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The resource calculus is an extension of Akealculus allowing to model resource consumption. It
is intrinsically non-deterministic and has two generaiormg of reduction — one parallel, preserving
all the possible results as a formal sum, and one non-detéstioi performing an exclusive choice at
every step. We prove that the non-deterministic reductigoys a notion of standardization, which
is the natural extension with respect to the similar one a@ssitalA-calculus. The full parallel
reduction only enjoys a weaker notion of standardizatiateiad. The result allows an operational
characterization of may-solvability, which has been idtroed and already characterized (from the
syntactical and logical points of view) by Pagani and Rox¢lia Rocca.

1 Introduction

The resource calculug\{) is an extension of tha -calculus allowing to model resource consumption.
Namely, the argument of a function comes as a finite multiSetspurces, which in turn can be either
linear or reusable. A linear resource must be used exactg,omhile a reusable one can be calt
libitum. In this setting the evaluation of a function applied to atisat of resources gives rise to different
possible choices, because of the different possibilitigsstributing the resources among the occurrences
of the formal parameter. We can define two kinds of reductmeprding to the interpretation we want
to give to this fact. The parallel reduction (which can beHar divided in giant and baby) performs all
the possible choices, and gives as result a formal sum priegall the possible results, while the non-
deterministic reduction at every step chooses non-detéstitially one of the possible results. In case of
a multiset of linear resources, also a notiortEsharises, whenever the cardinality of the multiset does
not fit exactly the number of occurrences. Then the resowioeilcs is a useful framework for studying
the notions of linearity and non-determinism, and the i@abetween themA' is a descendant of the
calculus of multiplicities, introduced by Boudol in![2], @t has been designed by Tranquilli [11] in
order to give a precise syntax for the differentdatalculus of Ehrhard and Regniér [4}' can be used
as a paradigmatic language for different kinds of compaomatlUsualt -calculus can be embedded in it.
Forbidding linear terms but allowing non-empty finite mesdtis of reusable terms yields a purely non-
deterministic extension of-calculus, which recalls the one of De Liguoro and Pipefrjo Mdlowing
only multisets of linear terms gives the linear fragmeni\df used by Ehrhard and Regnier to give a
guantitative account tad-calculusf-reduction through Taylor expansian [5, 6].

But to be effectively used/\" needs a clear operational semantics. In this paper we igatsst
the notion of standardization in it. Let us recall that a ghls has the standardization property when
every reduction sequence can be rearranged according edafipred order between redexes. Namely
a reduction is standard with respect to a given order if atyereduction step the reduced redex is not
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2 Standardization in resource lambda-calculus
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(@) Grammar of terms, bags, sums, expressions.

Figure 1: Syntax of the resource calculus.

a residual of a redex which, in the given order, precedes dqusay reduced one. In the case of
calculus, the standardization is based on the left-totagtier of redexes.

In A", as the elements of a multiset are not ordered, a notion nfiatdization would be based on a
partial order between redexes. A first result, correspantiira weak notion of standardization, has been
proved by Pagani and Tranquillil[9], stating that the reftuns of redexes inside reusable resources can
always be postponed. We define a stronger partial order batnariexes, and we prove that the non-
deterministic reduction enjoys the standardization priypeith respect to it. Even though this order is
not total, itis in fact undefined if and only if the two redeXes in different elements of a same multiset,
so that any finer order would not be well-defined. This redidina us to complete the characterization
of may-solvability, defined in_[8]. Let us stress that solliabis a key notion for evaluation, since it
identifies the meaningful programs, and a clear notion opwtutesult of a computation. Since this
calculus is non-deterministic, two different notions ofvedility arise, one optimistic (angelical, may)
and one pessimistic (demoniac, must). In particulat,Jiif[& characterization of the may-solvability has
been given, from a syntactical and logical point of view. étee provide an operational characterization,
through an abstract reduction machine, performing thedeiarministic reduction. The soundness and
completeness of the machine with respect to the notion ofsolxability comes from the standardization
property.

Moreover we prove that the parallel reduction does not ettjgysame standardization property.
Namely we show that in this case any order between lineaxesdeannot be sound. This negative
result is interesting, since it gives evidence to the de#fprdince between linear and non-deterministic
reduction.

2 Syntax

The syntax of A". Basically, we have three syntactical sorts: terms, thaindtenctional position, bags,
that are in argument position and represent multisets ofuress, and finite formal sums, that represent
the possible results of a computation. Precisely, Figuag difes the grammar for generating the Akt

of terms and the sef\P of bags(which are in fact finite multisets aesourcesA(!)) together with their
typical metavariables. A resource can be linear (it mustdsslexactly once) or not (it can be used ad
libitum, also zero times), in the last case it is written watt superscript. Bags are multisets presented
in multiplicative notation, so tha®-Q is the multiset union, and £ [] is the empty bag: that means,
P-1=P andP-Q = Q-P. It must be noted though that we will never omit the ddb avoid confusion
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(IM]-P)(N/x) := [M(N/X)] - P+ [M] - P(N/x),
(IM]-P){N/%) := [M(N/%),M']- P+ [M'] - P(N/x).

y<N/x>:—{N Ty=x - QMG = AyMIN/),

0 otherwise, (MP)(N/x) :=M(N/x)P+MP(N/x),

Figure 2: Linear substitution. In the abstraction case we suppas&V(N) U {x}.

with application.Sumsare multisets in additive notation, with O referring to tmepty multiset, so that:
M+0=M andM + N = N+ M. We use two different notations for multisets in order to efide the
different role of bags and sums.

An expression(whose set is denoted By?)) is either a term or a bag. Though in practice only sums
of terms are needed, for the sake of the proofs we also inteodums of bags and of expressions. The
symbolNat denotes the set of natural numbers, aiad(A") (resp.Nat(AP)) denotes the set of finite
formal sums of terms (resp. bags).

The grammar for terms and bags does not include sums in any, goi that in a sense they may
arise only as a top level constructor. However, as an ingdeictotation (anchot in the actual syntax)
we extend all the constructors to sums as shown in Figuré Ir{ifact, all constructors but th(e)! are,
as expected, linear in the algebraic sense, i.e. they coenwitht sums. In particular, we have that 0 is
always absorbing but for thie)' constructor, in which case we hal@] = 1. We refer to[[111], 10] for the
mathematical intuitions underlying the resource calculus

We adopta-equivalence and all the usuldcalculus conventions as pér [1].

The pair reusable/linear has a counterpart in the followwvadifferent notions of substitutions: their
definition, hence that of reduction, heavily uses the noatf Figurg 1(0).

Definition 1 (Substitutions) We define the following substitution operations.

(i) A{N/x} is the usuall -calculus {.e. capture free) substitution of for x. It is extended to sums as
in A{N/x} by linearity inA. The formA{x+ N/x} is calledpartial substitution .

(i) A(N/x) is thelinear substitution defined inductively in Figurel2. It is extended AdN/x) by
bilinearity in bothA andN.

(i) AUN®/x)), defined byA((N/x)) := A(N/x) and A{(N'/x)) := A{N+x/x}, is theresource sub-
stitution, and moreoveA((B/x)), defined byA(([Ni”, e Nr(]”] /X)) = A((Nf) /X)) - ((N,Q!) /X)) (as-
sumingx ¢ FV(B)) is thebag substitution.

Roughly speaking, the linear substitution correspondéiéaéplacement of the resource to exactly
onelinear occurrence of the variable. In the presence of multiple oecwes, all the possible choices are
made, and the result is the sum of them. For exartydié[x]) (N/X) = y[N][X] + Y[X][N]. In the case there
are no free linear occurrences, then linear substitutiturme 0, morally an error message. For example
(AY.Y)(N/x) = Ay.(y(N/x)) = Ay.0 = 0. Finally, in case of reusable occurrences of the varidinlear
substitution acts on a linear copy of the varialagy.[x'|(N/x) = [N,x'].

The reductions of A". A term contexiC[-] (or a bag contexP[-]) is defined by extending the syntax
of terms and bags by a distinguished free variable céltd#d and denoted by:].

Notice that in contexts the order of holes cannot be trulpldisthed as bags are independent of
order. So fiIIin@ thek holes of a contexts by terms needs a bijective mappifigm {1,... ,k} to hole

1we recall that hole substitution allows for variable captur
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occurrences i€[-], andC,[M;] denotes the replacement of the holes\by ..., My guided by this map.
We can write als@[[l\7li]], by considering an implicit map.

A (term, bag) context isimpleif it contains exactly one occurrence of the hole. In thisecas will
write simply C[M] for the result of filling of the hole wittM. A simple context idinear if its hole is
not under the scope of(a)! operator, and it i@pplicative if it has the hole not in a bag. As usual the
(simple/applicative/linear) context closure of a relat®is the one relating[t] andC[t'] whent Rt
andC is of the appropriate kind.

We define two kinds of reduction rule, called parallel and-deterministic. Moreover the parallel
reduction can be further divided into baby-step and gitep;she former being a decomposition of the
latter. Baby-step is more atomic, performing one substituat a time, while the giant-step is closer to
A-calculusB-reduction, wholly consuming its redex in one shot.

Definition 2 ([11,[10]). (i) The parallel reductions are defined as follows:
— Thebaby-stepreduction= is defined by the simple context closure of the following tieta

(assumingk not free inN):
AxM)L 2 M{0/x} (AXM)[N]-P 2 (AXxM(N/x))P
(AXM)[N']-P 2 (AxM {N+x/x})P

— Thegiant-stepreduction® is defined by the simple context closure of the following tieta
(AxM)P & M((P/x)) {0/x}

(i) The non-deterministic reduction is the relatioM 2 N if and only if M £ N+ A for someA.

Notation 3. For any reduction® (the ones listed above and the ones to come), we denofé kig
reflexive-transitive closureo : M £5 N denotes a particular reduction sequence fMrto N, and|p| its
length.

A" and A-calculus. In A-calculus, arguments can be used as many times we wantssmai$y to inject
itin A" through the following translatiof)*:

(9" =% (AXM)"=2Ax(M)*, (MN)* = (M)*[(N)"]

On terms ofA" which are translations of-terms, the giant reduction becomes the ugsadéduction.

3 Standardization

In this section we will prove that the non-deterministicuetion enjoys a standardization property. As
we recalled already in the introduction, the standardizagiroperty is based on an order relation between
redexes. We can define it formally as follows:

Definition 4. Let < be an order on positions in terms (which is extended to anra@desubterms of
a given term). Suppose is a reduction chain, and |&f; andR; be thei-th term and fired redex ip
respectively. We say thatis <-standardif for everyi we have thaR. ; is not the residual of a reddX
in M such thaR < R,.
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We will prove that non deterministic reductioni enjoys the standardization property with respect
to the order<,, which is the partial order on positions /i terms that, intuitively, gives precedence to
linear positions over non-linear ones, and then orderatipesitions left-to-right, with the proviso that
positions inside the same bag be not comparable. The forefialitton follows.

Definition 5 (Linear left-to-right order) For two subterm$,; andS; inside the expressiofi, we say that
S <r & in A if and only if any of the following happens:

e S is asubterm of;
e S islinear inA while S is not;
e S andS are both linear i\, A=MP, S isinM andS is in P.
e S andS; are subterms of the same proper subexpresBiohA, andS, < S in B;
Example 6. S, <; S in both Ax.X[S)][S1] andAx.X[S1][S], while they are incomparable Ax.X[S;, ).
Our starting point is the division of redexes in two classeger and inner.

Definition 7 ([9]). Let € € {b,g,nd}. Theouter e-reduction %% is thelinear context closure of the
g-steps given in Definitioris 2. Aon-outer e-reduction, calledinner is defnoted by:%.

In other words, an outer reduction does not reduce insideatde resources, so an outer redex (
a redex for®%) is a redex not under the scope o(-;i' constructor. In particular a term corresponding
to aA-term has at most one outer-redex, which coincides with tediredex. Pagani and Tranquilli
stated in some sense a weak standardization property fgiahereduction, proving that inner redexes
can always be postponed. Their result can easily be extetodether reductions, in particular to the
non-deterministic one.

Theorem 8([9]). Lete € {b,g,nd}. M £ Aimplies M5 A’ and A/ %5 A
We introduce now a further classification between outerxesle
Definition 9. The set ofeftmostredexes?’ (M) of a termM or a bagP are defined inductively by:

g(x) » {MP} if M :AX.M/, f(l) = (D,
o o o ZMP) = Z(M) otherwise, iEZ(M) £0 Z(IM']-P:=2(P),
(AXM) = Z(M) Z(P) otherwise Z(M]-P):=2M)U.Z(P)

In regularA-calculus, the setZ(M) is at most a singleton, and,-standardness collapses to the
regular notion of left-to-right order of redexes.

Fact 10. Redexes inZ (M) are exactly the<,-minimal elements among all redexes\df

In the following, we will consider in particular the non-éeministic reduction. So, let us introduce
some notation.
Notation 11. Let M 2% N. M 33 N denotes that the reduction fires a redex4tM), while we write
—1m

M = N if the redex is not a leftmost one. Moreowdr> N andM 2 N will be short for forM 2% N
andM % N respectively.

Lemma 12. We have the following facts on non-leftmost reduction.
e p:AxM 25 N if and only if N= Ax.M’ andp’ : M =25 M’ with |p| = |p'|;

—1mx*

e p:MP 225 N if and only if N= M'P’, p’ : M =225 M’ and p” : P 25 P with |p| = |p’| + |0”|;
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e p:[M]-P 225 Qif and only ifQ= [M]- P, p’ : M =25 M’ and p” : P =% P’ with |p| =
| +1p"

e p:[M]-P2 Qifand only ifQ= [M']- P andp” : P =25 P’ with |p| = |p”|.
The proof of standardization is based on an inversion ptpgdertween outer redexes, saying that
a not-leftmost reduction followed by a leftmost one can gsvae replaced by a leftmost followed by

an outer. This is the upcoming Lemmd 15. In order to get it wat firove the following intermediate
properties.

Lemma 13. If O % O’ thenVL’ € O'((Q/x)) {0/x} 3L € O{Q/x)) {0/x} such that L-> L'

Proof. We will prove thatvL’' € O'((Q/x))3L € O(Q/x)) such that. > L’. Then the statement of the
lemma follows easily. By induction o@.

Case 1.0 = xandO =y are not possible.
Case 2.0 = Ay.M. By inductive hypothesis.

Case 3.0 = (Ay.M)P. There are three casesy.M > Ay.M’, P> P/, (Ay.M)P 2% O € M{(P/y)) {0/y}.

LetM = M. (Ay.M)P{(Q/X)) = T q,.0,((AY.M){(Q1/x))) (P{(Q2/x))),whereQi,Q, range over
all the possible decomposition §finto two parts, counting the reusable resources with all the

possible multiplicities. This means that in ca3¢ Q. are considered two different subterms
also in case they are syntactically equal. By inductive liygsis, for allL’ € (Ay.M’){(Q1/X))
there isL € (Ay.M){(Q1/x)) such that. > L', and the result follows by transitivity af. The
caseP % P’ is similar.

Let (AY.M)P 2 O € M{(P/y)) {0/y}. Then we have that the substitutiohAy.M)P{(Q/x)) is
equal to the suny o, o,(AY.M{(Q1/X)))(P{(Q2/x))), whereQ1, Q. range as before. Since each
component of this sum is a redex (the substitutions do notifsndiok external shape of the
terms), we can reduce each redex, so obtaining that fdr all(Ay.M{(Q1/x)))(P{(Q2/X))),
L% L' € M{(Qu/X) {(P(Qz/%)/¥)) {0/y}. On the other sideM((P/y)) {0/y} (Q/x) is equal

to the sumy o, o, M{(Q1/X)) ((P((Q2/x))/y)) {0/y}, and the proof is done.

Case 4.0=MP andO' = M’P or O = MP andO’ = MP'. All by inductive hypothesis. O
Lemma 14. If Q 2 Q' thenVL’ € O(Q'/x)) {0/x} 3L € O{Q/x)) {0/x} such that L L'.

Proof. By induction onQ. Q cannot be 1 as it would be normal.
If Q=[H]-PthenO{(Q/x)){0/x} = O(H/x){(P/x)){0/x}. We proceed by cases:
Case 1.The reduction is o, i.e. [H]- P 2 [H]-P. ForallN € O(H /x), N{(P/x)) = N((P'/x)). Then
we have by induction that for all € N{(P/x)) {0/x} there isL’ € N{(P’/x)) {0/x} such that
L % L. So the result follows.
Case 2.The reduction is o, i.e. [H]- P =2 [H'] - P). Let us setO(H/x){(P/x)) {0/x} = (O1+ ... +
Ox)((P/x)) {0/x}, whereH occurs in allO; (1 < j <K), since the substitution is linear. Let
O;j 2 O} +...+ Of by reducing the occurrence bf in it. S0O; 2 O (1< i <my), and, by
[Lemma I3, for all’ € O!{(P/x)) {0/x}, there isL € Oj{(P/x)) {0/x} such that. 2 L. Since
O; € O(H/x) andO} € O(H’/x), the proof follows.
If Q= [H']-P the reduction or, and the case is similar to the first case of the previous poini]

Lemma 15(Inversion) M 2 M’ 8 N implies M3 M”23 N, for some M.
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Proof. We proceed by induction oM.
LetM = AY.(AX.O)QP,...P;...R, so.Z(M) = {(Ax.0)Q}. Non leftmost reductions oMl can be done in
O,inQorinP; (1< j <n). We procede by cases:

Case 1. The reduction is o, (1 < j <n).]. LetP; & P/ +S. We have that
M 2 AY.(AX.0)QR....P}...P, 5 A¥.0((Q/x)) {0/x} Py...P/...Ph.
Moreover, by reducing the leftmost redex
M & AY.0(Q/X) {0/X} Py...Pj...P, = AY.(O1 + ... + O)P1...Py... P,

so that
M 28 AY.OnPL...Pj...P % AY.OnPL... PP,

forall1<h<k.

Case 2. The reduction is o). LetQ % Q' and letM ' Ay.(Ax.O)Q'Py...P, 28 Ay.MP;...P,, whereM
is such thatM € O(Q'/x)) {0/x}. Moreover, by reducing the leftmost redex, we also have
the reductionM 2 A¥.0(Q/x)) {O/x} P,...P,. By [emma1#,Q % Q implies that for all
L" € O(Q'/x)) {0/x}, there existd € O(Q/x)){0/x} such thatL = L'. So there isM ¢
0O((Q/x)) {0/x} such thaM B Ay.MPy...P, > AY.MPy...P,.

Case 3. The reduction is in O. LeD % O/, and letM X' Ay.(Ax.O')QP,...P, 8 A¥.MP;...R,, whereM
is such thaM € O'((Q/x)) {0/x}. Again if we reduce the leftmost redex, we have the reduction
M & Ay.0(Q/x)) {0/x} Py...R,. 02 O implies, bylLemma I3yL" € O'((Q/x)) {0/x},3L €
O(Q/x)) {0/x} such that. % L". So there idM € O(Q/x)) {0/x} such that we can compose
the reductionl 3 Ay.MPy...R, % AY.MP;...P,.

LetM = AY.xP...R,, and letR =¥ P/ andP; =3 P/. In casei # j, the proof is trivial. In case= j the
proof is by induction orP. O

Corollary 16. If p: M 25 M’ then there ares : M 25 M” and 7r: M” 225 M’ with |o| + |1 = |p|.

Lemma 17.

(i) Givenp:M™ N ando:N 25 L, thenpo : M 25 Lis <,-standard if and only itr is. In particular
every chain of leftmost reductions+g-standard.

ndx

(i) Givenp:M 2% Nando: N5 L, thenpo : M™% L is <,-standard if and only if botlp and o are.
Proof. The result follows easily from the definition ef;. O

Now we can prove that the non-deterministic outer redudsor,-standard.

Lemma 18 (Non-deterministic outer standard reductioff)M °*+ N, then there is a<,-standard non-
deterministic outer reduction from M to N.

Proof. We reason by induction on the pdp, s), wherep = |p| is the length of the reduction sequence
p:M 25N, ands s the number of symbols iM. By [Corollary 16, there is a reductian : M *% M’
and oy : M/ =25 N with |gi| + |or| = |p| = p. If |oi| > O then inductive hypothesis applies ¢s,
giving <;-standardg; : M’ =% N, which gives thatjo; : M =5 N is <,-standard by Lemma117. In case
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—1mx*

or : M —= N is the whole reduction, the proof is by caseshMdn The only non-obvious case is when
M = LP: by[Cemma 12 we havdl = L'P andp’ : L =2 L’ andp” : P 2 P’. We can apply inductive
hypothesis to both ag’| + |p”| = |pr|, and getLP =% L'P 25 L'P’. Now assuming that this is not
<-standard leads to a contradiction to the definition at tlaensesince all linear positions id’ are <,

with respect to those iR. O

In order to prove that also inner reductions can be starmizdidive need to introduce the notion of
outer shapeof a term.

Definition 19. The outer shape/(M)[-] of a termM is a context that isV with holes replacing all
exponential arguments M'’s bags.

Formally, extending the definition to bags, we defiie)[-] inductively as follows.
O[T =% LAXM)[] = AxLM)[], UMP)[] = eM)LTEPIL,
(D=1, «M]-P)[]=[EMIN- P, aM]-P)T = [IT14P]-

Property 20.

(i) M X N if and only if £(M)[-] = ¢(N)[-], and there aréd termsM/ and k termsN/ such that
M = £(M)a[M/], N = £(M)a[N/] andM/ 2% N/ for eachi.

(ii) If M =¢(M)a[M/] andp; : M/ 225 M/ are standard, then there is a standalrdM X% ¢(M)4[M/].

Proof.
i) The if direction is a direct consequence of hawis defined and of context closedness of the

reduction. We thus move to the only if direction.
First, let us show that the property to prove is preserveddoyposition of reduction chains.
SupposeM 2% N 25 O with M = £(M)[M/], N = £(M)4, [N/] = £(M)g,[N/] andO = £(M)4,[O/].
We can supposa; = a; by re-indexing (namely usingN)al[KI;’z,l(al(i)] andﬁ(O)aé[N;’El(al(i)] with
ay=ago a2‘1 oa1). So we just forget the bijections employed, and then we lmgvRypothesis
M/ 225 N/ = N7 22% O/, which is what is needed.
Now, we can prove the property by reducing to the case of desinger reduction, as composing
multiple ones of them preserves the property.
TakeM 2 N: the result follows by a straightforward induction on how tieduction is defined.

i) The idea is that the reductions in the subterms can bédyfrearrenged.

Let us reason by generalizing to expressions and by stalghguction onA.

Case 1. A = xor A = 1: nothing to prove.

Case 2. A = Ax.N: straightforward application of inductive hypothesis.

Case 3.A = NP, with £(A)[-] = ¢(N)[-]¢(P)[-]: we can partitionM; into what goes ir/(N)[-] and
what goes in¢(P)[-]. We can suppose that = (¢(N)[Mg,...,M{))(¢(P)[M/,, 1,...,M])
without loss of generality, and by inductive hypothesis standardo : N 2 N’ andp :
P X P/ (with N’ andP’ the correct pluggings dof(N) and/(P)).

Now, if we reduceA = NP X NP X% NP’ following first o and thenp, the resulting
reduction must be standard as all position® i@re greater than those hMaccording to<;.

Case 4. A = [N]- P: exactly as above, but without any constraint on the ordetiich the reductions
are composed.
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Case 5.A = [N']- P, with £(A) = [[-]'] - #(P)[]: suppose thatl; = N andP = ¢(P)[M5, - -- ,My]. By
inductive hypothesis we have a standardP X P’ = ¢(P)[M/']_,, and as positions ifN']
andnon-linearpositions inP are incomparable, we can freely combine the reductiorid’on
andP to get a standard one. O

Now we are able to show the desired result.

Theorem 21(Standardization) If M 2% M, then there is a<,-standard chain from M to K

Proof. By structural induction o’, the term where the reduction ends. First, applying The@ewe
geto : M 2% M” andp : M” 22 M’. Now we strive to obtain two standard chaios: M 2% M” and
o’ M” 24, M to obtain the chaiw’p’ which is standard by Lemmall7. The existence of a standard
is assured directly by Lemmall8, so we need to concentratendindip’. By using Property 20(i), we
getM” = £(M")[Ny,...,N], M’ = £(M")[N],...,N/] andp; : Ni 2% N/. As all N/ are structurally strictly
smaller thanM’, we can apply inductive hypothesis on egghand get standarg/ : N; ﬁ /. Then
using[Property 20(jj) we can glue back those reductionstimcstandard reduction’ : M” = M’ O

Example 22. Let| = Ax.x, My = I [((Axyx)]l '][I'])] Mz = I[I'], and letM = Axx[M{',My']. The fol-
Il

lowing reduction is standard¥l; = I [((Axyx)[I'][I'])'] 33 Axyx)[1'][1'] 38 Ay.D[I'] 2 1. As M, 22 1,
the following is standard too

A (AT S AT 2 Axx(Axy0 10D (10

AXX[((Axyx)[I'][1']) 1] 2 Axx[(Ay.D)]I ]) 5 Axx, 1.

Let us notice that, as opposed to the weak form of standdializgiven in[Theorem|8, thex;-
standardization does not hold for parallel reduction. Antetexample is the following.

Example 23. Let Iy and |, denote two occurrences of the identity.x, and letM = lg[l1[X,y']] &
lo[X] + lo[y] & x+ lo[y] by reducing the inner redex first. But reducing the leftmeslex first we obtain
M & 11X,y LN X+ Y. So the previous result cannot be obtained by a standardtredu

4 Solvability Machine

The standardization result proved in the previous sectilowa us to design an abstract reduction ma-
chine characterizing the may-solvable termg\in A term of A-calculus is solvable whenever there is
a outer-context reducing it to the identify [1]. In the resmucalculus, terms appear in formal sums,
so (at least) two different notions of solvability ariselated to a may and must operational semantics,
respectively. We will treat the former only.

Definition 24. A simple termM is may-solvablewhenever there is a linear applicative—cont€xt]
such thaC[[M] 225

May-solvability has been completely characterized frori@osyntactical and logical point of view
in [8]. Syntactically, a ternM is may-solvable if and only if it is may-outer normalizablen expression
is anouter normal form (onf) if it has no redex but under the scope qf)é, and consequently a terini
is may-outer normalizableif and only if M2% N, whereN is aonf (N is called amon fof M). Logically,
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M ilnd M’

is i PP (1<i<m)

oM I A ) %W N A P U XPL P (head

M{O/Py P boa M MN/Q =M+ 4 (AXM)PRL. P g M"

(AXM)1Py...Pm g M/ (AXM)[N] - PPL...Pm g M”
M{N+x/x} =M +A (AXM')PPL...Py lna M”

(B)

i 7 ('B)
(AX.M)N']- PP...Py g M
(a) The ND reduction machine.
MUndN PlpP PlpP b
1™ Mk e P

(b) The auxiliaryB machine

a particular intersection type assignment system has befamed, typing all and only the may-solvable
terms.

We now will complete the job, characterizing may solvapifiom an operational point of view. The
following property is obvious.

Property 25. M isinonf if and only if (M) = 0.

The abstract reduction machine (calld®-machine) proves statements of the shishpg.g N, where
M,N are simple terms anl is aonf. The ND-machine uses an auxiliary machine, #enachine,
performing the reductions on bags. The two machines arershowigure 4.

Some comments are in order. First of all, the machine pedatm baby outer reduction, on a
leftmost redex. RulegA), (end) and(0) are self-explanatory. Rulghead implements the definition
of monf, note that in this rule the order in which the arguments adeiced does not matter. Non-
determinism appears in rulé¢g) and(!3). Indeed, if the result of the substitution is a sum, one of its
addends is randomly chosen. The auxiliary mactdrmeerforms the reductions on bags. Note that the
rule ('b) implements the notion of outer-reduction. Remember thatrit a term, so it can be neither
an input nor an output of the machine. So in rul@s (8) and(!3) the machine transition is undefined
if the result of the substitution is 0. We will writd 1,4 to denote that for any run of the machinen
either it does not stop or it is undefined.

Example 26. (Azyy)[X fing- In fact, trying to apply rulgB, the machine needs to computey.y) (x/z),
which is equal to 0, so the premises of the rule are not satisfie
(AXX[X])(AxX[X']) fing. In fact, the machine on this input does not stop. Notice thiatterm corre-
sponds to an unsolvable term in thecalculus.
LetF = Axyy. Then(Ax.y[X|[x])[F,I][Im] reduces non deterministically y¢F ][] + y[I][F]. It is easy to
check that there are two machine computations such thateitfony[x|[x])[F,1] {na Y[F][l] while in the
other(AX.Y[X|[X])[F,1] {na Y[I][F].
AxyXD[IL,FY] 5 yI', F'], by reducing the leftmost redex. The unique machine contipatdor this
input gives(Ax.yXD[I',F'] Una y[I',F'].
Theorem 27.
(i) (Soundness) If Ming N then M™% N, and N is aonf.

(i) (Completeness) Let M be may-outer-normalizable andNi®e amonfof M. There is a machine’s

—1mx*

computation proving Ming N’, where Nis amonfof M and N ——= N.
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Proof (sketch).Point (i) is proved by mutual induction on the rules of the twachines. Point{ii) is an
immediate consequence of thg-standardization property. O
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