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Most of the existing verification techniques for message-passing programs suppose either that chan-
nel endpoints are used in a linear fashion, where at most one thread may send or receive from an
endpoint at any given time, or that endpoints may be used arbitrarily by any number of threads. The
former approach usually forbids the sharing of channels while the latter limits what is provable about
programs. In this paper we propose a midpoint between these techniques by extending a proof system
based on separation logic to allow sharing of endpoints. We identify two independent mechanisms
for supporting sharing: an extension of fractional shares to endpoints, and a new technique based on
what we call reflexive ownership transfer. We demonstrate on a number of examples that a linear
treatment of sharing is possible.

Introduction

One way to tackle the formal verification problem for message-passing programs is to prove that they
implement protocols expressible in a higher-level formalism and easier to reason about. Two main ap-
proaches coexist: session types on the one hand [21], used to police interactions in programs expressed
either in the π-calculus [15] or in a message-passing variant of Java [13], and channel contracts on the
other hand [6], used for instance to describe the protocols in the Sing# programming language [7] de-
veloped for the Singularity operating system [14]. High-level protocol descriptions allow the program
verification effort to be split between checking properties of the protocol itself, such as the absence of
message reception errors (occurring when a message of the wrong type is received) or of orphan mes-
sages (those sent at some point in the interaction but never received before the channel is closed), and
checking obedience of the program to the protocol.

Most of the existing verification techniques for message-passing programs suppose that channel end-
points are used in a linear fashion: no two threads may ever try to send or receive simultaneously on the
same channel endpoint. Indeed, checking the conformance to a given protocol locally for each thread or
process often gives unsound results if this linearity condition is broken. This limitation prevents some
programs from being proven. For instance, such linear channel communications are known to enforce a
form of determinism [8] that excludes standard synchronisation primitives such as locks and semaphores.
Almost none of the verification techniques supporting shared channels is able to give meaningful proto-
cols to them.

This work extends a previous approach based on a marriage of separation logic and channel con-
tracts [25], which forbade any active sharing of endpoints, to deal with endpoint sharing and give mean-
ingful protocols to their interactions. As in previous work, we consider a simple imperative language
that features explicit memory manipulation and primitives for creating and destroying bi-directional,
asynchronous channels made of two endpoints, and for sending and receiving messages on individual
endpoints. Each message is composed of a user-defined label (describing the kind of payload supposed
to be transferred) and zero or more values. Crucially, values may be pointers to memory cells or even
to other endpoints, and thus sending a message may create sharing of resources and foster data races.
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In the absence of sharing, our previous work was able to prove obedience to channel contracts and ab-
sence of data races, and from that to deduce the absence of reception errors and of orphan messages. In
this setting, transferring a message that is attached to a resource is reflected in the logic by transferring
ownership of that resource (the message’s footprint in memory) to the recipient of the message.

We propose an extension to the previous proof system that deals with endpoint sharing and achieves
two goals: on the one hand, checking that the exchange of messages on the channels used by programs
obeys protocols defined by channel contracts; on the other hand, ensuring the absence of data races.
Our notion of data race freedom allows shared read access to memory cells, and, as often as possible,
shared access to endpoints for sending and receiving. The latter significantly complicates the analysis
of communications, and in particular one of the primary goals of the proof system: to check whether
channels obey their declared contracts.

In order to guarantee that shared endpoints obey their contracts, we extend the previous proof sys-
tem [25] in two ways. The first extension is based on fractional shares [5, 4], a widespread refinement of
the all-or-nothing ownership in separation logic. Permissions allow communications on endpoints that
are partially owned, with some restrictions as we shall see. Sharing contract-obedient endpoints with
permissions is indeed problematic as a consistent view of the contract state of the endpoint should be
maintained amongst all sharers. A correct permission-based sharing thus turns out to be extremely close
in spirit to unrestricted types by Giunti and Vasconcelos [10] if slightly more flexible (see the related
works section). Permission-based sharing still excludes a lot of interesting protocols. Consider for in-
stance the following code featuring a seller and several buyers running in parallel. The seller bargains
the price of its product using endpoint e while several buyers concurrently access the peer f of e:

seller(e) {
local price = 0;
while (!good(price )) {

send(product_descr ,e);
price = receive(offer ,e);

}
}

buyer(f) {
local x;
receive(product_descr ,f);
x = think_about_it ();
send(offer ,f,x);

}

main {
(e,f) = open ();
seller(e) ||
buyer(f) ||
... ||
buyer(f);

}

Here product_descr and offer are labels identifying the kind of message being transferred. A natural
contract for the communication channel (e, f ) is C =!product_descr.?offer.C, where ! is used for sending
and ? for receiving from the point of view of the first endpoint, the other endpoint following the dual
contract where ! and ? are swapped (notice that contracts are only concerned with the labels and directions
of the messages being exchanged and not their values). However, the above program is not provable using
fractional permissions or unrestricted types and the reason, as we shall see, is that this contract contains
two distinct states.

The second extension of our proof system precisely addresses this problem. The crucial step towards
proving this seller/buyers example is to consider that none of the buyers makes any assumption on the
contract state of f at the beginning of the protocol. In particular, they attempt to receive a product
description on f without relying on f being in a contract state that ensures that such a message will be
available next. The crucial argument that validates this reasoning is that the received message justifies a
posteriori the buyer waiting for a product_descr message. In other words, the knowledge (or ownership)
of the contract state of f is established in the post state of receiving f but not in the pre state: the footprint
of this message contains the endpoint that it is received on.

We fully formalise the two extensions of our proof system in the companion technical report [18].
In particular, we give a formal proof of soundness that ensures several safety properties for proved
programs. Due to space limitations we have chosen to keep the presentation rather informal, focusing on
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example programs, and we invite the interested reader to refer to our technical report for more details on
the formalisation.

Outline In the first section we recall our previous model of Sing# and define some of the main problems
of interest for verification. In the second section we give a tutorial introduction to the kind of annotations
that are used in our proof system. In the third section we illustrate the principle of permission-based
sharing of endpoints on a few examples. In the fourth section we introduce the principle of linear sharing
with several examples of non-confluent concurrent programs. In the fifth section we give some highlights
of the formalisation of our proof system. We conclude with related works.

1 Copyless Message Passing

1.1 Toy Programming Language

We consider a programming language which offers some basic support for procedures, variables, and
threads. Threads share a global memory and may allocate, deallocate, and manipulate heap objects
allocated in this shared memory. Moreover, threads may synchronise thanks to message exchanges
across heap-allocated communication channels. Communications are asynchronous and channels can
be thought of as pairs of perfect FIFO buffers. More precisely, channels always consist of exactly two
endpoints and each endpoint can be used to send to and receive from the other one. A send instruc-
tion send(m,e,v1,. . .,vn) triggers the emission of a message tagged with a label m emitted on an end-
point e with n values v1, . . . , vn (the arity of the message is fixed by the tag m). A receive instruction
(x1,. . .,xn) = receive(m,e) is symmetric and specifies which message tag is expected. This communica-
tion model is close to the one of Sing# [7].

Example 1.1 The two threads below collaboratively close the channel they use to communicate. The
variables e and f are global.

main (){
(e,f) = open ();
put() || get();

}

put() {
send(endpoint ,e,e);

}

get() {
local x;
x = receive(endpoint ,f);
close(x,f);

}

The main function allocates the two endpoints e, f of the channel with open and gives one to each of the
two threads put and get that it launches in parallel. It then joins both threads. The put thread sends a
message tagged as “endpoint” to the get thread. Observe that e is both the subject and the object of this
message: endpoints are heap-allocated and the address of an endpoint is a valid value for a message.
Upon reception the get thread holds both endpoints of the channel and can thus safely close the channel
with close.

Our toy programming language also features primitives for heap manipulation. For simplicity, we
will assume primitive heap cells with only two fields. We use the syntax x = new(), dispose(x), x.i = . . .,
and y = x.i for allocation, deallocation, destructive update, and look-up (i ∈ {0,1} denotes the field
selector). Although endpoints are also heap cells, they are of a different type and we only consider
programs that are well-typed in that respect (the proof system will actually verify that this is the case).
Message values can contain the memory address of an endpoint or a cell and thus both kind of heap
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objects can be passed by message exchanges. The grammar below summarises some of the key aspects
of the syntax of our programming language.

c ::= skip | x = e |
x = new() | x.0 = y | x.1 = y | x = y.0 | x = y.1 | dispose(x) |
(x,y) = open(C) | close(x,y) | send(m,x,x1,. . .,xn) | (x1,. . .,xn) = receive(m,x) |
switch { . . . case ~xi = receive(mi,ei): pi . . . } | . . .

p ::= c | p; p | p||p | while (b) p | if (b) then p else p | local x; p | . . .

Example 1.2 In the code below the put thread non-deterministically chooses either to send a cell or to
keep it. On the other side, the receiver (get) needs to be ready to receive any of the two messages cell

and no_cell; this is achieved by the switch/case construct. Variables not declared as local are global.

main (){
(e,f) = open ();
x = new ();
put() || get();

}

put() {
local f;
if (. . .) {
send(cell ,e,x);

} else {
send(nocell ,e);
dispose(x);

}
f = receive(clos ,e);
close(e,f);

}

get() {
switch {
case y = receive(cell ,f):
dispose(y);

case receive(nocell ,f):
skip;

}
send(clos ,f,f);

}

1.2 Pitfalls of Copyless Message Passing

Programs may suffer from several runtime errors. First of all, memory violations may occur when a
dangling pointer is dereferenced, modified, or disposed. Moreover, two threads may cause a data race
if they simultaneously try to access a variable or a memory location and if at least one of the accesses is
a write access. Synchronisations via message passing can be used to prevent such races but might yield
deadlocks: in this paper, a program is considered to be in a deadlock configuration if all of its threads are
blocked on receptions.

In addition to these rather familiar problems, it is important to mention other erroneous behaviours
one may wish to avoid. The first one is memory leaks (situations where it becomes impossible to fully
deallocate the heap), which one may want to detect or forbid altogether, either because the underlying
programming language is not garbage collected or because this information may matter for the garbage
collector (the latter holds for Sing#). Similarly, sent messages may never be received and stay in a
channel forever; closing channels when they contain such orphan messages is most of the time considered
a communication error. Instead, one should make sure that both queues of a channel are empty before
closing it. Lastly, a thread may enter a switch/case construct in a situation where the buffer of one of
the endpoints it scans starts with a message whose tag is not listed as a possible case. We strive to
ensure the absence of such unspecified receptions, though they might be resolved differently in other
communication models (for instance the program may block or look for a message with one of the listed
tag deeper in the queue, à la Erlang).

Example 1.3 The program P0 , send(m1,e) || switch {case receive(m2,f): skip} is both deadlocking
and triggering an unspecified reception. Similarly, replacing get() by skip in Example 1.1 would cause
a memory leak.
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Note that all of these problems are distinct and incomparable. In particular,

• orphan messages are not a special case of memory leaks: it may be the case that lost messages
carried no ownership (e.g. the message nocell above);

• unspecified receptions are not a special case of deadlocks: we will distinguish the program P1 ,
send(m1,e) || receive(m2,f) from the program P0 above: P1 is only deadlocking.1 Conversely, the
program P0 || {receive(m1,f); send(m2,e);} is not deadlocking. However, it has an unspecified
reception at the time m1 is sent.

2 Proving Copyless Message Passing

2.1 Separation Logic

Our aim is to design a proof system for Hoare triples based on separation logic that will prevent all of the
aforementioned errors except deadlocks2, as was achieved previously in a context without endpoint shar-
ing [25]. Hoare triples are understood in terms of partial correctness and, for this reason, non-terminating
and deadlocking programs generally have a proof. A triple {A} p {B} is informally understood as “start-
ing p from any state satisfying A will not result in a memory fault, an unspecified reception or an orphan
message and, if p terminates, then the final state satisfies B”.

Being based on separation logic, our proof system will ensure that every proved program follows
some locality principles. As a first approximation (and before we introduce permissions), these locality
principles can be summarised as follows.3

Ownership hypothesis Each thread owns a subpart of the heap: it can only read and update that part of
the heap. The part of the heap owned by a thread may evolve during the execution.

Separation property At any point in the execution each allocated cell is owned by either exactly one
thread or by a message stored in a queue.

These principles can be illustrated on the program of Example 1.1: observe that at every point in
time, put and get own disjoint parts of the heap. Initially, put owns the endpoint e while get owns the
endpoint f. During execution, the ownership of e is transferred from put to the message endpoint and
ultimately to get, which justifies its disposal by get.

State assertions make this reasoning more formal. They convey information on the part of the heap
that is owned by the thread at a given point in time. The base predicates of state assertions describe the
ownership of a single cell or endpoint.

The example code on the left-hand side of Figure 1 features the annotations that formalise the expla-
nations given above. Separation logic formulas appear in square brackets. In the precondition of main,
emp indicates that nothing is known to be allocated (or, alternatively, that nothing in the heap is owned
at this program point). After the (e,f) = open() instruction, two peer endpoints have been allocated
and their addresses have been stored in variables e and f respectively. The predicate e Z⇒ f denotes the

1Provided no other thread accesses f concurrently. Note that one may wish to authorise a thread to wait for a message in a
buffer provided that other threads will pick all the other ones first. In order to support such behaviours we distinguish reception
from scanning (also called peeking) and consider that unspecified receptions might occur only on scanning, not on reception.

2The reason why we omit deadlocks is not that we find them uninteresting, but rather that there is no simple way to treat
them without introducing new notions; see Leino et al. [16] or session types [15] for analyses of message-passing programs
dealing with deadlocks.

3The ownership hypothesis and separation property also apply to global variables. Since this is cumbersome to formalise
we leave that aspect implicit in this paper.
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main() [emp] {
(e,f) = open ();
[e Z⇒ f ∗ f Z⇒ e]
[e Z⇒ f ] || [ f Z⇒ e]
put() || get();
[emp] || [emp]

} [emp]

multi_readers () [emp] {
x = new ();
[x 7→ (−,−)]
x.1 = 7;
[x 7→ (−,7)]
[x 7→0.5 (−,7)] || [x 7→0.5 (−,7)]
z = 1 + x.1 || t = 3 × x.1
[x 7→0.5 (−,7)] || [x 7→0.5 (−,7)]
[x 7→ (−,7)]
dispose(x);

} [emp]

Figure 1: Separation logic at work: state splitting and parallel composition.

message endpoint(x) [x Z⇒ f ]

put() [e Z⇒ f ] {
send(endpoint ,e,e);

} [emp]

get() [ f Z⇒ e] {
local x;
x = receive(endpoint ,f);
[ f Z⇒ e∗ x Z⇒ f ]
[ f Z⇒ x∗ x Z⇒ f ]
close(x,f);

} [emp]

Figure 2: Proof sketches for put and get.

ownership of the endpoint e and provides the information that its peer is f . In the second assertion, the
separating conjunction ∗ is used to add together the two disjoint pieces of owned heap consisting each
of one endpoint. The proof of the parallel composition distributes the pieces of heap currently owned to
each of the sub-threads and merges them back at the end of the parallel composition.

The main limitation of this treatment of parallelism is that it excludes programs based on the multiple-
readers/single writer principle. One solution is to assign to every owned piece of heap a permission
π ∈ (0,1]. The permission 1 is the “total” or “write” permission while a permission π < 1 is a “partial” or
“read” permission. To illustrate this idea, consider the example code on the right-hand side of Figure 1.
Initially, the program allocates a new cell x for which it may assume a write permission. It results
in a state where the ownership of the cell x with permission 1 can be assumed, which is denoted by
x 7→ (−,−). It is then allowed to update the content of the cell, resulting in x 7→ (−,7).4 At the level
of the parallel composition, we split the write permission to distribute it on each side, resulting in two
read permissions which we choose to be 0.5 each (uneven splittings would also have been possible), for
which we write x 7→0.5 (−,7).5 On each side, cell updates are now forbidden (note that all sharers may
in return assume that the value of the second field does not change) but shared reads are allowed. After
the parallel step, all permissions are collected back and a write permission for the cell is again granted
which allows us to dispose the cell.

To conclude this overview, let us complete the proof of the put and get functions of Example 1.1.
The footprint of a message is the piece of heap that is lost when sending this message and gained when
receiving it.6 The correctness of the interaction between put and get is based on the assumption that the
footprint of the endpoint message is the endpoint e, represented by the formula e Z⇒ f . More generally,

4We write x 7→ (v1,v2) for a cell x whose first and second fields contain the values v1 and v2. We freely use a wildcard “−”
when a value is existentially quantified. Note that we use different arrows for regular memory cells (7→) and endpoints (Z⇒).

5We explicitly specify the subscript permission only when it is different from 1.
6We use a different terminology than previous work [25] where footprints were called message invariants.



É. Lozes & J. Villard 23

given a program to prove, we will associate a footprint description to every user-defined message tag m
and assume that every time m is sent or received the same footprint is transferred. Figure 2 shows the
state assertions at each program point for put and get, which constitute a proof sketch. Note that before
closing the channel the proof makes the deduction step that f Z⇒e∗x Z⇒ f ` f Z⇒x∗x Z⇒ f , which is valid
because each endpoint is peered to exactly one other endpoint.

2.2 Channel Contracts

Separation logic naturally enforces some of the safety conditions we listed in Section 1.2, such as data
race freedom. However, in order to detect either an orphan message or an unspecified reception, proofs
must support assumptions about the behaviour of the environment of a thread. In particular, one should
be able to specify which messages local endpoints must be ready to receive and which messages they
may send.

Channel contracts are a specialised form of rely/guarantee reasoning that precisely addresses this
problem; they describe the protocol followed by each endpoint as a finite-state automaton. A contract C
is written from one of the endpoints’ point of view, the other endpoint being assumed to follow the dual
contract C̄ where sends ! and receives ? have been swapped.

Example 2.1 The contracts for the two previous example programs are depicted below.

C1 : 1 2
!endpoint C2 : 1 2 3

!cell

!nocell

?clos

The first contract says that exactly one message endpoint will be sent from e to f, after which the
channel may be closed. The second contract says that either cell or nocell will be sent and this should
be answered by a clos message, after which the channel can be closed.

Contracts are used to “type” endpoints: at any point in time, every endpoint is decorated with a
contract and a contract state. The contract is fixed for the whole life of the endpoint, from open to close.
The contract state evolves along the communications: if e is in the contract state q of its contract C and
if a message m is sent over e, then the contract state of e becomes the !m successor of q in C. If q does
not have such a successor, then the contract is violated. Similarly, in case of a reception of m the contract
state evolves to its ?m successor. A switch/case construct on a given endpoint should be ready to handle
at least all the receptions indicated by the contract in the current control state of the endpoint. Peer
endpoints e, f allocated with open(C) are ruled by contracts C and C̄ respectively and start in the initial
contract state of C. Finally, close(e,f) is only allowed when both endpoints are peers of each other and
are in the same final state of their contract (contracts may have multiple final states that way). Note that
contracts without final states describe persistent channels that cannot be closed.

Example 2.2 The proof that the endpoint-transferring program of Example 1.1 obeys the contract C1 of
the Example 2.1 is sketched below. Annotations now feature the predicate e Z⇒ (C〈q〉, f ) that denotes the
ownership of an endpoint e ruled by the contract C, currently in state q of C, and whose peer is f .
message endpoint(x) [x Z⇒ (C1〈2〉, f )]
put() [e Z⇒ (C1〈1〉, f )] {
send(endpoint ,e,e);

} [emp]

main() [emp] {
(e,f) = open(C);
put() || get();

} [emp]

get() [ f Z⇒ (C1〈1〉,e)] {
local x;
x = receive(endpoint ,f);
close(x,f);

} [emp]
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In general, contracts do not guarantee the absence of communication errors or of orphan messages.
Moreover, they are known to be Turing powerful so deciding most properties of interest is an undecid-
able problem [17]. However, sufficient conditions exist that ensure their correctness: if contracts are
deterministic automata with no mixed choice (all outgoing transitions from a given state are either all
sends or all receives), then receptions errors are prevented. If moreover every cyclic path containing a
final state contains at least one send transition and one receive transition, then there cannot be orphan
messages upon channel closure [17]. All the contracts in this paper satisfy these restrictions.

3 Contract Obedience beyond Linearity

Permissions support scenarios involving sharing among multiple readers. Until now we only saw how
permissions apply to standard heap cells, but not endpoints. Let us introduce a predicate e Z⇒π (C〈q〉, f )
that denotes the ownership of a fraction π of the endpoint e. This extension immediately raises a question:
what permission do we require to send, receive, and close? A conservative solution which would again
prevent any active sharing would be to require a full permission in all cases. A rather naive analogy
with heap cells could suggest to ask for a full (write) permission for send and close but only a partial
(read) permission for receptions. Were we concerned with routing messages deterministically we could
conversely allow partial permission for sending but require full permissions for receiving. Our solution
is more permissive than both of these: we only require full permissions to close channels.

This choice comes with some restrictions, lest the proof system becomes unsound. When two threads
concurrently send (or receive) the messages m1 and m2 respectively over a shared endpoint e they may
change the contract state of e in different ways and get inconsistent views of the actual endpoint’s state.
Would it be safe if we were to restrict ourselves to situations where m1 = m2? The answer is no and
is worth being illustrated by an invalid proof. Consider a cell-transferring protocol with two producers
sharing an endpoint e ruled by the contract C = 1 2!cell .

message cell(x) [x 7→ −]
put() [e Z⇒0.5 (C〈1〉, f )] {

local x; x = new();
send(cell ,e,x);

} [e Z⇒0.5 (C〈2〉, f )]

main() [emp] {
(e,f) = open(C);
put() || put() || get ();
close(e,f);

} [emp]

get() [ f Z⇒ (C〈1〉,e)] {
local y;
y = receive(cell ,f);
dispose(y);

} [ f Z⇒ (C〈2〉,e)]

This program should be rejected: there is an orphan message and a memory leak when the channel is
closed. However, the invalid proof above incorrectly establishes the Hoare triple {emp} main() {emp}.
Moreover, both concurrent put functions update the contract state of e to the same state 2.

Let us think about the problem differently and consider that endpoints are typed at run-time (which
is the case for Sing#), or in other words that the contract state is a field of the heap cell implementing the
endpoint. Following the same principle as for standard heap cells, we should only allow updates to the
contract state of an endpoint when it is owned with the full write permission. In the following we only
consider proofs that follow this principle. Excluding updates of the contract state of a shared endpoint
may seem to forbid any communication on this endpoint. There is however a very particular case where
a send or receive does not generate a contract state update: a self-loop on a contract state.

Example 3.1 Consider the contract C depicted in Figure 3. Then a shared endpoint in state 1 can be
used to send a cell message. The two producers / one consumer program of Figure 3 can thus be proved.

Note how sending and receiving clos only occurs with the write permission on the endpoint, whereas
send(cell,e,x) occurs with just a read permission over e. Crucially, the cell message silently carries
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C: 1 2

!cell

!clos message cell(x) [x 7→ −∗ e Z⇒0.5 (C〈1〉, f )]
message clos [e Z⇒ (C〈2〉, f )]

main() [emp] {
(e,f) = open(C);
put() || put() || get ();
[ f Z⇒ (C〈1〉,e)]
receive(clos ,f);
[ f Z⇒ (C〈2〉,e)∗ e Z⇒ (C〈2〉, f )]
close(e,f);

}

put() [e Z⇒0.5 (C〈1〉, f )] {
local x;
x = new ();
send(cell ,e,x);

} [emp]

get() [ f Z⇒ (C〈1〉,e)] {
local x;
x = receive(cell ,f);
dispose(x);
[ f Z⇒ (C〈1〉,e)∗ e Z⇒0.5 (C〈1〉, f )]
x = receive(cell ,f);
dispose(x);
[ f Z⇒ (C〈1〉,e)∗ e Z⇒ (C〈1〉, f )]
send(clos ,e);

} [ f Z⇒ (C〈2〉,e)]

Figure 3: Two producers and one consumer: non-linear sharing.

half of the ownership of the endpoint e. After receiving a cell message twice the consumer has full
ownership of e and can thus send the clos message in a contract-obedient way. Note that we cannot
avoid the transfer of e: were the clos message sent from f, the contract state 1 would be a mixed state.

Example 3.2 (Internal Choice) A slightly more involved example is the following encoding of internal
choice. We let two processes compete to get a token message. The one that catches it first can start
executing and sends a notoken message to the other process, which is in charge of closing the channel
that carried the token.

choice(p1, p2), (e,f) = open(C); { send(token,e) || p1 || p2 }

where e, f do not appear free in p1, p2 and p′i is defined parametrically in the program pi by

switch { case receive(token ,f): {send(notoken ,e); pi}
case receive(notoken ,f): close(e,f); }

Let us derive the Hoare triple {A} choice(p1, p2) {B} from {A} p1 {B} and {A} p2 {B} for any formulas
A and B. We first give to each process half of the ownership on the endpoint f. Then, we consider that
the ownership of the endpoint e is transferred by the messages token and notoken. Moreover, we set the
message notoken to transfer half of the ownership of f, so that the loser of the internal choice gets the
full ownership on the two endpoints in the end and can close the channel.

1 2

!token

!notoken message token [e Z⇒ (C〈1〉, f )]
message notoken [e Z⇒ (C〈2〉, f )∗ f Z⇒0.5 (C〈1〉,e)]

4 A Linear Form of Sharing

Sharing endpoints is very common in scenarios involving one server and several clients: the server
usually owns an endpoint, say ep, and the clients share its peer, say ip. One way to model a client
connection is to assume that the server first sends a welcome message. Once caught by one of the clients, a
new pair of endpoints is used for the rest of this connection. The code in Figure 4 models such negotiated
connections among a central server and several clients, letting the clients allocate the endpoints used for
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Clients and Server “System calls”
server (){

local e;
ep = bind(ip);
listen ();
while (. . .) {

e = accept ();
spawn serve(e);

}
close(ip ,ep);

}

client (){
local f;
f = connect ();
start_service(f);

}

listen (){ send(welcome ,ep); }

accept (){
local e;
e = receive(connect ,ep);
send(welcome ,ep);
return e;

}

connect (){
local e,f;
receive(welcome ,ip);
(e,f) = open(Service);
send(connect ,ip ,e);
return f;

}

Figure 4: Negotiating connections between a server and several clients.

their connection.7 For added realism, the code assumes a primitive bind that takes a “spinster” endpoint
ip and peers it to a new endpoint. It could be replaced by an open primitive in an initial phase before the
clients and the server are spawned. The spawn construct may be simulated using ‖ and recursion.

Observe that the welcome message carries no endpoint for the service, but rather grants the right to
the client that receives it to initiate a service. The server thus lets the client allocate the two endpoints
for the service. One of them is sent back to the server in the connect message. Overall, the connection
contract Service is

1 2
?welcome

!connect
Such a contract is problematic for permission-based sharing, as all transitions have a different source

and target state. As we saw in the previous section, we should not allow communications on partially
owned endpoints in that case.

The problem may be narrowed down to the connect function, where the client first receives on ip and
then sends on it. Clearly, the client needs to own the endpoint ip with full permission in the state before
the send, because at this time it has to change the endpoint’s state. Since other clients may be in the
initial state of the connect function at the same time, not even a read permission on the endpoint ip can be
granted in the pre state of the connect function. Between the two states the message welcome is received;
this seems like a good place to acquire the ownership of ip. But shouldn’t the client own ip before it
receives the welcome message on it? It indeed needs to update the contract state of ip as well.

The answer is no; let us explain why. The receive instruction needs indeed the ownership of ip
but not necessarily in the pre state. Reasoning backwards gives the explanation. In a correct proof we
would have {Pre} receive(welcome,ip) {Post} for some Pre,Post formulas. Since the reception updates
the contract state of ip, Post should be of the form ip Z⇒ (C〈2〉,ep) ∗ . . . Let F denote the footprint of
the welcome message and let Post′ = ip Z⇒ (C〈1〉,ep)∗ . . . denote the weakest precondition of Post before

7The client often uses only few services of the server. For this reason, it could be expected that allocating endpoints on the
client’s side achieves better performances, especially if the buffer’s size drastically shrinks between the client’s specific contract
and a general-purpose service contract implemented by the server.
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updating the contract state. Then we should have that Pre∗F entails Post′. As it turns out, nothing more
is required and the ownership of ip Z⇒ (C〈1〉,ep) may just as well be granted by the footprint F of the
message. In other words, the ownership of the endpoint ip can be granted a posteriori by the reception
of the welcome message over ip.

Let us present the formal proof of the connect function using this principle. We will soon present the
formal rules supporting this reasoning and refer to our technical report for a proof of soundness.

message welcome [ip Z⇒ (C〈1〉,ep)]
message connect(e) [ip Z⇒ (C〈2〉,ep)∗ e Z⇒−]

connect () [emp] {
local e,f; receive(welcome ,ip);
[ip Z⇒ (C〈2〉,ep)]
(e,f) = open(Service);
[ip Z⇒ (C〈2〉,ep)∗ e Z⇒ f ∗ f Z⇒ e]
send(connect ,ip ,e); return f;

} [ f Z⇒ e]
This way of reasoning might seem unorthodox since it breaks the (false) intuition that shared channels

are not linear. Perhaps surprisingly, the above example is indeed a case of sharing channels in a purely
linear fashion. Before we formalise the way that our proof system works, let us illustrate the strength of
this reasoning principle on a last example (see also our technical report for examples with multicast and
synchronisation barriers).

Example 4.1 (Locks) We develop now an encoding of heap-allocated locks. Our design choices closely
follow the ones of Gotsman et al. [11].

We introduce a macro predicate handleπ(x) (π ∈ (0,1]) that denotes the right to attempt acquiring or
releasing a lock x. The ownership of the handle is granted with full permission when the lock is allocated
and it is required with full permission as well when the lock is disposed, whereas only a read permission
is required to either acquire or release the lock. We also introduce a macro predicate locked(x) that
holds when the lock is locked by the current thread. It is assumed whenever the lock is acquired and
lost when the lock is released. We consider non-reentrant locks, i.e. the formula locked(x)∗ locked(x) is
unsatisfiable (other design choices are possible).

The lock intends to protect a piece of heap that satisfies a certain invariant I. When the lock is
acquired the ownership of I should be ∗-conjoined and when it is released I should be consumed. Like
Gotsman et al. [11], we assume that the lock is initially acquired by the thread that creates it and that
it can only be released by a thread that has acquired the lock. We propose the following encoding of
locking primitives:

new_lock(x) [emp] {
x = new ();
(x.0,x.1) = open(C);

} [handle(x)∗ locked(x)]

dispose_lock(x) [handle(x)∗ locked(x)] {
send(stop ,x.0); receive(stop ,x.1);
close(x.0,x.1); dispose(x);

} [emp]

acquire(x) [handleπ (x)] {
receive(token ,x.0);

} [handleπ (x)∗ locked(x)∗ I]

release(x) [handleπ (x)∗ locked(x)∗ I] {
send(token ,x.1);

} [handleπ (x)]

The encoding above is based on two messages token and stop. The first one is used to transfer the
ownership of the lock from a thread to the next thread that acquires the lock. The second one triggers the
deallocation.

1 2

!token
!stop message token [locked(x)∗ I]

message stop [emp]
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All messages transit through the endpoints x.0 and x.1, which are thus shared among all client threads.
More precisely, the ownership of the cell x is shared by means of read permissions but the ownership of
the endpoints is shared linearly using the same form of backward reasoning as in the previous example.
The token message thus transfers the write ownership of x.0 and x.1. and gives the right to receive the
token message in the acquire function even if the endpoint x.0 is not owned in the pre state. The macro
predicates are defined as follows:

locked(x) , ∃X0,X1. x 7→0.5 (X0,X1)∗X0 Z⇒ (C〈0〉,X1)∗X1 Z⇒ (C〈0〉,X0)

handleπ(x) , x 7→π/2 (−,−)

5 Proof System

5.1 Proof Rules

Our proof system is defined by a set of inference rules for Hoare triples. The core of the proof system is
composed of the standard proof rules of concurrent separation logic [20] which are omitted here due to
space restrictions. Let us briefly comment the new rules for copyless message passing.

Channel allocation and deallocation The rules for allocation and disposal are rather symmetric: open
produces two peered endpoints whereas close consumes them.

q0 = init(C)

{emp} (e,f) = open(C) {e Z⇒ (C〈q0〉, f )∗ f Z⇒ (C〈q0〉,e)}

q ∈ final(C)

{e Z⇒ (C〈q〉, f )∗ f Z⇒ (C〈q〉,e)} close(e,f) {emp}

Notice that open allocates two endpoints that are peers and in the initial state while close requires two
peers that are in a same final state. Also note that a full permission is granted and required in each case.

Send and receive The proof rules of send and receive require the introduction of a pseudo-instruction
skipeλ , f , where λ denotes either !m or ?m. It has the operational meaning of skip but also updates the
contract state.

q λ→ q′ ∈C q = q′∨π = 1

{e Z⇒π (C〈q〉, f )} skipeλ , f {e Z⇒π (C〈q′〉, f )}

Intuitively, skipeλ , f modifies the contract state of e with respect to the action λ and checks that the
transition is indeed authorised by the contract. Updating a contract state requires only a partial read
permission if the state is left unchanged, and a total permission otherwise.

Let us now consider the rules for send and receive. Let Im(x,y1, . . . ,yn) be the footprint of a message
m(y1, . . . ,yn) – the x parameter of the footprint formula denotes the endpoint that sends the message.
Then Im(e,~y) is lost upon sending and acquired upon receiving. Either operation updates the contract
state accordingly using skipeλ , f .

{A} skipe!m, f {B∗ Im(e,~x)}
{A} send(m,e,~x) {B}

{A∗ Im( f ,~x)} skipe?m, f {B} ~x not free in A

{A} (x1,. . .,xn) = receive(m,e) {B}
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Note that in the send case the footprint of the message is transferred after the endpoint state has been
updated. Note also that the footprint may contain the endpoint itself. Examples of such a reflexive own-
ership transfer are the clos message or the cell message in Example 3.1 (the latter with half permission).

Conversely, in the receive case the footprint of the message is transferred before the update of the
endpoint’s state. The footprint may again contain the endpoint itself. This possibility permits linear
sharing of endpoints. Examples of such a reflexive ownership transfer are the welcome message of the
client-server example, the token message of the lock example, or the notoken message of the encoding of
internal choice (the latter with half permission).

Switch/Case Finally, two rules address the switch/case construct: the first rule dispatches switches on
different endpoints into different subproofs. The second rule addresses switch/case on a single endpoint:
in that case, this endpoint must be owned (at least partially) and the switch is checked to be exhaustive
with respect to the possible incoming messages at the given contract state.

{A} switch { cases1 } {B} {A} switch { cases2 } {B}
{A} switch { cases1 cases2 } {B}

choices(C,q)⊆ {m1, . . . ,mn} {e Z⇒π (C〈q〉, f )∗A} ~xi = receive(mi,e): pi {B} for all i

{e Z⇒π (C〈q〉, f )∗A} switch { . . . ~xi = receive(mi,e): pi . . . } {B}

5.2 Soundness

Villard defined an operational semantics for our programming language in his PhD thesis [24] and
showed the soundness of a previous version of our proof system. The proof easily adapts to the ex-
tended version of the proof system (see our technical report [18]).

Many problems complicate the proof of the fact that “well proved” programs are safe. By safe we
mean that all the erroneous behaviours listed in Section 1.2 are ruled out, except for deadlocks. To be
well proved, a program does not just need a proof derivation in our proof system, it also needs well-
formed contracts and well-formed message footprints. Firstly, as mentioned in Section 2.2, contracts
should ensure the absence of communication errors and of orphan messages. Secondly, we require that
footprints be precise formulas (a common restriction in concurrent separation logics [23]). Lastly, all
of these requirements do not suffice to detect all memory leaks. Sing# adopts the following restriction
which prevents them: an endpoint can be sent only when it is in a sending state. This restriction is a
relaxed version of Merro’s locality condition for the π-calculus [19]. Many of the examples of the paper
do not follow Sing#’s restriction: the encoding of internal choice and all the examples of Section 4 use
the possibility of sending an endpoint f over its peer e. Generalisations of the Sing# condition include
the well-foundedness condition of Bono and Padovani [2] and Villard’s condition [24]. In our technical
development we use a condition close to the latter. We refer to the technical report for the details of our
soundness result and proofs.

6 Related Works

Giunti and Vasconcelos were the first to consider the problem of sharing contract obedient endpoints
and extended session types for that purpose by introducing a distinction between linear and unrestricted
channels [10]. The linear qualifier applies to endpoints that have to be used linearly, as in ordinary
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session types, while the unrestricted one allows any behaviour on the endpoint. To retain soundness,
unrestrictedly typed channels are limited to “single state” protocols and thus this type system can handle
significantly less scenarios than ours. Giunti recently implemented a type-checker for qualified types [9].

Turon and Wand [22] were the first to propose a proof system for message-passing concurrency that
exploited permissions. Their proof system addresses the (untyped) π-calculus and introduces some proof
rules for temporal reasoning and refinement.

Leino, Mueller and Smans [16] proposed a proof system for reasoning about locks and asynchronous
unidirectional channels. Since they don’t have contracts, buffers are assumed to transfer only one kind
of message. Their work focus instead on preventing deadlocks. They implemented their proof system in
the Chalice tool.

Bell, Appel and Walker [1] proposed a proof system for asynchronous unidirectional channels shared
by means of permissions. Their proof system ignores contracts and instead describes the contents of
channels explicitly and relies on a rule for interleaving the local histories of two endpoints when they get
∗-conjoined.

Bono, Messa, and Padovani [2] introduced a type system à la session type for CoreSing#, a model
of Sing# very close in spirit to our previous work without sharing [25]. They accurately pointed out that
our previous work prevented orphan messages but not memory leaks, and introduced a well-foundedness
condition to fix the problem. More recently, they extended their type system with qualified types [3].

Hobor and Gherghina [12] proposed a proof system for synchronisation barriers based on separation
logic that was helped by “barrier diagrams”, a contract-like description of the sequences of synchronisa-
tions on the barrier. We propose an encoding of barriers with sharing in our technical report [18].

Sassone, Rathke and Francalanza [8] introduced a separation logic for CCS and stated a confluence
property for the form of linear CCS addressed by their logic. Our proof system shows that, with little
effort, it is possible to go past confluent programs while still obeying this kind of discipline.

Merro showed that the full π-calculus can be encoded in the local π-calculus [19]. On the contrary,
the contract-obedient π-calculus underlying our model of Sing# seems strictly more expressive than
the local, contract-obedient one. However, we did not try to characterise the expressive power of our
unrestrictedly linear π-calculus.
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