even if it may seem that these hypothesis are too strong te riekalgorithm useful in practice, in
the next section we will use our algorithm to design an eiffecheuristic for the general problem. In
particular, we assume that the graplfpossibly weighted) is such that:

e any setX; induces a connected subgraph®i.e., G[X] is connected,

o for anyi # j, for anyx € X; andy < Xj, xandy do not belong to the same biconnected component.

The problem, under these further restrictions, will beatidlecomposabl& INDR. Note that the second
condition implies that a decomposableN\DR is in fact an instance of MIDIR, because it implies that
no two sets can have nonempty intersection.

Let us consider an instand&, {Xy,...X}) of decomposable MIDR problem on a grapi® =
(V,E).

An edgee = (x,y) € E is calledusefulif it is a bridge,x andy do not belong to the same st and
there are at least two indicesind j such thatX; andX; are in different components @& — e (sincee is
a bridge, the graph obtained removing the edffem G is no more connected).

4.1 Decomposing the problem

The main trick that allows to obtain a linear-time solutiar the decomposable case is that we can
actually decompose the problem (hence the name) throudhl eskges. First observe that, trivially:

Remark 1. Let e= (x,y) be a useful edge and let Aand Z, be the two connected components of €
containing x and y, respectively. In G, all paths from ahy ¥, to any y € Z, must contain e.

Moreover:

Remark 2. Let e= (x,y) be a useful edge. There cannot be an index i such thagX a nonempty
intersection with both components ofCGe.

In fact, assume by contradiction that one s¢clxists, and leti, w € X; be two vertices living in the
two different components db — e: sinceG[X;] is connected, there must be a path conneatirendw
and made only of elements ¥f; because of RemalK 1, this path passes thra, gt this would imply
thatx,y € X;, in contrast with the definition of useful edge.

Armed with the previous observations, we can give the falgwurther definitions. LeYy (respec-
tively, Yy) be the set of set¥ such thalX; C Z, (respectivelyX; C Z,); we denote the sets of nodesvin
andYy by V(Yx) C Zy andV (Yy) C Zy, respectively.
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By virtue of RemarklL, all the paths @ from anyx € V(Yy) to anyy € V(Yy) pass througle. This
implies also that there is no simple cycle in the graph indgdothx € V (Yy) andy € V(Y,).
Given a solutiorSfor MINDIR(G, {Xs,...,X}), and a useful edgex,y), we have:

> dx.x) = > doex)+ Y dxx)+
X, Xj€S X X €SV (Yy) X, X €SV (Yy)
2 > (d(x, %) +d(x,y) +d(y.Xj)).-

X €SV (Yy) X €SV (Yy)

Indeed all the shortest paths from aqy= SNV (Yy) to anyx; € SNV (Yy) pass through the useful edge
(x,y) by RemarKL. Moreover, since the s&ts. .., X are disjoint, we have thaBNV (Yy)| = |Y«| and
ISNV(Yy)| = |Yy|, that is, a solution has exactly one element for each s¥ét (respectivelyy,). Hence
we can rewrite the last summand of the above equation asvillo

(d(X|,X)—|—d(y,XJ)—|—d(X,y)) = |Yy| Z d(X|,X)—|—
X €SV (Yy),X €SV (Yy) xeSWV (Yy)

X €SV (Yy)
Yl - [Yy] - d(x,y).

By combining the two equations, we can conclude that findisgjation for MINDIR (G, { X1, ..., X})
can be decomposed into the following two subproblems:

1. finding S MINiMIzing 3y, x; esv v d(Xi,Xj) + 23 xesrv vy [Yyld (%, X) in the instancéG[Zy], Yx);

2. finding§, minimizing 3, x esv(y,) d(Xi,X}) + 23 x,esv(y,) [Yxld (Y. Xj) in the instancéG(Zy]., Yy).

Note that both instances are smaller than the original onause of the definition of a useful edge.
The idea of our algorithm generalizes this principle; not&t the new objective function we must take
into consideration is slightly more complex than the orgione: in fact, besides the usual all-pair—
distance cost there is a further summand that is a weightad$distances from some fixed nodes (such
asx for the instances[Z,], Yy andy for the instanceés(Z,],Yy).

We hence define an extension of thaN®R problem, that we call ETMINDR (for Extended
Minimum Distance Representatiye this problem, we are given:

e an undirected grap& = (V, E) (possibly weighted)
e ksubsets of its set of verticeX;,..., Xx CV
e a multisetB of vertices, eacl € B endowed with a weight(x).

A feasible solution for the ETMINDR is a multisetS= {x,...,xc} of vertices ofG, such that for any
i, with1<i<k, SNnX #0 (i.e., the set contains at least one element from eveyyltetost is

f(S) = i id(m,xj) +i EBb(Z)d(m,Z)-
i=1j= i=1zc

The goal is finding the solution of minimum cost, i.e., a felessolutionS such thatf (S) is minimum.
The original version of the problem is obtained by lettBig- 0.

We are now ready to formalize our decomposition through dtleviing Theorem, whose proof is
given in AppendiXB.
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Theorem 1. Let us be given a decomposalii#TMINDR instance(G, {Xy, ..., X}, B,b) and a useful
edge e= (to,t1). For every s= {0,1}, let Zs be the connected component of-@ containing ¢, Ys be the
set of sets Xsuch that XC Zs and V(Ys) be the union of those;j’X. Let also B be the intersection of B
with Zs. Define a new instance 4 (T[Zg], {X,i € Ys},BsU{ts},bs) where

bs(ts) = 2|Y1_s| + b(z) and hk(z) = b(z), for any ze B.

ZED] s

Then the cost (fS) of an optimal solution S of the original problem is equal to

(o) + F(S1) +2/Yo|Va]l(to, ta) + Z (\smvws)\- > b(z)d(ts,z>>
sc{0,1} zeBN4y—s

where §is an optimal solution for the instance |

For completeness, we need to consider the base case of ancestith just one séb, {X;},B,b:
the solution in this case is just one noxle X; and the objective function to be minimized is simply
Y 2z d(X,2)b(2z). The optimal solution can be found by performing a BFS fromrgy; < B (in increasing
order of j), maintaining for each nodec Xy, g(y) = 5 zeg1<jd(X,z)b(z), and picking the node having
maximum finalg(y). This process take®(|B| - |[E(G[Xi])|). It is worth observing that in our case the
size of the multiseB is always bounded bl. Moreover sincg ¥ |E(G[X])| < |[E(G)| = m, the overall
complexity for all these base cases is bounde®ty- m).

4.2 Finding useful edges

For every instance with more than one set, given an usefig edige creation of the subproblems as
described above is linear, so we are left with the issue ofrfqndseful edges. This task can be seen as
a variant of the standard depth-first search of bridges, asrsin Algorithm[2 and B, in Appendik]IC.
Recall that bridges can be found by performing a standardtb&Siumbers the nodes as they are found
(using the global counter visited, and keeping the DFS nusinethe array dfs); every visit returns the
index of the least ancestor reachable through a back edde wkiting the DFS-subtree rooted at the
node where the visit starts from. Every time a DFS returnslagevthat is larger than the number of the
node currently being visited, we have found a bridge.

The variant consists in returning not just the index of thesteancestor reachable, but also the set
of indicesi that are found while visiting the subtree. If the set of iedi@nd its complement are both
different from 0 then the bridge is useful: at this point,rapid ascent” is performed to get out of the
recursive procedure.

4.3 The final algorithm

Combining the observations above, we can conclude that\tbelb complexity of the algorithm is
O(k-m). The algorithm is presented in AlgoritHm 1.

5 The general case

As we observed at the beginning, theN\NDR problem is NP-complete in general, although the decom-
posable version turns out to be linear. We want to discussv®wan deal with a general instance of the
problem. To start with, let us consider a general connectedINR instance, that is:
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Algorithm 1: DECOMPOSABLEMINDR

Input: A graphG = (V,E), X3...., X« CV, a weighted multiseB of nodes inv, where each element Bihas a weight
b. G[X;] is connected for everiyand moreover for all# j andx € X, y € Xj, the two verticesx andy do not
belong to the same biconnected componert.of

Output: A solutionS= {x1,...,X} such that for any, with 1 <i <k, x € X, minimizing

1Ly 5K 1 d06, %) + 51 S2esb(2)d (X, 2)

Find a useful edge = (x,y), if it exists, using Algorithni P

if the useful edge does not exisen

if k£ 1then
| Fail!

end
Output the element; € X; minimizing 5 ,.gb(2)d(x1,2)

else

Let Zx (respectivelyZy) be the connected componentTof- e containingx (respectivelyy) .
Let Y (respectivelyyy) be the indices such thatX C Yy (X C Yy, respectively)

B’ +~ BU{x} (multiset union) wittb(x) = 2|Yy| + 3 zcgnz, b(2)

B’ < B'NZ (multiset intersection)

S < DECOMPOSABLEMINDR(T|[Z], Yx, B')

B” + BU{x} (multiset union) withb(y) = 2|Y| + 3 zepnz, b(2)

B” «— B”NZy (multiset intersection)

S’ <~ DECOMPOSABLEMINDR(T[Zy],Yy,B")

return SUS’

end

e a connected undirected (possibly weighted) gr@ph (V,E),
e ksubsets of its set of verticeX;,..., Xk CV,

with the additional assumption th&]X] is connected for every Recall that a feasible solution is a
sequenceé of vertices ofG, X, ..., X, such that for any, with 1 <i <k, we havex; € X;; its (distance)
costisf(S) = 31y 75 d(%,X;).

We shall discuss two heuristics to approach this problemfitst is related to Algorithri]1 in that
it tries to modify the problem to make it into a decomposabie,ovhereas the second is based on the
notion of hitting distance.

Before describing the two heuristics, let us briefly expltia rationale behind the additional as-
sumption (i.e., that ever[X] be connected). In our main application (entity-linkingg ttructure of
the graph within eacl; is not very important, and can actually be misleading: a wemntral node in a
large candidate set may seem very promising (and may actualimize the distance to the other sets)
but can be blatantly wrong. It is pretty much like the distioic between nepotistic and non-nepotistic
links in PageRank computation: the linksthin each host are not very useful in determining the impor-
tance of a page—on the contrary, they may be confusing, anthas often disregarded.

Based on this observation, we can (and probably want to) intiug structure of the graph within
each selX to avoid this kind of trap. This is done by preserving theernallinks (those that connect
vertices ofX; to the outside), but at the same time adding or deleting editbi eachX; in a suitable
way. In our experiments, we considered two possible appesac

e one consists in makinG[X;] maximally connected.e., transforming it into a clique;

¢ the opposite approach mak@gx;] minimally connectedy adding the minimum number of edges
needed to that purpose; this can be done by computing theectathcomponents @[X;] and
then adding enough edges to join them in a single connectrapaoent.
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Both approaches guarantee tk&il;] is connected, so that the two heuristics described belowbean
applied.

5.1 The spanning-tree heuristic

The first heuristic aims at modifying the gra@in such a way that the resulting instance becomes
decomposable. For the moment, let us assume that th&isate pairwise disjoint. To guarantee that
the problem be decomposable, we proceed as follows. Defiegu@malence relatior- onV by letting

X ~ y wheneverx andy belong to the samKiE The quotient grapls/ ~= (V/ ~,E/ ~) has vertices
V/ ~ and an edge betwegr] and [y] whenever there is some ed@e,y) € E with X ~ xandy ~y
(here, and in the followingx] denotes the--equivalence class including. Thus, there is a surjective
(but not injective) map : E — E/ ~.

SinceG is connected, so i6/ ~, and we perform a breadth-first traversal®building a spanning
treeT. Every tree edge is an edge®f ~, so its pre-image with respect tds a nonempty set of edges
in G. Let us arbitrarily choose one edge®from 1 ~1(t) for every tree edgg and letT’ be the resulting
set of edges of.

Define the new grapB’ = (V,E’) whereE’ = T’ UUX_, E(G[X;)): this graph cointains all the edges
within each sek;, plus the seT’ of external edges.

It is easy to see th&@/'[X] is connected (it is in fact equal 8[X;]), and moreover all the elements of
T’ are bridges dividing all the;'s in distinct biconnected components. In other words, weeharned
the instance into decomposablene, where Algorithrill can be run.

The non-disjoint case If the setsX; are not pairwise disjoint, we can proceed as follows. Letafsd
maximal mutually disjoint sets of indicés ...,In C {1,...,k} such that for alt # s, Ujc;, XiNUic| X = 0.

Now, take the new problem instance with the same graph asdset., Y, whereY; = Ui¢, X;: this
instance is disjoint, so the previous construction appliég only difference is that, at the very last step
of Algorithm[dl, when we are left with a graph andiagle Y, we will not select a singlg € Y; optimizing
the cost function

Zab(z)d(y, 2).

zc

Rather, we will choose one elemegffor everyi € |, optimizing

Z b(z)d(x;,2).

Discussion Both steps presented above introduce some level of imjwacithat make the algorithm
only a heuristic in the general case. The first approximaisodue to the fact that building a tree on
G will produce distances (between vertices living in differ;) much larger than they are i@; the
second approximation is that when we have non-disjoint setonly optimize with respect to bridges,
disregarding the sum of distances of the nodes of differetst g\ctually, we should optimize

Z Sie Itd(m,xj)+_z b(z)d(x,2).

but this would make the final optimization step NP-complete.

4Note that, since the se¥ are pairwise disjoint;- is transitive.
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5.2 The hitting-distance heuristic

The second heuristic we propose is based on the notidnittofg distance given a vertexx and a set
of verticesY, define the hitting distance ofto Y asd(x,Y) = minycy d(X,y). The hitting distance can
be easily found by a breadth-first traversal starting ahd stopping as soon as an elemenY a@$ hit.
Given a general connected instance of\lAR, as described above, we can consider, for evenyd
everyx € X;, the average hitting distance %fo the other sets:

zlj(:ld(x> XJ)
k

The elemenk’ € X; minimizing the average hitting distance (or any such an efgnif there are many)
is the candidate chosen for the 3gin that solution.

The main problem with this heuristic is related to its logalioptimization is performed separately
for eachX;); moreover the worst-case complexity@$my; |Xi|), that reduces t®(k- m) only under the
restriction that the set§ haveO(1) size.

6 Experiments

All our experiments were performed on a snapshot of the Bnglortion of Wikipedia as of late Febru-
ary 2013; the graph (represented in the BVGraph format [#$ wymmetrized and only the largest
component was kept. The undirected graph has 3 685 351a®(872% of the vertices of the original
graph) and 36 066 162 edges @% of the edges of the original graph). Such a graph will beedahe
“Wikipedia graph” and referred to & throughout this experimental section.

Our experiments use actual real-world entity-linking peofss for which we have a human judgment,
and tries the two heuristics proposed in Sedfibn 5, as wellgteedy baseline and other heuristics.

The greedy baseline works as follows: it first chooses anxim@ random, and draws an element
Xi € X; also at random. Then, it selects a vertexiof € X 1,Xi12 € Xito,..., Xk € Xx, X1 € Xq,...,X_1 €
Xi_1 (in this order) minimizing each time the sum of the distanimethe previously selected vertices;
the greedy algorithm continues doing the same alsoifarX; to get rid of the only element (the first
one) that was selected completely at random. Moreover we bansidered also two other heuristics,
that have been observed to be effective in pracfice [9]: ettesedegreeand PageRank basedThey
respectively select the highest degree and the highesRRagevertex for each set.

The real-world entity-linking dataset has been taken fradi vhich contains a larger number of
human-labelled annotations. For retrieving the candijate created an index over all Wikipedia pages
with different fields (title, body, anchor text) and used aiasat of BM25F [2] for ranking, returning
the top 100 scoring candidate entities. Since the candikdtrtion method was the same for every
graph-based method employed, there should be no bias ixpeeimental outcomes.

The problem instances contained in the dataset havi8 Ehtities on average (with a maximum of
53), and the average number of candidates per entity. #89®ith a maximum of 200). Each of the 100
problem instances in the NEL dataset is annotated, and ficylar, for everyi there is a subset” C X;
of fair vertices (that is, vertices that are good candidates farsiix typically|X*| = 1. Note that, for
every instance in the NEL dataset, we deleted the’sessich thatX* were not included in the largest
connected component of the Wikipedia graph. The numbertsiXsdeleted was at maximum 2 (for two
instances). We have not considered instances in which,thése modifications, we have just one Xet
this situation happened in 5 cases. So the problem set orfw@actually ran our algorithm contains
95 instances.
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HEURISTIC

DISTANCE-COST RATIO VALUE
MAXIMAL MINIMAL MAXIMAL MINIMAL
CONNECTION CONNECTION CONNECTION | CONNECTION
Average Average Average Average

(+ Std Error)

(+ Std Error)

(+ Std Error)

(+ Std Error)

Spanning-tree
Hitting-distance

122.747¢-2.812)
103.945 {-1.320)

130.998 {2.917)
105.797 {-2.322)

0.360 (£0.023)
0.454 (£0.027)

0.360 (-0.023)
0.459 (-0.027)

Greedy
Degree based
PageRank based

101.969 (-0.429)
114.182 {-2.386)
114.894 {-2.452)

102.785 { 0.426)
113.285 {-2.305)
112.392 {-2.266)

0.428 (£0.025)
0.411 (£0.024)
0.407 (0.025)

0.426 (-0.026)
0.394 (0.023)
0.398 (£0.023)

39

GROUND TRUTH || 115.117 ¢1.782) | 119.243¢1.873) |

Table 1: Distance-cost ratio and value.

For every instance, we considered the maximal and mininmaiectior approach, and then ran both
heuristics described in Sectibh 5, comparing them with teedy baseline, and also with the degree and
PageRank heuristics.

For any instance, when comparing the distance tagtthe solutionsS; returned by some algorithm
Aj, we have computed thaiistance-cost rati@f each algorithmA;, defined as

.f(isj) -100

min; f(Sj)
Intuitively this corresponds to the approximation raticeach solution with respect to the best solution
found by all the considered algorithms: hence the best idfigrhas minimum distance-cost ratio and it
equals 100.

Besides evaluating the distance cost of the solutions fbyritle various heuristics, we can compute
how many of the elements found are fair: we normalize thistityaby k, so that 10 means that all the
k candidates selected are fair. We call such a quantitydhes of a solution.

In the last two columns of Tablg 1 we report, for each heurigtie average value (across all the
instances) along with the standard error. For both the aiumeapproaches, we have that the hitting-
distance heuristic outperforms all the other heuristiosl i selects more than 45% of fair candidates.
The variability of the results seems not to differ too muchéib the methods. The second best heuristic
is the greedy baseline, that selects almost 42.8% and 4aB%ahndidates respectively in a maximal
and minimal connected scenario.

It is worth observing that the greedy approach comes secamdaf as the value is concerned),
and outperforms the baseline techniques (degree and PalgeRde spanning tree heuristic, instead,
perform worse than any other method.

The latter outcome is easily explained by the fact that mgfarms completely the topology of
the graph in order to make the instance decomposable, ardidtamces between vertices are mostly
scrambled. This interpretation of the bad result obtairead aso be seen looking at the distance cost
(central columns of Tablgl 1): the spanning-tree heuristithé one that is less respectful of distances,
selecting candidates that are far apart from one another.

In the central columns of Tablé 1, we report also the distanost ratio for all the other heuristics.
For both the maximal and the minimal connection approadhegjreedy baseline seems to obtain more

5To obtain the minimal connection of eaGffix;], we chose to connect the vertex of maximum degree of its$angenponent
with an (arbitrary) vertex of each of its remaining compasen
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often a minimum distance cost solution. The second besbjdithe hitting distance heuristic, while
the other methods seems to be more far away from an optimadt.res

In the last row of TablEl1, we report the distance-cost ratidie ground-truth solution given by the
fair candidates. It seems that for any instance, the gromrll has distance cost averagely 15%-20%
higher than the best solution we achieve by using the hagisthis observation suggests that probably
our objective function (that simply aims at minimizing thepgh distances) is too simplistic: the distance
cost is an important factor to be taken into account but tdytaot the unique one.

It is interesting to remark, though, that the average Jdccaefficient between the solution found
by the degree based and the hitting-distance heuristi@ig@. both maximal and minimal connection
approaches): this fact means that the degree and distambe gaobably used as complementary features
that hint at different good candidates, although we culyaid not know how to combine these pieces
of information.

Finally, we remark that we also tried to apply the degree agkRank based heuristics by using the
same problem set bir the original directed graphin this case, we did not enforce any connectivity of
the subgraph&[X]: the resulting average values 6tandard error) are respectively8@7 (+0.020) and
0.336 *0.022), and they are both worse than the values achieved bgelegd PageRank heuristics in
Table[1. This fact suggests that our experimental apprazfatofsidering the undirected version and of
enforcing some connectivity on the subgraphs) not only ajuaes the applicability of our heuristics in
a more suitable scenario, but also improves the effectsgnéthe other existing techniques.

7 Conclusions and future work

Inspired by the entity-linking task in NLP, we defined anddstd a new graph problem related to Max-
imum Capacity Representative Set and we proved that thidearois NP-hard in general (although it
remains an open problem to determine its exact approximgbiMorevoer, we showed that the problem
can be solved efficiently in some special case, and that warmanay provide reasonable heuristics for
the general scenario. We tested our proposals on a reathdathset showing that one of our heuristics
is very effective, actually more effective than other mehreviously proposed in the literature, and
more than a simple greedy approach using the same costdnraddopted here.

The other heuristic proposed in this paper seem to work pdalbeit it reduces to a case where we
know how to produce the optimal solution), but we believe thé is just because of the very rough
preprocessing phase it adopts; we plan to devise a moredefiag to induce the conditions needed for
Algorithm [ to work, without having to resort to the usage afpanning tree—the latter scrambles the
distances too much, resulting in a bad selection of canelidat

Finally, we observed that a distance-based approach isleomeptary to other methods (e.g., the
local techniques based solely on the vertex degree), bimtirthe possibility of obtaining a new, better
cost function that exploits both features at the same time.
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A Proof of Lemmall

Proof. We reduce MXCRS to MNDIR. Given an instance of WMx CRS,{Xy,... X} and for anyi # j,

x € X;, andy € X;j, a nonnegative capacityx,y), we construct the instance ofINDIR G, {Xy,...,X};

the vertices ofG are X, U... U X, and for any paix € X, y € Xj, with i # j, we add a weighted
edge betweerx andy, i.e., for each pair for which MxCRS defines a capacity we create a corre-
sponding edge iiGs. In particular the weight of the edge betweeandy is set toa — c(x,y), where

a = 2Ma¥%cx tex; i#j C(Z1).

Observe that for any pair of nodess X, v € X;, withi # j, d(u,v) in G is equal to the weight of
(u,v), i.e., itis not convenient to pass through other nodes wioémggromu to v: in fact, for any path
71,...,zp fromutovin G, with p > 1, we always haver — c(u,v) < a —c(U,z1) + ...+ a —c(zp,V),
sincea — c(u,v) < a and the weight of such a path is at Ieﬁgfﬁa > a. Moreover, observe that any
optimal solution inG has exactly one element for each Xetthus, we havé(k — 1) pairs of elements
(x,¥), whose distance is always given by the weight of the singieédy), that isa — c(x,y).

Hence it is easy to see thatAM CRS admits a system of representatives whose capacityategre
thanh, if and only if MINDIR admits a solutiors such thatf (S) is less thark(k— 1)a — h.

Since MNDIR is a restriction of MNDR we can conclude that alsoINDR is NP-complete. [

B Proof of Theorem[1

Proof. We can rewrite the objective function as follows.

> dxix)+ > Y dx,9b(z) = 2No[Vild(to,tr)+ Y dxx)+ S d06X)+
X Xj€S X €SzE XX €SV (Yo) X, Xj €SV (Y1)

2 S dto)+ Y EBd(XhZ)b(Z)+
(Yo) 22

X €SV (Yo) XSV

2Mo| S dltnx)+ Y ng(xi,z)b(z).
X €SV (Y1) X €SV (Y1) z€

This is because iz € BN Z;, for any nodex; € SNV(Yy), we haved(x;,z) = d(x,to) + d(to,z) (and
analogously, iz € BN Zy, for any nodex; € SNV (Y1), we haved(x;, z) = d(x;,t1) + d(t1,2)). Hence:

d(x,2)b(z) = d(x.2)b d(x,to)b(2) +d(to, 2)b
me&%(vo)zZB (5, 2)0(z) me%%)ze;zo (%,2) (Z)+)qesqzv%)26;21 (%i,to)b(z) +d(to, 2)b(2)

and

EBd(xi,z)b(z) = d(x,2)b(z) + d(x,t1)b(z) + d(t1,2)b(2).

XESWV (Y1) 2€ X €SV (Y1) 26;21 X €SV (Y1) ZG;ZO

Observe thaty or t; might already belong tB: this is why we assumed thBtis a multiset.
Then, we have that:

()= Y dexx)+ dx,2b@)+ 5 dm,to)'(zmw Zb(z))

XX €SV (Yo) X€SWV (Yo) 26;20 X €9V (Yo)
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f(s)= Y  doxx)+ dx,2b@)+ 5 dm,tl)'(zrvow ZOb(z))

XX €SV (Y1) x€SWV (Y1) 26;21 X €SV (Y1)

Hence, by addings to BN Zs = Bs, with weight equal tdds = 2|Y1_s| + 5 ,cgnz, b(2), f(S) can be
reduced tof (S) and f(S,). O

C The algorithm for finding useful edges

Algorithm 2: USEFULEDGE

Input: An instanceG, {Xi,...,X},B,b
Output: A useful edge, or null
Pick a nodeu of the setX; of the instancés, {Xy,...,X},B,b
Mark all the nodes as unseen
dfs[] « —1, Vvisited« 0, usefulEdgeFound- false usefulEdge— null
DFS@,—1)
if usefulEdgeFounthen
| return usefulEdge
else
I return null
end

Algorithm 3: DFS

Input: A nodeu, its parentp
Output: A pair (t,Y), wheret is an integer and is a set of indices
if usefulEdgeFounthen return null Mark u as seen
dfs[u] + visited
visited« visited+ 1
furthestAncestox— visited
Y« 0
if t € Xj then Y <~ YU{i} for ve N(u) s.t. w# pdo
if vis unseerthen
(t",Y") +- DFS(v,u)
if t' > dfsju] and® # Y’ # {1,...,k} then
usefulEdgeFound- true
usefulEdge— (u,V)

return null
end

furthestAncestos— min(furthestAncestat’)
Y+ YuY’

else
| furthestAncestosr— min(furthestAncestqudfs|v])
end

end
return (furthestAncestalY)
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