Graph Transformation Planning via Abstraction

Steffen Ziegert

Department of Computer Science
University of Paderborn

steffen.ziegert@uni-paderborn.de

Modern software systems increasingly incorporate self-* behavior to adapt to changes in the envi-
ronment at runtime. Such adaptations often involve reconfiguring the software architecture of the
system. Many systems also need to manage their architecture themselves, i.e., they need a plan-
ning component to autonomously decide which reconfigurations to execute to reach a desired target
configuration. For the specification of reconfigurations, we employ graph transformations systems
(GTS) due to the close relation of graphs and UML object diagrams. We solve the resulting planning
problems with a planning system that works directly on a GTS. It features a domain-independent
heuristic that uses the solution length of an abstraction of the original problem as an estimate. Fi-
nally, we provide experimental results on two different domains, which confirm that our heuristic
performs better than another domain-independent heuristic which resembles heuristics employed in
related work.

1 Introduction

Modern software systems increasingly incorporate self-* behavior to adapt to changes in the environ-
ment at runtime. Such adaptations often involve reconfiguring the software architecture of the system.
However, the ability to perform reconfiguration might not be enough. Many systems also need to man-
age their architecture themselves, i.e., they need a planning component to autonomously decide which
reconfigurations to execute to reach a desired target configuration [KMO7].

Graph transformations systems (GTS) [EEPT06] have been deemed a suitable formalism for the
specification of reconfigurations due to their close relation to graphs and UML object diagrams [LMO98|
WFO02]. They have been used for the verification of reconfiguration operations in various approaches,
e.g., [BBG06, Ren08]|. Planning of architecture reconfiguration has also been covered before, e.g., in
[EW11] for coordinating behavior in cyber-physical systems and in [TK11]] for planning a self-healing
process in automotive systems. The involved planning problems are usually solved by one the following
two approaches: either a translation into a dedicated planning language, i.e., the Planning Domain Defi-
nition Language (PDDL) [FLO3], is performed or a planning system is developed that works directly on
a GTS.

Both approaches have their drawbacks. Translation-based approaches suffer from a different expres-
siveness of GTSs and PDDL.: while the creation and deletion of objects is a fundamental feature of GTSs,
there is no such thing in PDDL. By not allowing to de-/instantiate objects, PDDL maintains a finite state
space. To handle de-/instantiation of objects nevertheless, a modeling workaround can be used that de-
clares all uninstantiated objects in the initial state, but uses a predicate to state their actual existence, as in
[TK11, ZW13]. However, the workaround is based on the assumption that a maximal number of objects
is known beforehand or can be deduced from the GTS.

Planning systems for GTSs on the other hand are not highly evolved. Up until today, there are only
few systems that use domain-independent heuristics to guide their search through the state space of a

Dragan BoSnacki, Stefan Edelkamp, Alberto Lluch Lafuente

& Anton Wijs (Eds.): 3rd Workshop on

GRAPH Inspection and Traversal Engineering (GRAPHITE 2014)
EPTCS 159, 2014, pp. 71 doi:10.4204/EPTCS.159.7

© S. Ziegert
This work is licensed under the |Creative Commons
Attribution-No Derivative Works License.

http://dx.doi.org/10.4204/EPTCS.159.7
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/

72 Graph Transformation Planning via Abstraction

GTS. They employ simple domain-independent heuristics that compute values for the structural simi-
larity of the current configuration and the target configuration. Multiple such similarity-based heuristic
functions are presented in [EJLLO6||. Several of them are different variants of counting the nodes and
edges that have to be created or deleted to reach the target configuration, e.g., they differ in whether or
not it is allowed to rely on the identity of nodes and edges, and then using this number as a distance
measure. Another slightly different variant of such a heuristic has been presented in [Snill].

In this paper, we propose a new GTS-based planning system. It employs a domain-independent
heuristic function that can be used in different search algorithms. The heuristic function computes the
solution length of an abstraction of the original problem as an estimate for a given state. The abstract
problem reinterprets certain parts of the rules’ application conditions and is thus easier to solve than the
original problem. As part of our contribution, we compare the performance of our heuristic against the
performance of a similarity-based heuristic.

The next section introduces graph transformations systems and the notion of planning problems on
graph transformations systems. In Section 3| we present an application example, which is used to explain
our heuristic approach in Section 4 The evaluation of our approach is given in Section [5] We discuss
related work in Section [f| before concluding in Section

2 Planning with Graph Transformations

A graph transformation system (GTS) consists of a set of graph transformation rules and an initial graph.
The graph transformation rules can be applied to the initial graph and its resulting successor graphs
to construct the state space of the GTS. The underlying theory of GTS is based on graphs and graph
morphisms.

Definition 1 (Graph, Graph Morphism). A graph G = (Vi, Eg, srcg,tgt) consists of a set of nodes Vg,
a set of edges Eg, and source and target functions srcg,tgtg : Eg — V. A graph morphism f: G — H
between two graphs is a pair of mappings f = (fg, fv) with fg : Ec — Ey and fy : Vg — Vg such that
fvosrcg =srcgo fg and fy otgtg =tgty o fr. A graph morphism f = (fg, fv) is injective if fg and fy
are injective.

A graph morphism is a mapping of nodes and edges of one graph to nodes and edges of another
graph such that the source and target nodes of edges are preserved. Such morphisms are used in graph
transformation rules to define which nodes and edges are created, deleted, or preserved when the rule is
applied to a graph.

Definition 2 (Graph Transformation Rule). A graph transformation rule p = (L,R,r) consists of two
graphs L and R, called left-hand side (LHS) and right-hand side (RHS), and an injective partial graph
morphism r : L — R, called rule morphism. Given a graph transformation rule p and a matchm : L — G

of its LHS into a host graph G, the direct derivation from G with p at m, written G L2 H, is the pushout
of r and m in Graph", the category of graphs and partial graph morphisms, as shown below. [EHK' 97]]

L r——R
\ |
| |
G——F ——H

Whether a graph transformation rule can be applied to a graph depends on whether a match of its
LHS to the graph can be found. Multiple such matches result in multiple direct derivations and thus in
multiple successor graphs. When a rule is applied that specifies the deletion of a node, dangling edges

S. Ziegert 73

might occur. The above definition follows the single pushout approach (SPO), which results in dangling
edges being deleted as well. Furthermore, we employ injective matchings: each node (and edge) of the
rule maps to a distinct node (or edge) of the graph.

To restrict the applicability of a rule, negative application conditions (NAC) can be used that forbid
specific graph structures from being present in the graph.

Definition 3 (Negative Application Condition). Let p = (L,R,r) be a graph transformation rule, G a
graph, and m : L — G a match. A negative application condition (NAC) is a tuple NAC = (N,n) with
n: L — N and n being injective. If —3q : N — G such that qon = m, then m satisfies NAC, written
m = NAC.

We also write p = (L,R,r,.4"), where .4 is a set of NACs, when we want to explicitly refer to the
NACSs of a graph transformation rule p. Now we have everything we need for the definition of graph
transformation systems.

Definition 4 (Graph Transformation System). A graph transformation system S = (%, Gy) consists of a
set of graph transformation rules % and an initial graph Gy.

A planning problem on a graph transformation system also involves a graph pattern, which defines
valid target configurations. The specification of graph patterns also support NACs.

Definition 5 (Graph Pattern). A graph pattern P = (L,.4") consists of a graph L and a set of NACs N
where each NAC € A is a tuple NAC = (N,n) withn: L — N and n being injective.

Having a means of specifying valid target configurations of a planning problem, we can now define
the planning problem on a graph transformation system.

Definition 6 (Planning Problem). A graph transformation planning problem & = (%, Gy, P,) consists of
a set of graph transformation rules %, an initial graph Gy, and a target graph pattern Pigs = (Ligr, Njgt)-
A plan for & is a sequence of direct derivations Gy = ... = Gy such that the target graph pattern P,y
has a match in Gy.

3 Application Example

We consider the reconfiguration of Electronic Control Units (ECUs) in automotive systems as an applica-
tion scenario. In current development, software components are deployed on ECUs at design-time. The
AUTOSAR consortium proposed a component-based software architecture standarcﬂ for the develop-
ment of ECU software. Following the AUTOSAR standard, a Runtime Environment (RTE) is generated
out of a predefined set of components. The RTE acts as a middleware that connects the software com-
ponents with Basic Software (BSW) that controls the hardware. We expect that in the future software
components can be deployed at ECUs at runtime. This allows to react to hardware failures or adapt to
low levels of energy by runtime reconfiguration. Such runtime reconfigurations are executed according
to reconfiguration plans, which are computed in soft real-time. In the context of our application example,
a planning task might be to shut down an ECU due to a recognized hardware failure or reboot an ECU
due to a re-deployment of the RTE middleware after a software upgrade.

Consider the graph in Figure 1| as the initial state for the planning problem. There are two ECUs,
nl and n2, and two software components, c1 and c2. For each component there is an instance that is
running on one of the ECUs.

TAUTOSAR specifications are available at http://www.autosar.org/index.php?p=3

http://www.autosar.org/index.php?p=3

74 Graph Transformation Planning via Abstraction

deployed inst deployed inst

Figure 1: Initial configuration

st [t
<++>
inst
N\
F «KF++>» [«++>»
running :Clnst
€ ed

<++>»
deployed
O [iode o

(a) deployComponent (b) createlInstance

inst

&--» K-->» &+4+>»
le— R
running | :Clnst down

(c) destroyInstance (d) shutdownNode

deployed

Figure 2: Graph transformation rules

Figures [2a] to [2d| show the rules that are relevant for our application scenario. We use the stereotype
«++>» to denote elements that are only available in the RHS and «--» to denote elements that are only
available in the LHS. Crossed out elements denote NACs. If crossed out elements are adjacent to each
other, they belong to the same NAC. In Figure [2a] component data is deployed on an ECU such that the
component can be instantiated. Figure 2b] specifies the creation of a component instance. In Figure
an instance that is running on an ECU is destroyed. Figure 2d| specifies shutting down an ECU if no
instances are running on it.

’cl:C‘mpnt‘ ’c2:C|‘npnt‘

inst inst

Figure 3: Target graph pattern

The target is specified as a graph pattern in Figure[3] It states that ECU n1 should be shut down and
components c1 and c2 should both be instantiated. Since a component instance of c1 is running on n1

S. Ziegert 75

in the initial state, we added a NAC disallowing component instances of c1 to run on nl in goal states.

A sample plan arriving in a valid target configuration deploys component c1 at ECU n2 in the first
step, then destroys the component instance i1, then shuts down n1, and at last creates a new instance of
c1 that runs on n2. To compute such plans, our planning system employs a heuristic function that solves
for each encountered state in its state space an abstraction of the original problem.

4 Solving the Planning Problem via Abstraction

Our technique to solve the GT planning problem is an informed search in the state space of the GTS. The
main feature of the system is the heuristic function that tells the search algorithm, e.g., A*, Best-First
(BF), or Enforced Hill-Climbing (EHC), which state to expand next. The heuristic function itself solves a
planning problem that is an abstraction of the original problem considered from a given state. Information
gained during solving the abstract problem is used to guide the search of the original problem.

4.1 Abstract State Sequences

The abstraction used by the heuristic function combines two ideas. The first idea is to relax the applica-
bility of a rule, i.e., to apply only changes that enable subsequent rule applications, but discard changes
that disable subsequent rule applications. In essence, this is realized by not deleting elements when rules
are applied (to relax LHS matching) and the use of labels, which allow to reinterpret (and thus relax)
NAC matching. The second idea is to apply all applicable transformations in parallel to construct the
next (abstract) state, instead of choosing one state to expand next. This results in a linear (abstract) state
space and thus allows to solve the abstract problem efficiently. Two applicable transformations cannot
be in conflict with each other due to the applied relaxation.

Figure] shows the abstract state sequence from the initial state of the problem to the first state that
satisfies the target graph pattern. Each transition corresponds to one parallel and relaxed application of all
applicable transformations. In the first transition, all reconfigurations deploying components are executed
in parallel, as well as all reconfigurations destroying component instances. In the second transition, new
instances are created and both ECUs are shutdown.

The relaxation used during the construction of the abstract state sequence is supposed to discard the
deletion of elements and reinterpret certain parts of the rules’ application conditions. Therefore, each
element that is supposed to be deleted according to the rule morphism of an applicable transformation,
is maintained in the successor graph Gy, but is labeled with deleted instead. Each element that is
supposed to be created, is added to Gy, as usual and labeled with created. Elements labeled with
deleted and created correspond to the dashed and dotted elements of Figure |4, respectively. Labeling
these elements gives the option to disregard them when considering the applicability of transformations
in later iterations. This has happened in the second transition of Figure {] with the component instances
i1 and i2: since they have been labeled as deleted by the first transition, new instances can be created
during the second transition by applying the createInstance rule. In general terms, in order for a
transformation to be considered applicable (despite a matching NAC), there has to be at least one element
that is labeled with deleted or created in the part of the host graph that is matched by the NAC. If there
are multiple NACs or a NAC has multiple matches, then each NAC match has to contain at least one
element that is labeled with deleted or created for the transformation to be applicable.

The generation of the abstract state sequence stops as soon as the abstract planning problem is solved,
i.e., the abstract state sequence reached a state that satisfies the target graph pattern. However, it is also

76 Graph Transformation Planning via Abstraction

i1:Clnst ! i1:Clnst L il

------- ~ runnlng

deployed nl:ECU | cl:Cmpnt

1eyed

cl:Cmpnt

c2:Cmpnt

i2:Clnst

Figure 4: An abstract state sequence

possible that there is no path from the initial abstract state to a state that satisfies the target graph pattern.
Therefore, we also abort the generation of the abstract state sequence after we generated x successor
states, where x is two times the heuristic value of the initial state of the concrete planning problem.

4.2 Heuristic Values

Our planning system performs a state space exploration by successively choosing a state and expanding
it, i.e., applying each rule at each possible match to generate its successor states. To decide which state
to expand next, the system calculates a heuristic value for each unexpanded state. Calculating a heuristic
value for a state involves generating the abstract state sequence starting in this state until we reach a state
that satisfies the target graph pattern.

Having constructed the abstract state sequence, a naive idea would be to use its length as heuristic
estimate. Although the abstract state sequence is expected to be shorter for states which are near to a goal
state and longer for states which are further away from a goal state, this value is still rather imprecise.
A better idea is to give the approximate number of individual reconfigurations needed for reaching the
goal state. However, we cannot simply count all applied reconfigurations per transition to calculate this
number, because this would include a lot of reconfigurations that were not needed to reach the goal state.
The reconfigurations that were needed to reach the goal state are called a relaxed plan and their number
is called the length of the relaxed plan.

Our approach to calculate this number incorporates rule application information into the newly cre-
ated elements of each successor graph. Each created element is labeled with information about the
transformation that caused its creation. This label consists of the iteration number of the successor graph
creation loop, the name of the applied rule, and a distinct identifier for the match of the rule to the host
graph. As an example, the deployed edge from component c1 to ECU n2 in Figure [is labeled with
(iteration #1, 'deployComponent’, match #1).

When the goal match is found, we can count the number of distinct rule application labels that are
contained in the elements of the goal match. This number is the number of transformations needed to
create the elements in the goal match. However, these labels contains only labels of elements that appear
directly in the goal match. It does not yet contain labels of elements that were needed to arrive at the
goal match. An example for this is the label of the aforementioned deployed edge from component c1
to ECU n2. While the deployed edge is not contained in the goal match, its creation during the first
transition was necessary for the application of another transformation during the second transition to

S. Ziegert 77

create an element in the goal match. In this example, the application of createInstance that creates
component instance i4 during the second transition required the deployed edge from c1 to n2. Our
approach includes labels of such elements, i.e., elements that were needed to arrive at the goal match,
when counting the rule application labels in the goal match: each element created by a transformation—
in addition to its own label—inherits the labels of all elements in the LHS match of the rule application.
In the example of Figure {4} the rule application label of the deployed edge created during the first
transition is propagated to the newly created instance i4 during the second transition.

Elements that have been marked as deleted are handled similarly. For example, the component
instance i1 receives the rule application label (iteration #1, 'destroyInstance’, match #1) when it
is marked as deleted by the application of the destroyInstance rule. Labels of elements being marked
as deleted are propagated to newly created (or deleted) elements if the labeled element is contained in
a NAC match, e.g., the label of i1 is propagated to the down edge at ECU n1 when shutdownNode is
applied during the second transition. Note, that elements being marked as deleted inherit labels in the
same manner as elements marked as created: they inherit labels of created elements if contained in the
LHS match and labels of deleted elements if contained in the NAC match. By inheriting the labels of
other elements, the elements in the goal match do not only contain labels of transformations that directly
created them, but also about all prior transformations that made their creation possible (whether by means
of element creation or deletion).

The heuristic value is now simply defined as the number of labels that are attached to all elements in
the goal match. If there are multiple goal matches, we use the smaller value. Applied to the example of
Figure] the goal match containing i4 and i2 would result in a heuristic value of 4.

5 Evaluation

Heuristics We compared our heuristic function (/) against a similarity-based heuristic which re-
sembles heuristic functions employed in related work [EJLLO6, [Snil1]]. Both heuristics have been im-
plemented in GROOVE [KRO06], a tool for state space generation and verification of graph grammars, to
conduct the experiments.

The similarity-based heuristic (k) counts the number of nodes and edges that exist in both the
current configuration and the target configuration. It relies on the types of nodes and edges to judge
whether a node or edge is counted as existing. More precisely, it puts the type of each node and edge of
a configuration into a multiset and takes the cardinality of the intersection of the current configuration’s
multiset and the target configuration’s multiset as a similarity measure. The heuristic value is then defined
as the additive inverse of this measure.

Search algorithms Both heuristic functions are evaluated in combination with greedy best-first and a
variant of enforced hill-climbing.

Greedy best-first (GBF) is a well-known search algorithm for informed search. It uses a closed list
and an open list of states. After expanding a state, i.e., all successor states have been generated, the state
is placed in the closed list. For each new successor state found, its heuristic value is computed and it is
placed into the open list. The decision which state to expand next is based on the heuristic values of the
states in the open list.

Enforced hill-climbing (EHC) is a local search algorithm. In each iteration it performs a breadth-first
search from the current state until it finds a state with a better heuristic value. When such a state is found,

78 Graph Transformation Planning via Abstraction

it updates the current state and continues with the next iteration. We use a modified EHC that applies
greedy best-first search instead of breadth-first search in each iteration.

Problem domains We used two problem domains for our experiments: Blocks World and ECUs.

Blocks World is a classical problem domain in the area of Al planning. It constitutes of a table with
a set of cubes that can be stacked upon each other. A cube can only be moved if there are no other cubes
on top of it and there is only one arm that can hold a cube, i.e., two cubes cannot be moved at the same
time. Finding an optimal solution in this domain has been shown to be NP-hard [GN92].

The ECUs domain functions as explained in Section[d] In contrast to the Blocks World domain which
does not involve the instantiation of objects, the ECUs domain contains rules creating new objects.

Experiment setup For the Blocks World domain, we used 8 different problem sizes (4, 6, 8, 10, 12,
14, 16, and 18 blocks) and 4 different problem instances (cross product of 2 random initial and target
configurations) per problem size.

For the ECUs domain, we used 4 different problem sizes (2, 3, 4, and 5 ECUs), each with 4 different
problem instances. Two of these problem instances had the same number of component instances running
in the initial configuration as ECUs were available. The other two problem instances used an additional
component instance. Each target configuration specified every second ECU (rounding down at odd
numbers of ECUs) to be shut down.

The experiments were conducted on a Dual Intel Xeon ES520 compute server with 16 (virtual) cores
running at 2.27GHz. Each experiment was given 4 cores and 4GB of RAM. If no plan could be computed
within 20 minutes, the job was terminated.

Results First, we give an overview of the number of generated states for each combination of heuristic
function and search algorithm. The number of generated states means the number of states that have been
found during the generation of the concrete planning problem’s state space. This number is a measure for
how well the employed heuristic prunes the state space. It does not include abstract states generated by
haps. Figure [5|shows a histogram of the average number of states for the BlocksWorld domain, Figure [6]
for the ECUs domain. Note the logarithmic scale in both histograms. With increasing problem size /i
makes its superiority clear. Combinations with A, failed to provide a solution within 20 minutes for the
problems of size 10 blocks and above (on the BlocksWorld domain) and 5 ECUs (on the ECUs domain).
There is no significant difference in performance between GBF and EHC.

Considering the average planning times in Figures[7]and[8] we can observe that A, performs better
than A, on small domains. The performance of A, on small domains is worse than that of Ag;,, because
the computation cost of finding a relaxed plan is in general much higher than the computation costs of
counting the number of nodes and edges in a state. While /;,, consumes only approx. 4% of the planning
time, h,ps consumes over 89% of the planning time (independently of whether used by GBF or EHC).
The performance changes to the favor of A, as the problem size increases. The planning time of /i,
scales better than the planning time of Ag;,,, which is expected since the number of generated states also
scales better. Note that we can only make an appropriate comparison of the scaling behavior, not the
absolute planning times, because our implementation is not optimized for efficiency.

S. Ziegert 79

E)
L LLLm

100k

10k

-
=

No. of states

-

o

s}
|

4 6 8 10 12 14 16 18
Problem size (no. of blocks)

B GBF-SIM EHC-SIM M GBF-ABS M EHC-ABS

Figure 5: Histogram of the average number of states in Blocks World domains

100k

10k

2 3 4 5

Problem size (no. of ECUs)

No. of states
>

—_
o
o

B GBF-SIM EHC-SIM M GBF-ABS M EHC-ABS

Figure 6: Histogram of the average number of states in ECUs domains

6 Related Work and Further Discussion

Our heuristic function is mainly inspired by the planning system Fast-Forward (FF) [HNOI]. FF is a
forward-chaining planner with a heuristic function that uses the solution length of a relaxed problem as
one of the main features. It won the 2nd International Planning Competition (IPC-2000), which led to
a shift of planning research towards heuristic-guided approaches. Variants of its techniques are used in
many of today’s state-of-the-art planners, like SGPlan or LAMA [RWI0Q].

In contrast to our system, which uses label propagation to find the relaxed plan, FF computes the
relaxed plan by a backward search on a structure called the planning graph [BF97]. Such a planning
graph roughly resembles our list of successor graphs in the abstraction. By applying this idea to graph
transformation systems instead of PDDL’s propositional state representations, we face two important
differences, especially with the combination of dynamic object creation and the support for NACs.

80 Graph Transformation Planning via Abstraction

10k

Planning time [s]

4 6 8 10 12 14 16 18
Problem size (no. of blocks)

B GBF-SIM EHC-SIM M GBF-ABS M EHC-ABS

Figure 7: Histogram of the average planning times in Blocks World domains

10k

100
10
1

Problem size (no. of ECUs

Planning time [s]

B GBF-SIM EHC-SIM M GBF-ABS M EHC-ABS

Figure 8: Histogram of the average planning times in ECUs domains

e Dynamic object creation can lead to an explosion of the graph size during the creation of successor
graphs in the abstraction. This is not an issue in PDDL-based planners because they do not support
dynamic object creation.

e The equivalent to NACs in PDDL are negative existential quantifications over conjunctive facts.
They are usually solved by compiling them away, i.e., translating them into DNF, which results in
a blowup of the propositional domain representation, cf. [HNO1]. In our approach, we avoid such
a blowup by building the support for NACs directly into the abstract planning algorithm.

Another approach that directly plans on graph transformation system is [EW1I]]. They also use
search algorithms like A* or Best First to search through the state space, but they employ a domain-
specific heuristic. An obvious disadvantage is that a heuristic suitable for the given application domain
has to be developed first. To overcome the disadvantage, they use an approach to learn heuristic functions
automatically. A learning algorithm derives a regression function that predicts the costs of solving the

S. Ziegert 81

problem from a given state. To derive the regression function, the learning algorithm needs a predefined
declaration of state features and a training set with problem instances. While this solution is an improve-
ment from developing heuristic functions manually, it still requires the developer to declare a set of state
features that is suitable for the given application domain.

In the introduction, we mentioned approaches that translate the GT planning problem into PDDL
as an alternative to planning directly on graph transformation systems. This has been done in [TKI11]
for the story pattern formalism and in [ZW13]], an extension of the former by a transactional concept to
support durations that are specified for reconfigurations. In both of them, the straightforward solution to
support NAC:s is to translate them into negative existential quantifications over all objects of the forbidden
objects’ types. The major disadvantage of these approaches is the restricted expressiveness of PDDL.
Because PDDL does not support the dynamic creation of objects, these approaches use a modeling
workaround, which requires a fixed maximal number of objects per type.

7 Conclusion and Future Work

In this paper, we presented an approach to planning with graph transformations. It features a domain-
independent heuristic function that uses the solution of an abstraction of the problem as guidance. We
further showed that it performed better than a similarity-based heuristic function which resembles heuris-
tic functions employed in related work [[EJLLLO6, Snil1].

In future work we plan to further improve our heuristic planning approach. One idea is to adapt the
notion of helpful actions, cf. [HNOI1], to graph transformation planning. An action is called helpful in
the concrete planning problem, if it is applied in the first step of the parallel relaxed plan. By considering
only helpful actions when expanding a state, we expect to achieve a strong performance improvement.

When we finished developing a GTS-based planner that is satisfyingly performant, we intend to do
a detailed evaluation comparing its efficiency to the efficiency of running off-the-shelf planning systems
on PDDL models that have been generated out of the GTS by a translator. We are specifically interested
in finding out whether one approach dominates the other one in general or whether this depends on
properties of the application domain.

Acknowledgement

The author would like to thank Amir Shayan Ahmadian and Johannes Geismann for major contributions
to the implementation and valuable discussions.

References

[BBG"06] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein & Daniela Schilling (2006): Symbolic Invariant
Verification for Systems with Dynamic Structural Adaptation. In: 28th Int. Conf. on Software Engi-
neering (ICSE 2006), ACM, New York, NY, USA, pp. 72-81. Available at dx.doi.org/10.1145/
1134285.1134297.

[BF97] Avrim L. Blum & Merrick L. Furst (1997): Fast Planning Through Planning Graph Analysis. Artificial
Intelligence 90(1-2), pp. 281-300. Available at dx.doi.org/10.1016/50004-3702(96)00047-1,

[CWHO06] Yixin Chen, Benjamin W. Wah & Chih-Wei Hsu (2006): Temporal Planning using Subgoal Partition-
ing and Resolution in SGPlan. Journal of Artificial Intelligence Research (JAIR) 26(1), pp. 323-3609.
Available at/dx.doi.org/10.1613/jair.1918,

dx.doi.org/10.1145/1134285.1134297
dx.doi.org/10.1145/1134285.1134297
dx.doi.org/10.1016/S0004-3702(96)00047-1
dx.doi.org/10.1613/jair.1918

82

[EEPTO06]

[EHK197]

[EJLLO6]

[EW11]

[FLO3]

[GN92]

[HNO1]

[KMO7]

[KRO6]

[LM98]

[Ren08]

[RW10]

[Snill]

[TK11]

Graph Transformation Planning via Abstraction

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science, Springer. Available at dx.
doi.org/10.1007/3-540-31188-2,

H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner & A. Corradini (1997): Algebraic Ap-
proaches to Graph Transformation II: Single Pushout Approach and Comparison with Double Pushout
Approach. In G. Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph Trans-
formation, Volume 1: Foundations, chapter 4, World Scientific Publishing, pp. 247-312. Available at
dx.doi.org/10.1142/9789812384720_0004,

Stefan Edelkamp, Shahid Jabbar & Alberto Lluch Lafuente (2006): Heuristic Search for the Analysis
of Graph Transition Systems. In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro &
Grzegorz Rozenberg, editors: 3rd Int. Conf. on Graph Transformation (ICGT 2006), Lecture Notes
in Computer Science (LNCS) 4178, Springer, pp. 414-429. Available at dx.doi.org/10.1007/
11841883_29.

H.-Christian Estler & Heike Wehrheim (2011): Heuristic Search-Based Planning for Graph Transfor-
mation Systems. In: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling (KEPS
2011), pp. 54-61. Available at icapsll.icaps-conference.org/workshops/keps.htmll

Maria Fox & Derek Long (2003): PDDL2.1: An Extension to PDDL for Expressing Temporal Plan-
ning Domains. Journal of Artificial Intelligence Research (JAIR) 20(1), pp. 61-124. Available at
dx.doi.org/10.1613/jair.1129,

Naresh Gupta & Dana S. Nau (1992): On the Complexity of Blocks-World Planning. Artificial Intelli-
gence 56(2-3), pp. 223-254. Available at|dx.doi.org/10.1016/0004-3702(92)90028-V.

Jorg Hoffmann & Bernhard Nebel (2001): The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Atrtificial Intelligence Research (JAIR) 14(1), pp. 253-302. Available at
dx.doi.org/10.1613/jair.855.

Jeff Kramer & Jeff Magee (2007): Self-Managed Systems: an Architectural Challenge. In: Workshop
on the Future of Software Engineering (FOSE 2007), IEEE, pp. 259-268. Available at|/dx.doi.org/
10.1109/F0SE.2007. 19l

Harmen Kastenberg & Arend Rensink (2006): Model Checking Dynamic States in GROOVE. In
Antti Valmari, editor: 13th Int. Workshop on Software Model Checking (SPIN 2006), Lecture Notes
in Computer Science (LNCS) 3925, Springer, pp. 299-305. Available at dx.doi.org/10.1007/
11691617_19.

Daniel Le Métayer (1998): Describing Software Architecture Styles Using Graph Grammars. IEEE
Transactions on Software Engineering 24(7), pp. 521-533. Available at|dx.doi.org/10.1109/32.
708567

Arend Rensink (2008): Explicit State Model Checking for Graph Grammars. In: Concurrency, Graphs
and Models, Lecture Notes in Computer Science (LNCS) 5065, Springer, pp. 114-132. Available at
dx.doi.org/10.1007/978-3-540-68679-8_8.

Silvia Richter & Matthias Westphal (2010): The LAMA Planner: Guiding Cost-Based Anytime Plan-
ning with Landmarks. Journal of Artificial Intelligence Research (JAIR) 39, pp. 127-177. Available
at/dx.doi.org/10.1613/jair.2972

Erik Snippe (2011): Using Heuristic Search to Solve Planning Problems in GROOVE. In: 14th Twente
Student Conference on IT, University of Twente. Available at fmt.cs.utwente.nl/education/
bachelor/73/.

Matthias Tichy & Benjamin Klopper (2011): Planning Self-Adaptation with Graph Transformations.
In Andy Schiirr, Déniel Varr6 & Gergely Varro, editors: Int. Symp. on Applications of Graph Transfor-
mation with Industrial Relevance (AGTIVE 201 1), Lecture Notes in Computer Science (LNCS) 7233,
Springer, pp. 137-152. Available at|dx.doi.org/10.1007/978-3-642-34176-2_13,

dx.doi.org/10.1007/3-540-31188-2
dx.doi.org/10.1007/3-540-31188-2
dx.doi.org/10.1142/9789812384720_0004
dx.doi.org/10.1007/11841883_29
dx.doi.org/10.1007/11841883_29
icaps11.icaps-conference.org/workshops/keps.html
dx.doi.org/10.1613/jair.1129
dx.doi.org/10.1016/0004-3702(92)90028-V
dx.doi.org/10.1613/jair.855
dx.doi.org/10.1109/FOSE.2007.19
dx.doi.org/10.1109/FOSE.2007.19
dx.doi.org/10.1007/11691617_19
dx.doi.org/10.1007/11691617_19
dx.doi.org/10.1109/32.708567
dx.doi.org/10.1109/32.708567
dx.doi.org/10.1007/978-3-540-68679-8_8
dx.doi.org/10.1613/jair.2972
fmt.cs.utwente.nl/education/bachelor/73/
fmt.cs.utwente.nl/education/bachelor/73/
dx.doi.org/10.1007/978-3-642-34176-2_13

S. Ziegert

[WF02]

[ZW13]

83

Michel Wermelinger & José Luiz Fiadeiro (2002): A Graph Transformation Approach to Software
Architecture Reconfiguration. Science of Computer Programming 44(2), pp. 133—155. Available at
dx.doi.org/10.1016/50167-6423(02)00036-9.

Steffen Ziegert & Heike Wehrheim (2013): Temporal Reconfiguration Plans for Self-Adaptive Sys-
tems. In S. Kowalewski & B. Rumpe, editors: Software Engineering (SE 2013), Lecture Notes
in Informatics (LNI) , Gesellschaft fiir Informatik e.V. (GI), Bonn, pp. 271-284. Available at
se2013.rwth-aachen.de.

dx.doi.org/10.1016/S0167-6423(02)00036-9
se2013.rwth-aachen.de

	1 Introduction
	2 Planning with Graph Transformations
	3 Application Example
	4 Solving the Planning Problem via Abstraction
	4.1 Abstract State Sequences
	4.2 Heuristic Values

	5 Evaluation
	6 Related Work and Further Discussion
	7 Conclusion and Future Work

