
S.Alves and I. Mackie (Eds.): Second International Workshop
on Linearity 2012 (LINEARITY’12).
EPTCS 101, 2012, pp. 1–11, doi:10.4204/EPTCS.101.1

c© M. Dominici & S. Ronchi Della Rocca & P. Tranquilli
This work is licensed under the
Creative Commons Attribution License.

Standardization in resource lambda-calculus

Maurizio Dominici Simona Ronchi Della Rocca
Dipartimento di Informatica – Università di Torino
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The resource calculus is an extension of theλ -calculus allowing to model resource consumption. It
is intrinsically non-deterministic and has two general notions of reduction – one parallel, preserving
all the possible results as a formal sum, and one non-deterministic, performing an exclusive choice at
every step. We prove that the non-deterministic reduction enjoys a notion of standardization, which
is the natural extension with respect to the similar one in classicalλ -calculus. The full parallel
reduction only enjoys a weaker notion of standardization instead. The result allows an operational
characterization of may-solvability, which has been introduced and already characterized (from the
syntactical and logical points of view) by Pagani and RonchiDella Rocca.

1 Introduction

The resource calculus (Λr ) is an extension of theλ -calculus allowing to model resource consumption.
Namely, the argument of a function comes as a finite multiset of resources, which in turn can be either
linear or reusable. A linear resource must be used exactly once, while a reusable one can be calledad
libitum. In this setting the evaluation of a function applied to a multiset of resources gives rise to different
possible choices, because of the different possibilities of distributing the resources among the occurrences
of the formal parameter. We can define two kinds of reduction,according to the interpretation we want
to give to this fact. The parallel reduction (which can be further divided in giant and baby) performs all
the possible choices, and gives as result a formal sum preserving all the possible results, while the non-
deterministic reduction at every step chooses non-deterministically one of the possible results. In case of
a multiset of linear resources, also a notion ofcrasharises, whenever the cardinality of the multiset does
not fit exactly the number of occurrences. Then the resource calculus is a useful framework for studying
the notions of linearity and non-determinism, and the relation between them.Λr is a descendant of the
calculus of multiplicities, introduced by Boudol in [2], and it has been designed by Tranquilli [11] in
order to give a precise syntax for the differentialλ -calculus of Ehrhard and Regnier [4].Λr can be used
as a paradigmatic language for different kinds of computation. Usualλ -calculus can be embedded in it.
Forbidding linear terms but allowing non-empty finite multisets of reusable terms yields a purely non-
deterministic extension ofλ -calculus, which recalls the one of De Liguoro and Piperno [3]. Allowing
only multisets of linear terms gives the linear fragment ofΛr , used by Ehrhard and Regnier to give a
quantitative account toλ -calculusβ -reduction through Taylor expansion [5, 6].

But to be effectively used,Λr needs a clear operational semantics. In this paper we investigate
the notion of standardization in it. Let us recall that a calculus has the standardization property when
every reduction sequence can be rearranged according to a predefined order between redexes. Namely
a reduction is standard with respect to a given order if at every reduction step the reduced redex is not
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2 Standardization in resource lambda-calculus

Λr : M,N,L,O ::= x | λx.M | MP terms

Λ(!) : M(!),N(!) ::= M | M! resources

Λb : P,Q,R ::= 1 | [M(!)]·P bags

Λ(b) : A,B ::= M | P expressions

Nat〈Λr 〉 : M,N,L ::= 0 | M |M+N sums of terms

Nat〈Λb〉 : P,Q,R ::= 0 | P | P+Q sums of bags

A,B ∈ Nat〈Λ(b)〉 := Nat〈Λr 〉∪Nat〈Λb〉 sums of expressions

(a) Grammar of terms, bags, sums, expressions.
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(b) Notation onNat〈Λ(b)〉.

Figure 1: Syntax of the resource calculus.

a residual of a redex which, in the given order, precedes a previously reduced one. In the case ofλ -
calculus, the standardization is based on the left-to-right order of redexes.

In Λr , as the elements of a multiset are not ordered, a notion of standardization would be based on a
partial order between redexes. A first result, corresponding to a weak notion of standardization, has been
proved by Pagani and Tranquilli [9], stating that the reductions of redexes inside reusable resources can
always be postponed. We define a stronger partial order between redexes, and we prove that the non-
deterministic reduction enjoys the standardization property with respect to it. Even though this order is
not total, it is in fact undefined if and only if the two redexeslive in different elements of a same multiset,
so that any finer order would not be well-defined. This result allows us to complete the characterization
of may-solvability, defined in [8]. Let us stress that solvability is a key notion for evaluation, since it
identifies the meaningful programs, and a clear notion of output result of a computation. Since this
calculus is non-deterministic, two different notions of solvability arise, one optimistic (angelical, may)
and one pessimistic (demoniac, must). In particular, in [8,7] a characterization of the may-solvability has
been given, from a syntactical and logical point of view. Here we provide an operational characterization,
through an abstract reduction machine, performing the non-deterministic reduction. The soundness and
completeness of the machine with respect to the notion of may-solvability comes from the standardization
property.

Moreover we prove that the parallel reduction does not enjoythe same standardization property.
Namely we show that in this case any order between linear redexes cannot be sound. This negative
result is interesting, since it gives evidence to the deep difference between linear and non-deterministic
reduction.

2 Syntax

The syntax ofΛr . Basically, we have three syntactical sorts: terms, that arein functional position, bags,
that are in argument position and represent multisets of resources, and finite formal sums, that represent
the possible results of a computation. Precisely, Figure 1(a) gives the grammar for generating the setΛr

of terms and the setΛb of bags(which are in fact finite multisets ofresourcesΛ(!)) together with their
typical metavariables. A resource can be linear (it must be used exactly once) or not (it can be used ad
libitum, also zero times), in the last case it is written witha ! superscript. Bags are multisets presented
in multiplicative notation, so thatP·Q is the multiset union, and 1= [] is the empty bag: that means,
P·1= P andP·Q= Q·P. It must be noted though that we will never omit the dot·, to avoid confusion
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y〈N/x〉 :=







N if y= x,

0 otherwise,

(λy.M)〈N/x〉 := λy.M〈N/x〉,

(MP)〈N/x〉 := M〈N/x〉P+MP〈N/x〉,

1〈N/x〉 := 0,

([M] ·P)〈N/x〉 := [M〈N/x〉] ·P+[M] ·P〈N/x〉,

([M! ] ·P)〈N/x〉 := [M〈N/x〉,M! ] ·P+[M! ] ·P〈N/x〉.

Figure 2: Linear substitution. In the abstraction case we supposey /∈ FV(N)∪{x}.

with application.Sumsare multisets in additive notation, with 0 referring to the empty multiset, so that:
M+0=M andM+N= N+M. We use two different notations for multisets in order to underline the
different role of bags and sums.

An expression(whose set is denoted byΛ(b)) is either a term or a bag. Though in practice only sums
of terms are needed, for the sake of the proofs we also introduce sums of bags and of expressions. The
symbolNat denotes the set of natural numbers, andNat〈Λr〉 (resp.Nat〈Λb〉) denotes the set of finite
formal sums of terms (resp. bags).

The grammar for terms and bags does not include sums in any point, so that in a sense they may
arise only as a top level constructor. However, as an inductive notation (andnot in the actual syntax)
we extend all the constructors to sums as shown in Figure 1(b). In fact, all constructors but the(·)! are,
as expected, linear in the algebraic sense, i.e. they commute with sums. In particular, we have that 0 is
always absorbing but for the(·)! constructor, in which case we have[0! ] = 1. We refer to [11, 10] for the
mathematical intuitions underlying the resource calculus.

We adoptα-equivalence and all the usualλ -calculus conventions as per [1].
The pair reusable/linear has a counterpart in the followingtwo different notions of substitutions: their

definition, hence that of reduction, heavily uses the notation of Figure 1(b).

Definition 1 (Substitutions). We define the following substitution operations.

(i) A{N/x} is the usualλ -calculus (i.e. capture free) substitution ofN for x. It is extended to sums as
in A{N/x} by linearity inA. The formA{x+N/x} is calledpartial substitution .

(ii) A〈N/x〉 is the linear substitution defined inductively in Figure 2. It is extended toA〈N/x〉 by
bilinearity in bothA andN.

(iii) A〈〈N(!)/x〉〉, defined byA〈〈N/x〉〉 := A〈N/x〉 andA〈〈N!/x〉〉 := A{N+x/x}, is theresource sub-
stitution , and moreoverA〈〈B/x〉〉, defined byA〈〈[N(!)

1 , . . . ,N(!)
n ]/x〉〉 = A〈〈N(!)

1 /x〉〉 · · · 〈〈N(!)
n /x〉〉 (as-

sumingx /∈ FV(B)) is thebag substitution.

Roughly speaking, the linear substitution corresponds to the replacement of the resource to exactly
onelinear occurrence of the variable. In the presence of multiple occurrences, all the possible choices are
made, and the result is the sum of them. For example(y[x][x])〈N/x〉 = y[N][x]+y[x][N]. In the case there
are no free linear occurrences, then linear substitution returns 0, morally an error message. For example
(λy.y)〈N/x〉 = λy.(y〈N/x〉) = λy.0= 0. Finally, in case of reusable occurrences of the variable,linear
substitution acts on a linear copy of the variable,e.g.[x! ]〈N/x〉= [N,x!].

The reductions ofΛr . A term contextCJ·K (or a bag contextPJ·K) is defined by extending the syntax
of terms and bags by a distinguished free variable calledhole and denoted byJ·K.

Notice that in contexts the order of holes cannot be truly established as bags are independent of
order. So filling1 thek holes of a contexts by terms needs a bijective mappinga from {1, . . . ,k} to hole

1We recall that hole substitution allows for variable capture.
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occurrences inCJ·K, andCaJ~MiK denotes the replacement of the holes byM1, ...,Mk guided by this map.
We can write alsoCJ~MiK, by considering an implicit map.

A (term, bag) context issimple if it contains exactly one occurrence of the hole. In this case we will
write simplyCJMK for the result of filling of the hole withM. A simple context islinear if its hole is
not under the scope of a()! operator, and it isapplicative if it has the hole not in a bag. As usual the
(simple/applicative/linear) context closure of a relation R is the one relatingCJtK andCJt ′K whent R t′

andC is of the appropriate kind.
We define two kinds of reduction rule, called parallel and non-deterministic. Moreover the parallel

reduction can be further divided into baby-step and giant-step, the former being a decomposition of the
latter. Baby-step is more atomic, performing one substitution at a time, while the giant-step is closer to
λ -calculusβ -reduction, wholly consuming its redex in one shot.

Definition 2 ([11, 10]). (i) Theparallel reductions are defined as follows:

– Thebaby-stepreduction b→ is defined by the simple context closure of the following relation
(assumingx not free inN):

(λx.M)1 b→ M {0/x} (λx.M)[N]·P b→ (λx.M〈N/x〉)P

(λx.M)[N! ]·P b→ (λx.M {N+x/x})P

– Thegiant-stepreduction
g
→ is defined by the simple context closure of the following relation:

(λx.M)P
g
→ M〈〈P/x〉〉{0/x}

(ii) The non-deterministic reduction is the relationM nd→ N if and only if M
g
→ N+A for someA.

Notation 3. For any reductionε→ (the ones listed above and the ones to come), we denote byε∗→ its
reflexive-transitive closure.ρ : M ε∗→ N denotes a particular reduction sequence fromM to N, and|ρ | its
length.

Λr and λ -calculus. In λ -calculus, arguments can be used as many times we want, so it is easy to inject
it in Λr through the following translation(.)∗:

(x)∗ = x, (λx.M)∗ = λx.(M)∗, (MN)∗ = (M)∗[(N)∗!]

On terms ofΛr which are translations ofλ -terms, the giant reduction becomes the usualβ -reduction.

3 Standardization

In this section we will prove that the non-deterministic reduction enjoys a standardization property. As
we recalled already in the introduction, the standardization property is based on an order relation between
redexes. We can define it formally as follows:

Definition 4. Let ≺ be an order on positions in terms (which is extended to an order on subterms of
a given term). Supposeρ is a reduction chain, and letMi andRi be thei-th term and fired redex inρ
respectively. We say thatρ is≺-standardif for every i we have thatRi+1 is not the residual of a redexR′

in Mi such thatR′ ≺ Ri.
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We will prove that non deterministic reduction inΛr enjoys the standardization property with respect
to the order≺r , which is the partial order on positions inΛr terms that, intuitively, gives precedence to
linear positions over non-linear ones, and then orders linear positions left-to-right, with the proviso that
positions inside the same bag be not comparable. The formal definition follows.

Definition 5 (Linear left-to-right order). For two subtermsS1 andS2 inside the expressionA, we say that
S1 ≺r S2 in A if and only if any of the following happens:

• S2 is a subterm ofS1;

• S1 is linear inA while S2 is not;

• S1 andS2 are both linear inA, A= MP, S1 is in M andS2 is in P.

• S1 andS2 are subterms of the same proper subexpressionB of A, andS1 ≺r S2 in B;

Example 6. S1 ≺r S2 in bothλx.x[S!
2][S1] andλx.x[S1][S2], while they are incomparable inλx.x[S1,S2].

Our starting point is the division of redexes in two classes,outer and inner.

Definition 7 ([9]). Let ε ∈ {b,g,nd}. Theouter ε-reduction oε−→ is the linear context closure of the
ε-steps given in Definitions 2. Anon-outer ε-reduction, calledinner is defnoted byiε−→.

In other words, an outer reduction does not reduce inside reusable resources, so an outer redex (i.e.
a redex foroε−→) is a redex not under the scope of a(·)! constructor. In particular a term corresponding
to a λ -term has at most one outer-redex, which coincides with the head-redex. Pagani and Tranquilli
stated in some sense a weak standardization property for thegiant reduction, proving that inner redexes
can always be postponed. Their result can easily be extendedto other reductions, in particular to the
non-deterministic one.

Theorem 8([9]). Let ε ∈ {b,g,nd}. M ε∗→ A implies Moε∗→ A′ andA′ iε∗→ A.

We introduce now a further classification between outer redexes.

Definition 9. The set ofleftmostredexesL (M) of a termM or a bagP are defined inductively by:

L (x) := /0,

L (λx.M) := L (M)
L (MP) :=











{MP} if M = λx.M′,

L (M) otherwise, ifL (M) 6= /0

L (P) otherwise

L (1) := /0,

L ([M!] ·P := L (P),

L ([M] ·P) := L (M)∪L (P)

In regularλ -calculus, the setL (M) is at most a singleton, and≺r-standardness collapses to the
regular notion of left-to-right order of redexes.

Fact 10. Redexes inL (M) are exactly the≺r-minimal elements among all redexes ofM.

In the following, we will consider in particular the non-deterministic reduction. So, let us introduce
some notation.

Notation 11. Let M ndo→ N. M lm→ N denotes that the reduction fires a redex inL (M), while we write
M ¬lm−−→ N if the redex is not a leftmost one. MoreoverM o→ N andM i→ N will be short for forM ndo→ N
andM ndi→ N respectively.

Lemma 12. We have the following facts on non-leftmost reduction.

• ρ : λx.M ¬lm∗−−−→ N if and only if N= λx.M′ andρ ′ : M ¬lm∗−−−→ M′ with |ρ |= |ρ ′|;

• ρ : MP ¬lm∗−−−→ N if and only if N= M′P′, ρ ′ : M ¬lm∗−−−→ M′ andρ ′′ : P o∗−→ P′ with |ρ |= |ρ ′|+ |ρ ′′|;
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• ρ : [M] · P ¬lm∗−−−→ Q if and only ifQ= [M′] · P′, ρ ′ : M ¬lm∗−−−→ M′ and ρ ′′ : P ¬lm∗−−−→ P′ with |ρ | =
|ρ ′|+ |ρ ′′|;

• ρ : [M!] ·P ¬lm∗−−−→ Q if and only ifQ= [M!] ·P′ andρ ′′ : P ¬lm∗−−−→ P′ with |ρ |= |ρ ′′|.

The proof of standardization is based on an inversion property between outer redexes, saying that
a not-leftmost reduction followed by a leftmost one can always be replaced by a leftmost followed by
an outer. This is the upcoming Lemma 15. In order to get it we first prove the following intermediate
properties.

Lemma 13. If O o→ O′ then∀L′ ∈ O′〈〈Q/x〉〉{0/x}∃L ∈ O〈〈Q/x〉〉{0/x} such that Lo→ L′.

Proof. We will prove that∀L′ ∈ O′〈〈Q/x〉〉∃L ∈ O〈〈Q/x〉〉 such thatL o→ L′. Then the statement of the
lemma follows easily. By induction onO.

Case 1.O= x andO= y are not possible.

Case 2.O= λy.M. By inductive hypothesis.

Case 3.O=(λy.M)P. There are three cases:λy.M o→ λy.M′, P o→P′, (λy.M)P o→O′ ∈M〈〈P/y〉〉{0/y}.
Let M o→ M′. (λy.M)P〈〈Q/x〉〉= ∑Q1,Q2

((λy.M)〈〈Q1/x〉〉)(P〈〈Q2/x〉〉),whereQ1,Q2 range over
all the possible decomposition ofQ into two parts, counting the reusable resources with all the
possible multiplicities. This means that in caseQ1,Q2 are considered two different subterms
also in case they are syntactically equal. By inductive hypothesis, for allL′ ∈ (λy.M′)〈〈Q1/x〉〉
there isL ∈ (λy.M)〈〈Q1/x〉〉 such thatL o→ L′, and the result follows by transitivity of∈. The
caseP o→ P′ is similar.

Let (λy.M)P o→ O′ ∈ M〈〈P/y〉〉{0/y}. Then we have that the substitution(λy.M)P〈〈Q/x〉〉 is
equal to the sum∑Q1,Q2

(λy.M〈〈Q1/x〉〉)(P〈〈Q2/x〉〉), whereQ1,Q2 range as before. Since each
component of this sum is a redex (the substitutions do not modify the external shape of the
terms), we can reduce each redex, so obtaining that for allL ∈ (λy.M〈〈Q1/x〉〉)(P〈〈Q2/x〉〉),
L o→ L′ ∈ M〈〈Q1/x〉〉〈〈P〈〈Q2/x〉〉/y〉〉{0/y}. On the other side,M〈〈P/y〉〉{0/y}〈〈Q/x〉〉 is equal
to the sum∑Q1,Q2

M〈〈Q1/x〉〉〈〈P〈〈Q2/x〉〉/y〉〉{0/y}, and the proof is done.

Case 4.O= MP andO′ = M′P or O= MP andO′ = MP′. All by inductive hypothesis.

Lemma 14. If Q o→ Q′ then∀L′ ∈ O〈〈Q′/x〉〉{0/x}∃L ∈ O〈〈Q/x〉〉{0/x} such that Lo→ L′.

Proof. By induction onQ. Q cannot be 1 as it would be normal.
If Q= [H] ·P thenO〈〈Q/x〉〉{0/x} = O〈H/x〉〈〈P/x〉〉{0/x}. We proceed by cases:

Case 1.The reduction is onP, i.e. [H] ·P o→ [H] ·P′. For allN ∈ O〈H/x〉, N〈〈P/x〉〉 o→ N〈〈P′/x〉〉. Then
we have by induction that for allL ∈ N〈〈P/x〉〉{0/x} there isL′ ∈ N〈〈P′/x〉〉{0/x} such that
L o→ L′. So the result follows.

Case 2.The reduction is onH, i.e. [H] ·P o→ [H ′] ·P). Let us setO〈H/x〉〈〈P/x〉〉{0/x} = (O1+ ...+
Ok)〈〈P/x〉〉{0/x}, whereH occurs in allO j (1 ≤ j ≤ k), since the substitution is linear. Let

O j
og
→ O j

1+ ...+O j
m by reducing the occurrence ofH in it. So O j

o→ O j
i (1≤ i ≤ mj ), and, by

Lemma 13, for allL′ ∈ O j
i 〈〈P/x〉〉{0/x}, there isL ∈ O j〈〈P/x〉〉{0/x} such thatL o→ L′. Since

O j ∈ O〈H/x〉 andO j
i ∈ O〈H ′/x〉, the proof follows.

If Q= [H !] ·P the reduction onP, and the case is similar to the first case of the previous point.

Lemma 15(Inversion). M ¬lm→ M′ lm→ N implies Mlm→ M′′ ndo→ N, for some M′′.
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Proof. We proceed by induction onM.
Let M = λ~y.(λx.O)QP1...Pj ...Pn, soL (M) = {(λx.O)Q}. Non leftmost reductions onM can be done in
O, in Q or in Pj (1≤ j ≤ n). We procede by cases:

Case 1.The reduction is onPj(1≤ j ≤ n).]. Let Pj
g
→ P′

j +S. We have that

M ¬lm→ λ~y.(λx.O)QP1...P
′
j ...Pn

g
→ λ~y.O〈〈Q/x〉〉{0/x}P1...P

′
j ...Pn.

Moreover, by reducing the leftmost redex

M
g
→ λ~y.O〈〈Q/x〉〉{0/x}P1...Pj ...Pn = λ~y.(O1+ ...+Ok)P1...Pj ...Pn,

so that
M lm→ λ~y.OhP1...Pj ...Pn

o→ λ~y.OhP1...P
′
j ...Pn

for all 1≤ h≤ k.

Case 2.The reduction is onQ. Let Q o→ Q′ and letM ¬lm→ λ~y.(λx.O)Q′P1...Pn
lm→ λ~y.MP1...Pn, whereM

is such thatM ∈ O〈〈Q′/x〉〉{0/x}. Moreover, by reducing the leftmost redex, we also have
the reductionM

g
→ λ~y.O〈〈Q/x〉〉{0/x}P1...Pn. By Lemma 14,Q o→ Q′ implies that for all

L′ ∈ O〈〈Q′/x〉〉{0/x}, there existsL ∈ O〈〈Q/x〉〉{0/x} such thatL o→ L′. So there isM ∈

O〈〈Q/x〉〉{0/x} such thatM lm→ λ~y.MP1...Pn
o→ λ~y.MP1...Pn.

Case 3.The reduction is in O. LetO o→ O′, and letM ¬lm→ λ~y.(λx.O′)QP1...Pn
lm→ λ~y.MP1...Pn, whereM

is such thatM ∈ O′〈〈Q/x〉〉{0/x}. Again if we reduce the leftmost redex, we have the reduction

M
g
→ λ~y.O〈〈Q/x〉〉{0/x}P1...Pn. O o→ O′ implies, by Lemma 13,∀L′ ∈ O′〈〈Q/x〉〉{0/x} ,∃L ∈

O〈〈Q/x〉〉{0/x} such thatL o→ L′. So there isM ∈ O〈〈Q/x〉〉{0/x} such that we can compose
the reductionsM lm→ λ~y.MP1...Pn

o→ λ~y.MP1...Pn.

Let M = λ~y.xP1...Pn, and letPi
¬lm→ P′

i andPj
lm→ P′

j . In casei 6= j, the proof is trivial. In casei = j the
proof is by induction onPi.

Corollary 16. If ρ : M o∗−→ M′ then there areσ : M lm∗−−→ M′′ andπ : M′′ ¬lm∗−−−→ M′ with |σ |+ |π|= |ρ |.

Lemma 17.

(i) Givenρ : M lm∗→ N andσ : N o∗−→ L, thenρσ : M o∗−→ L is≺r-standard if and only ifσ is. In particular
every chain of leftmost reductions is≺r-standard.

(ii) Given ρ : M o∗−→ N andσ : N i∗→ L, thenρσ : M nd∗→ L is≺r-standard if and only if bothρ andσ are.

Proof. The result follows easily from the definition of≺r .

Now we can prove that the non-deterministic outer reductionis≺r-standard.

Lemma 18 (Non-deterministic outer standard reduction). If M o∗−→ N, then there is a≺r -standard non-
deterministic outer reduction from M to N.

Proof. We reason by induction on the pair(p,s), wherep= |ρ | is the length of the reduction sequence
ρ : M o∗−→ N, ands is the number of symbols inM. By Corollary 16, there is a reductionσl : M lm∗→ M′

and σr : M′ ¬lm∗−−−→ N with |σl |+ |σr | = |ρ | = p. If |σl | > 0 then inductive hypothesis applies toσr ,
giving ≺r-standardσ ′

r : M′ o∗−→ N, which gives thatσl σ ′
r : M o∗−→ N is ≺r-standard by Lemma 17. In case
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σr : M ¬lm∗−−−→ N is the whole reduction, the proof is by cases onM. The only non-obvious case is when
M = LP: by Lemma 12 we haveN = L′P′ andρ ′ : L ¬lm∗−−−→ L′ andρ ′′ : P o∗−→ P′. We can apply inductive
hypothesis to both as|ρ ′|+ |ρ ′′| = |ρr |, and getLP ¬lm∗−−−→ L′P o∗−→ L′P′. Now assuming that this is not
≺r-standard leads to a contradiction to the definition at the seam, since all linear positions inL′′ are≺r

with respect to those inP.

In order to prove that also inner reductions can be standardized, we need to introduce the notion of
outer shapeof a term.

Definition 19. The outer shapeℓ(M)J·K of a termM is a context that isM with holes replacing all
exponential arguments ofM’s bags.

Formally, extending the definition to bags, we defineℓ( .)J·K inductively as follows.
ℓ(x)J·K = x, ℓ(λx.M)J·K = λx.ℓ(M)J·K, ℓ(MP)J·K = ℓ(M)J·Kℓ(P)J·K,
ℓ(1)J·K = 1, ℓ([M] ·P)J·K= [ℓ(M)J·K] · ℓ(P)J·K, ℓ([M!] ·P)J·K = [J·K!]ℓ(P)J·K.

Property 20.

(i) M i∗−→ N if and only if ℓ(M)J·K = ℓ(N)J·K, and there arek termsM′
i and k termsN′

i such that

M = ℓ(M)aJ~M′
i K, N = ℓ(M)aJ~N′

i K andM′
i
nd∗−−→ N′

i for eachi.

(ii) If M = ℓ(M)aJ~M′
i K andρi : M′

i
nd∗−−→ M′′

i are standard, then there is a standardρ ′ : M i∗−→ ℓ(M)aJ~M′′
i K.

Proof.

i) The if direction is a direct consequence of howi is defined and of context closedness of the
reduction. We thus move to the only if direction.

First, let us show that the property to prove is preserved by composition of reduction chains.

SupposeM i∗−→ N i∗−→ O with M = ℓ(M)[~M′
i ], N = ℓ(M)a1[~N

′
i ] = ℓ(M)a2[~N

′′
i ] andO = ℓ(M)a3[~O

′
i ].

We can supposea1 = a2 by re-indexing (namely usingℓ(N)a1[~N
′′
a−1

2 (a1(i)
] andℓ(O)a′3

[~N′′
a−1

2 (a1(i)
] with

a′3 = a3 ◦ a−1
2 ◦ a1). So we just forget the bijections employed, and then we haveby hypothesis

M′
i
nd∗−−→ N′

i = N′′
i

nd∗−−→ O′
i, which is what is needed.

Now, we can prove the property by reducing to the case of a single inner reduction, as composing
multiple ones of them preserves the property.

TakeM i→ N: the result follows by a straightforward induction on how the reduction is defined.

ii) The idea is that the reductions in the subterms can be freely rearrenged.

Let us reason by generalizing to expressions and by structural induction onA.

Case 1.A= x orA= 1: nothing to prove.

Case 2.A= λx.N: straightforward application of inductive hypothesis.

Case 3.A = NP, with ℓ(A)J·K = ℓ(N)J·Kℓ(P)J·K: we can partitionM′
i into what goes inℓ(N)J·K and

what goes inℓ(P)J·K. We can suppose thatA = (ℓ(N)[M′
1, . . . ,M

′
h])(ℓ(P)[M

′
h+1, . . . ,M

′
k])

without loss of generality, and by inductive hypothesis getstandardσ : N i∗−→ N′ and ρ :
P i∗−→ P′ (with N′ andP′ the correct pluggings ofℓ(N) andℓ(P)).

Now, if we reduceA = NP i∗−→ N′P i∗−→ N′P′ following first σ and thenρ , the resulting
reduction must be standard as all positions inP are greater than those inN according to≺r .

Case 4.A= [N] ·P: exactly as above, but without any constraint on the order inwhich the reductions
are composed.
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Case 5.A= [N!] ·P, with ℓ(A) = [J·K! ] · ℓ(P)J·K: suppose thatM′
1 = N andP= ℓ(P)[M′

2, · · · ,M
′
k]. By

inductive hypothesis we have a standardρ : P i∗−→ P′ = ℓ(P)[M′′
i ]

k
i=2, and as positions in[N!]

andnon-linearpositions inP are incomparable, we can freely combine the reductions onM′
1

andP to get a standard one.

Now we are able to show the desired result.

Theorem 21(Standardization). If M nd∗→ M′, then there is a≺r -standard chain from M to M′.

Proof. By structural induction onM′, the term where the reduction ends. First, applying Theorem8, we
getσ : M o∗−→ M′′ andρ : M′′ ndi∗−−→ M′. Now we strive to obtain two standard chainsσ ′ : M o∗−→ M′′ and
ρ ′ : M′′ ndi∗−−→ M′ to obtain the chainσ ′ρ ′ which is standard by Lemma 17. The existence of a standardσ ′

is assured directly by Lemma 18, so we need to concentrate on findingρ ′. By using Property 20(i), we
getM′′ = ℓ(M′)JN1, . . . ,NkK, M′ = ℓ(M′)JN′

1, . . . ,N
′
kK andρi : Ni

nd∗−−→ N′
i . As all N′

i are structurally strictly

smaller thanM′, we can apply inductive hypothesis on eachρi and get standardρ ′
i : Ni

nd∗−−→ N′
i . Then

using Property 20(ii) we can glue back those reductions intothe standard reductionρ ′ : M′′ i∗−→ M′.

Example 22. Let I = λx.x, M1 = I [((λxy.x)[I ! ][I !])
!
], M2 = I [I ! ], and letM = λx.x[M1

! ,M2
!]. The fol-

lowing reduction is standard:M1 = I [((λxy.x)[I ! ][I ! ])
!
] lm→ (λxy.x)[I ! ][I ! ] lm→ (λy.I)[I ! ] lm→ I . As M2

lm→ I ,
the following is standard too

λx.x[(I [((λxy.x)[I ! ][I ! ])
!
])

!
,(I [I ! ])

!
] i→ λx.x[((λxy.x)[I ! ][I ! ])

!
,(I [I ! ])

!
] i→

λx.x[((λxy.x)[I ! ][I !])
!
, I !] i→ λx.x[((λy.I)[I ! ])

!
, I ! ] i→ λx.x[I ! , I !].

Let us notice that, as opposed to the weak form of standardization given in Theorem 8, the≺r-
standardization does not hold for parallel reduction. A counterexample is the following.

Example 23. Let I0 and I1 denote two occurrences of the identityλx.x, and letM = I0[I1[x! ,y! ]]
g
→

I0[x]+ I0[y]
g
→ x+ I0[y] by reducing the inner redex first. But reducing the leftmost redex first we obtain

M
g
→ I1[x! ,y! ]

g
→ x+y. So the previous result cannot be obtained by a standard reduction.

4 Solvability Machine

The standardization result proved in the previous section allows us to design an abstract reduction ma-
chine characterizing the may-solvable terms inΛr . A term of λ -calculus is solvable whenever there is
a outer-context reducing it to the identity [1]. In the resource calculus, terms appear in formal sums,
so (at least) two different notions of solvability arise, related to a may and must operational semantics,
respectively. We will treat the former only.

Definition 24. A simple termM is may-solvablewhenever there is a linear applicative–contextCJ·K

such thatCJMK nd∗−−→ I .

May-solvability has been completely characterized from both a syntactical and logical point of view
in [8]. Syntactically, a termM is may-solvable if and only if it is may-outer normalizable.An expression
is anouter normal form (on f) if it has no redex but under the scope of a()!, and consequently a termM
is may-outer normalizable if and only if M nd∗→ N, whereN is aon f (N is called amon fof M). Logically,



10 Standardization in resource lambda-calculus

M ⇓nd M′

λx.M ⇓nd λx.M′ (λ )
M is in onf
M ⇓nd M

(end)
Pi ⇓b P′

i (1≤ i ≤ m)

xP1...Pm ⇓nd xP′
1...P

′
m

(head)

M{0/x}P1...Pm ⇓nd M′

(λx.M)1P1...Pm ⇓nd M′ (0)
M 〈N/x〉= M′+A (λx.M′)PP1...Pm ⇓nd M′′

(λx.M)[N] ·PP1...Pm ⇓nd M′′ (β )

M {N+x/x}= M′+A (λx.M′)PP1...Pm ⇓nd M′′

(λx.M)[N!] ·PP1...Pm ⇓nd M′′
(!β )

(a) The ND reduction machine.

1⇓b 1
(1b)

M ⇓nd N P⇓b P′

[M] ·P⇓b [N] ·P′ (b)
P⇓b P′

[M!] ·P⇓b [M!] ·P′
(!b)

(b) The auxiliaryB machine

a particular intersection type assignment system has been defined, typing all and only the may-solvable
terms.

We now will complete the job, characterizing may solvability from an operational point of view. The
following property is obvious.

Property 25. M is in on f if and only if L (M) = /0.

The abstract reduction machine (calledND-machine) proves statements of the shapeM ⇓nd N, where
M,N are simple terms andN is a on f. The ND-machine uses an auxiliary machine, theB-machine,
performing the reductions on bags. The two machines are shown in Figure 4.

Some comments are in order. First of all, the machine performs the baby outer reduction, on a
leftmost redex. Rules(λ ), (end) and(0) are self-explanatory. Rule(head) implements the definition
of mon f; note that in this rule the order in which the arguments are reduced does not matter. Non-
determinism appears in rules(β ) and(!β ). Indeed, if the result of the substitution is a sum, one of its
addends is randomly chosen. The auxiliary machineB performs the reductions on bags. Note that the
rule (!b) implements the notion of outer-reduction. Remember that 0is not a term, so it can be neither
an input nor an output of the machine. So in rules(0), (β ) and(!β ) the machine transition is undefined
if the result of the substitution is 0. We will writeM ⇑nd to denote that for any run of the machine onM
either it does not stop or it is undefined.

Example 26. (λzy.y)[x] ⇑nd. In fact, trying to apply ruleβ , the machine needs to compute(λy.y)〈x/z〉,
which is equal to 0, so the premises of the rule are not satisfied.
(λx.x[x! ])(λx.x[x! ]) ⇑nd. In fact, the machine on this input does not stop. Notice thatthis term corre-
sponds to an unsolvable term in theλ -calculus.
Let F = λxy.y. Then(λx.y[x][x])[F, I ][lm] reduces non deterministically toy[F ][I ]+y[I ][F ]. It is easy to
check that there are two machine computations such that in one (λx.y[x][x])[F, I ] ⇓nd y[F ][I ] while in the
other(λx.y[x][x])[F, I ] ⇓nd y[I ][F ].

(λx.y[x! ])[I ! ,F !]
g
→ y[I ! ,F !], by reducing the leftmost redex. The unique machine computation for this

input gives(λx.y[x! ])[I ! ,F !] ⇓nd y[I ! ,F ! ].

Theorem 27.

(i) (Soundness) If M⇓nd N then Mlm∗→ N, and N is aonf.

(ii) (Completeness) Let M be may-outer-normalizable and let N be amonf of M. There is a machine’s
computation proving M⇓nd N′, where N′ is a monfof M and N′ ¬lm∗−−−→ N.



M. Dominici & S. Ronchi Della Rocca & P. Tranquilli 11

Proof (sketch).Point (i) is proved by mutual induction on the rules of the twomachines. Point (ii) is an
immediate consequence of the≺r-standardization property.

Acknowledgements. We would like to thank Michele Pagani for his interesting anduseful suggestions.

References

[1] Henk Barendregt (1984):The Lambda-Calculus, its Syntax and Semantics. Stud. Logic Found. Math., vol.
103, North-Holland.

[2] Gérard Boudol (1993):The Lambda-Calculus with Multiplicities. INRIA Report 2025Available at
citeseer.ist.psu.edu/article/boudol93lambdacalculus.html.

[3] Ugo de’Liguoro & Adolfo Piperno (1995):Non Deterministic Extensions of Untyped Lambda-Calculus. Inf.
Comput.122(2), pp. 149–177, doi:10.1006/inco.1995.1145.

[4] Thomas Ehrhard & Laurent Regnier (2003):The Differential Lambda-Calculus. Theor. Comput. Sci.309(1),
pp. 1–41, doi:10.1016/S0304-3975(03)00392-X.
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