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We extend the textual calculus for interaction nets by gemeles and propose constraints to preserve
uniform confluence. Furthermore, we discuss the implentientaf generic rules in the language
inets which is based on the lightweight interaction nets calsulu

1 Introduction and Overview

Interaction netsare a model of computation based on graph rewriting. Progeard data are represented
as graphsret9, and execution of a program is modeled by manipulating #tebased omewrite or
reduction rules

The theory behind interaction nets is well developed: thggyeseveral useful properties such as
uniform confluence and locality of reduction: single congpiginal steps in a net do not interfere with
each other, and thus may be performed in parallel. Addilignateraction nets share computations:
reducible expressions cannot be duplicated, which is b@akfor efficiency in computations. Further-
more, the graphical notation of interaction nets autora#iyigorovides a visualization of an algorithm.
Such a visualization can even show formal properties ofiarog that might be hard to prove in a textual
programming languagé [16].

Our goal is to promote interaction nets to a practically lesspbogramming language. Unfortunately,
the beneficial properties of interaction nets impose stresgrictions on the shape of rules: this makes
it hard to express features such as higher-order functiosgle effects. In this paper, we improve this
deficiency by extending the textual calculus for interattn@ts bygeneric rules In addition, we define
constraints on these rules to preserve uniform confluenbighwis the basis for parallel evaluation.
Despite the merits of the graphical notation, the textubdutas for interaction nets [3] is indispensable:
it provides a precise semantics for the mechanics of thengralprewriting rules. Furthermore, it forms
the basis for implementations of interaction nets basegulages|[7].

We complement our previous wotk [11], which defined genaries in the graphical setting of inter-
action nets. Defining generic rules in the textual calcuiuegya precise semantics to the graphical no-
tation which we introduced previously. In addition, we dése the ongoing implementation of generic
rules in the interaction nets based languaggs We show that the implementation satisfies the con-
straints for generic rules, and hence preserves uniforrfiuace. Our contributions can be summarized
as follows:

e We extend the interaction nets calculus with generic rulesparticular, we provide a precise
definition ofvariadic (arbitrary-arity) rules such as duplication and deletion.

e We describe the implementation of generic rules in the puogning languagaets
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e We show that the generic rule constraints are satisfied ircé®ulus and the implementation,
ensuring uniform confluence of reduction.

In the following section, we introduce interaction nets anel lightweight calculus. Sectidn 3 defines
generic rules for the lightweight calculus. We discuss augaing implementation of generic rules in
inetsin Sectior[ 4. Finally, we conclude in Sectign 5.

2 Preliminaries

In this section, we recall the main notions of interactiotsrad the lightweight calculus. We discuss the
uniform confluence property in both the graphical and th&uedXormalism. Preserving this property is
a key challenge in the introduction of generic rules.

2.1 Interaction Nets

Interaction nets were first introduced in [13].n&tis a graph consisting afgents(labeled nodes) and
wires (edges). Each agent has a fixed numbeparts Wires connect agents through these ports. We
say that an agent is or arityif it has n+ 1 ports: every agent has exactly gomencipal port (denoted

by the arrow), all other ports are calledxiliary ports. Intuitively, agent labels denote data or function
symbols. Computation is modeled by rewriting the graph,cilis based omteraction rules

(agents) (rules)

X
X1 Xn X1 Y1 1\777‘/
5>@N@<5 = N
TN

Xn Ym Xn

These rules apply to two nodes which are connected by phisicipal ports forming anactive pair.
We will refer to a set of rules asteraction net systeriNS for short). This simple system allows for
parallel evaluation of programs: if several rules are ajplie at the same time, they can be applied in
parallel without interfering with each other. The main pauisite for this parallelism is theniform
confluence propertgf the reduction relation induced by a set of rules.

Definition 2.1.1 (Uniform Confluence). A relation — satisfies the uniform confluence property if the
following holds: if N— P and N— Q where P#£ Q, then there exists some R such thatbFR + Q

Proposition 2.1.2(Lafont [13]). Let R be an interaction net system. The reduction relatieimduced
by R satisfies uniform confluence.

Essentially, three properties of interaction net systerasafficient for uniform confluence [14]:
1) Linearity: interaction rules cannot erase or duplicate ports.

2) Binary interaction: agents can only be rewritten if they form an active pair, it¢hey are connected
via their principal ports.

1several publications on interaction nets, includind [1&]er to this property astrong confluenceéWe use the termaniform
confluencgor WCR1 in the term rewriting literaturé [12, 18]) in order to acobdor the fact that if® andQ are distinct, then
one step is taken from either net to reach a common reduct.
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3) No ambiguity: for each active paifS T) of agents there iat most oneule that can rewritéS T).
If SandT are the same agent, then rewriti(§ T ) must yield the same net as rewriti(ig, S)E

Later, we will see how generic rules influence these progmrtEssentially, we need to provide con-
straints on generic rules such that 3) is still satisfied.

2.2 The Lightweight Interaction Calculus

The lightweight calculus |7] provides a precise semantiedrfteraction nets. It handles application of
rules as well as rewiring and connecting of ports and agénises the following ingredients:

SymbolsZ representing agents, denoteddpyf, y.
NamesN representing ports, denoted Ry, z,X1,¥1,2, ... . We denote sequences of namesbyz

Terms T being either names or symbols with a number of subtermsesponding to the agent’s arity:
t=x|a(ty,...,ty) . S;t,udenote termss,t,u denote sequences of terms.

EquationsE denoted byt = swheret,s are terms, representing connections in a net. Note taatis
equivalent tes=t. A, © denote multisets of equations.

Configurations C representing a net b{f | A). T is the interface of the net, i.e., its ports that are not
connected to an agent. All names in a configuration occur at tmice. Names that occur twice
are calledbound

Interaction Rules R denoted byx (X) = B(Y) — ©. a, B is the active pair of the left-hand side (LHS)
of the rule and the set of equatioBsrepresents the right-hand side (RHS).

The no ambiguityconstraint of Sectioh 2.1 corresponds to the following diédim for the lightweight
calculus.

Definition 2.2.1 (No Ambiguity). We say that a set of interaction calculus rules Ras-ambiguousf
the following holds:

e for all pairs of symbolga, 3), there is at most one rule(X) = B(y) — © or B(y) =a(X) —
O eR.

e if an agent interacts with itself, i.e0(X) = a (y) — © € R, then® equalsA (as multisets, modulo
orientation of equations), whekis obtained fron®® by swapping all occurrences &fandy.

Rewriting a net is modeled by applying foduction rulego a configuration with respect to a given set
of interaction ruleR:

Definition 2.2.2 (Reduction Ruleg. The four reduction rules of the lightweight calculus are wledi as
follows:

Communication: (f|x=t,x=uA) =5 (f|t=u,A)

Substitution: (T|x=t,u=-sA) sub (T|ut/x] =s,A), where u is not a name and x occurs in u.

Collect (T|x=t,8) <% (f[t/x] | A), where x occurs .

Interaction (T |a(f) = B(%2),4) nt, (T]e,4), wherea (X) = B(y) — © € R. © denote®® where
all bound names i® receive fresh names amxdy are replaced by, b.

2See|[14] for a detailed explanation of the idea behind thelitiom for S=T.
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The reduction rules®? and =8 replace names by terms: this explicitly resolves connastloetween
agents which are generated by interaction ruEh. also replaces names, but only for the interface. Nat-
urally, ™ models the application of interaction rules: an equatiomesponding to a LHS is replaced
by the equations of the RHS.

Example 2.2.3. The rules for addition of symbolic natural numbers are espesl in the lightweight
calculus as follows:

+yr) =8X) — +(,w) =X r=3w) 1)
+yr =2 — r=y 2)

Proposition 2.2.4(Uniform Confluence for the Lightweight Calculus). Let — be the reduction re-
lation induced by the four reduction rules and a set of intéian rules R. If R is non-ambiguous, then
— satisfies uniform confluence.

Proof (sketch).In [3]], uniform confluence is shown for the interaction célsy which is the predecessor
of the lightweight calculus. The main difference of the tighight calculus to the previous one is that the
indirectionrule of the standard interaction calculus is now split intes and S—Ub> . However, this does
not affect the property shown inl[3]: all critical pairs (i.eritical one-step divergences in the reduction
of a configuration) can be joined in one step.

It is necessary thaR is non-ambiguous in order to prevent non-determinism inagmglication of the

nt, rule, which could lead to non-joinable divergences. O

3 Generic Rules for the Lightweight Calculus

In this section, we first introduce generic rules in the gregdrsetting of interaction nets. Afterwards,
we extend the lightweight interaction calculus in ordertpress the semantics of generic rules.

3.1 Generic Rules

Ordinary interaction rules describe the reduction of a ptiwo concrete agents (e.g., O afdn rule (1)
above).Generic rulesallow one concrete agent to interact with an arbitrary agéhis arbitrarygeneric
agent corresponds to a function variable, adding a higldaraharacter to interaction nets. Such rules
have already been used in several publications (&.d.,,[dS)ally to model duplication and deletion of
agents, albeit without a formal definition of generic rules.

We distinguish two types of generic agents and rules basideoarity of the agent:

fixed generic agentshave a specific arity. They correspond to an arbitrary ageeactly this number
of ports.

variadic agents are of arbitrary arity. They correspond to any agent with mmyber of ports.

Example 3.1.1. The following rules model deletion and duplication via tlyeatse and o, whereaq is
avariadicagent.
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Informally, € deletes any agert and propagates itself ta’s ports, deleting connected agents in
subsegquent steps. Similarlyduplicates an arbitrary agent and the net connected to it.

The dots at the ports of the variadic agentndicate that its arity is arbitrary, i.e., any active pair
(0,A) matches this rule (wher& may be any agent). While this notation is intuitive, it does give
a precise definition of the semantics of generic rule apjidina In particular, the RHS of thé rule
has multiple sets of arbitrarily many ports and agents, Wwhiay make it more difficult to comprehend.
Hence, we provide a definition of generic rule applicatiorthia lightweight calculus, clarifying the
mechanics that are associated with the graphical dot notati

3.2 Fixed Generic Rules for the Lightweight Calculus

We first extend the calculus by fixed generic rules. The momaptex variadic rules are defined in the
following subsection. Essentially, we introduce addiéibsymbols for generic agents. We then modify

the ™ reduction rule to support generic agents.

Generic NamesV representing generic agents, denotedgby, p. Generic names may only occur in
generic interaction rules.

Generic RulesGR denoted by (X) = ¢(y) — ©. © contains no generic names other th@an

The reduction rule for interaction is extended to supportcinag and application of generic rules.
Definition 3.2.1 (Generic Interaction). (| a (i) = B(f2),4) nt, (T]@,4), wherea(X) = B(y) —

®© eRora(X)=¢(y) — © € GRIf B and @ have the samarity (number of ports). In the latter
case,©@ equals® where all occurrences ap are replaced by3 (in addition to using fresh names and

replacingx, y).

The above definition gives a precise semantics for the adjaic of generic rules with generic agents of
fixed arity. Our approach is extended to generic rules witiadéc agents in Sectidn 3.4.

Note that the definition of generic interaction only modifiles behaviour of the'™, rule. The other
three reduction rules are not affected by this change: thiyaperate on configurations, which do not

feature generic names.

3.3 Generic Rule Constraints

Unfortunately, generic rules introdu@mbiguity or overlapsto rule application: one equation could
possibly be reduced by more than one interaction rule. Agiomead in Propositio 2.2l410 ambiguity

is one of the required properties for uniform confluence. d¢¢gpverlaps may destroy the nice properties
of interaction nets (including parallel evaluation). Téfere, overlaps caused by generic rules need to be
prevented.
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In [11]], we defined generic rule constraints to preserveannifconfluence in the graphical setting
of interaction nets. These constraints can be translatéietbghtweight calculus in a straightforward
manner. The Default Priority Constraint (DPC) correspaiods modification of the™; reduction rule,
just as it restricts the reduction relation in the graphseting in [11].

Default Priority Constraint (DPC) An equationa(f;) = B(fz) can only be reduced using a generic
rule if no matching ordinary rule exists, i.e.,afx) = B(y) — © ¢ R.

Generic Rule Constraint (GRC) If there is more than one generic rule that can be applied fgemg
equationa (1) = B(&2), there must exist an ordinary rule that can be applied as well

The DPC restricts the behavior &t ordinary rules always have priority over generic rulese GRC
restricts the set of generic rul&R The combination of these constraints prevents overlaps:
Proposition 3.3.1. Let R be a set of interaction rules (including generic ruldgst satisfies the GRC. If

1", satisfies the DPC, then there is at most one rule that can edaarbitrary equatiora (5) = B(0).

Proof. We distinguish two possible cases of overlaps:

1. One ordinary and one generic rule can be applied to the saumion (as defined in Definition
[3.2.1). Then, the ordinary rule is chosen due to the DPC.

2. There are two generic rules that can be applied to the squatien. Then, by the GRC there must
also be an ordinary equation that can be applied. This ridgam prioritized by the DPC.

In both cases, there is only one possible rule that can béecap@\s with ordinary interaction rules, the
case of two ordinary rules with the same active pair is rulgd o O

With the DPC, a generic rule corresponds to a set of non-ambig ordinary rules. The GRC
eliminates a few obvious cases of rule overlaps. Analogotas[11](Proposition 3.3.3), we can now
show uniform confluence of the lightweight calculus with gea rules.

Proposition 3.3.2(Uniform Confluence). Let— be the reduction relation induced by the four reduc-

tion rules and a set of interaction rules (including genetites) R that satisfies the GRC. I satisfies
the DPC, then— satisfies the uniform confluence property.

Proof (sketch).The main argument is similar to the one used in Propositidt2 all critical pairs can

o o ) . | b
be joined in one step. Generic interaction rules do not atfee reduction rules— , <% =8

Propositior 3.3]1 shows that the generic rule constrairgemt any ambiguity that might arise from the
application of the ™ rule. O

3.4 Variadic rules for the lightweight calculus

We now extend the lightweight calculus with variadic rulesst, we define additional symbols to denote
variadic agents and rules. We exploit the fact that all pofta variadic agent are handled in the same,
uniformway when applying a rule.

Clearly, the lightweight calculus needs to capture theufeadf arbitrary arity (visualized by the dot
notation) in a precise way. Intuitively, arbitrary arityilsodown to two mechanisms, as can be seen in
the variadic rules fod /¢ in Exampld 3.1.1:

1. A single agent may have arbitrarily many ports conneatéad like a in the LHS of both rules.
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2. A net may be connected to each of the arbitrarily many poeilting in arbitrarily many agents.
This can be seen in the RHS of theule, which contains one epsilon for each port.

Note that in case 2), the net connected to each port is the, s@méhe ports are handlechiformly.
These two aspects of variadic rules are captured in thenmwotbvariadic rangesandnames

Variadic Ranges denoted byx], [y],[Z],..., wherex,y,z are names. A variadic range corresponds to the
set of (arbitrarily many) ports of a variadic agent.

Variadic Names VN denoted by, y',Z, ... . X denotes an arbitrary single port of the variadic rapge
A variadic name may only appear in the RHS of a rule.

Variadic Rules VRare generic ruleg (Y) = ¢([X]) — © where® may contain:

e ordinary equations
e equations with variadic ranges
e eguations with variadic names

An equation in@ must not have a variadic range and a variadic name at the sa@e t

Intuitively, ranges denote the full set of ports of a vartadgent. Variadic names refer to a single port
of the variadic agent. All ports of a variadic agent are haddh the same way when applying a rule.
Therefore, an equation containing a variadic name spedifigs to treat each individual port of the
variadic range. As with regular names, variadic ranges amies may appear at most twice in a rule
RHS.

Variadic rules capture the two mechanisms mentioned atibeemanipulation of a single, arbitrary
port and the manipulation of the set of all ports. These twerajons are sufficient to provide the
expressive power of variadic rules in the graphical setting

The application of the!™; reduction rule gets a bit more complicated in the presenoceaddic
rules: we have to take the arity of the agent correspondintipeovaridiac agent into account when
replacing an equation.

Definition 3.4.1(Variadic Interaction ). A variadic interaction step is defined 6| a (ty) = B(U),4) LN
(]| @,4), wherea (2) = ¢([x]) — © € VR and@ is instantiated fron® as follows: (let arity3) =n)

e ift =y([x]) €O, thent=y(U) € ©@.
o ift = y(ly]) € ©@with y+#£x, then t=y(y1,...,¥n) € @

e t =sc O such thatt and s contain one or more variadic naneg x ... We then add n equations
ti=5,....,th=5t00": tj =5 (1 <i < n)equals t= s where all occurrences of a variadic name
X are replaced by u(wheret = uy, ..., u,) if the range[x] occurs in the LHS or by the name x
otherwise.

e equations without variadic ranges or names are adde@®'twithout change.
e all occurrences ofpin © are replaced by3 and all occurrences df byi,.

Informally, a variadic range if® is replaced byB3’s arguments if it occurs in the rule LHS: for
example,[X| is replaced bya in the above definition. Otherwise, the range is replaced fogsh names,
wheren = arity(8). An equation with a variadic name is copied @ n times: if a variadic name
corresponds to the variadic range in the LHS, it is replacgdre of B’s arguments in each copy.
Otherwise, it is replaced by one of the fresh names of theespanding variadic range: for example,
t =y isreplaced by = y,...,t = y,, where the nameg, .. .,y, are the result of instantiating the range

vl



Eugen Jiresch 19

Example 3.4.2.The variadic rule for deletion via the ageaitan be defined as follows:= ¢([x]) —
¢ = X. Applying the rule to the equation= A(u,v,t) yields{e = u,e = v,& =t}: the name x occurs in
the LHS (vialx]), hence e= X is instantiated three times for each of A’s argumentstu

Example 3.4.3.The variadic rule for duplication via the agedtcan be defined as followsi(d;, d;) =
o(x) — di=9(]y]), o= 9([2)), X =3(y,Z). Applying the rule to the equatiah= A(u,Vv,t) yields
{d1 =A(y1,Y2.¥3), b2 = A(21,22,23), U= 8(y1,21), V= 0(Y2, %), t = O(y3,23) }: replacing the RHS-only
variadic rangesy], (7 yields the fresh names y»,Ys, 7, 2, z3, which are used in the 3 instances of the
equation X=9(Y,Z).

These examples show that the textual definition of variadisris very concise. It clearly expresses
the semantics of variadic rules in the graphical setting Seampld_3.1]1). Variadic ranges and names
formalize the mechanics expressed by the graphical dotioota

3.5 \Variadic rules with non-uniform port handling

The main characteristic of variadic rules is that every wbré variadic agent is handled in the same
way, i.e., connected to the same agent or identical netss iShstrongly connected to the notion of
arbitrarily many ports, making them in a sense indistinigalide. For fixed generic agents, we can of
course distinguish between their ports and handle thenffereint ways during rule application.

Both of these aspects of generic rules can be combined irothe éf non-uniform port-handling
[11]. In addition to their arbitrarily many ports, variadigents may have a fixed, finite number of ports
which may be handled specifically, or non-uniformly. Suchagadic agent matches all agents with an
arity greater or equal to the number of fixed ports.

This feature translates well to the lightweight calculusanHling the fixed ports of the variadic
agent is expressed with ordinary equations. DefinitionIBithe previous subsection states that only
equations with variadic ranges or names are treated in aaspesy. Ordinary equations are handled
the same way as in the ordina#% rule. This means that the fixed ports are independent of thef se
arbitrarily many ports. As an example, we recall the rulesheMaybemonad from|[[11].

Example 3.5.1. The Maybe monad is used in Haskell to model exception handlinis defined as
follows:

data Maybe a = Just a | Nothing
(1) return = Just z
(2) (Just z) >>= f = f <
(3) Nothing >>= f = Nothing

In the lightweight calculus, the Maybe monad is expresseitidse rulesq is defined in Example_3.4):

Ret(r) = (X)) — {r=Jst(([x))} (1)
Jst(a) = >>=(b) — {a=Db} (2)
No= >>=(b) — {Aux=Db} (3a)
Aux= @(r,[x) — {e=X,No=r} (3b)
Aux=ret(r) — {No=r} (GRO)

The rules are labeled in correspondence to the lines of Heskéaybe monad definition. The (GRC)
rule is added to satisfy the generic rule constraint, eliatimg ambiguity between rules (1) and (3b). In
rule (3b), ¢ has both a variadic rangé&| and a single port r which is handled non-uniformly. Just like
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f in the Haskell definition, this rule accepts an arbitrannétion, including partially applied (curried)
functions, e.g.(+1).

Example 3.5.2. Consider a functiorp<ck, which picks the nth element of a list or returbisthing if
that element does not exist:

pick :: Int -> [a] -> Maybe a
pick n [] = Nothing
pick 0 (z:zs) = Just z
pick n (z:zs) = pick (n-1) zs

The corresponding interaction rules can be defined as fal{ve arguments are swapped for better
readability of the rules):

pick(r,n) = Nil — {r =No,e =n} (1)
pick(r,n) = Congx,xs) — {pickH(r,x,xs) = n} (2)
pickH(r,x,xs) =Z — {r =Jst(x),& = xs} (3)
pickH(r,x,xs) = S(n) — {pick(r,n) =xs & =x} (4)

Using the rules for thdlaybemonad from the previous example, we can evaluate the eiqmess
Nothing >>= (pick 0):
(r|No= >>=(f),f = pick(r,Z) ) ™ (r|Aux= f,f = pick(r,Z) ) ' (r | Aux= pick(r,Z) )
M rINo=re=2) % (r|No=r) % (No| )
We conclude this section with an example on how to use gendgs to model higher-order func-
tions. We describe the well-knowtep function, which is modeled in a similar way to the monadic
operator>>=.

Example 3.5.3. The functiormapis defined as follows:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (z:xzs) = (f z):(map f xs)

Using variadic rules with non-uniform port handling, we cdaefinemapin the lightweight calculus.
Since thef is deleted and duplicated in the definition above, we agagewmnd é agents.

mapr) = Nil — {mapN=r} (1)

mapr) =Conga,as) — {mapGa,as) =r} (2)

mapN= ¢(r,[x]) — {Nil =r,e =X} (3)
mapQa,as) = ¢(r,[x]) — {Congs;t) =r,¢(s ly]) =a ¢(t,[2) =u,

mapu) =asd(y,Z) =x)} (4)

4 Implementation

In this section, we discuss the ongoing implementation nége rules in the prototype languaigetq9],
which is based on the interaction nets calculus. We can shaotir implementation satisfies the generic
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rule constraints defined in Sectibn13.3. We will only desetie implementation of fixed generic rules,
as the implementation of variadic rules is still work in pregs.

inets consists of two components: tlieetslanguage and compiler, and the runtime system. The
inetslanguage is based on the interaction calculus, and is cethpal C code, which is executed by
the runtime system. The runtime holds data structures foragiag interaction rules as well as agents
and connections between them. For example, the interaaties for addition of natural numbers is
implemented by the following piece of code (We use the synfake inetslanguage, where equations
are denoted by< on the LHS, and by on the RHS):

Add(r, y) >< Z => r~z;
Add(r, y) >< S(x) => r~S(w), x~Add(w, y);

The implementation of generic rules allows us to define attgon net systems similar to the Maybe
monad in Example_3.5.1 (the keywoklY denotes a generic agent):

Return(r) >< ANY(x) => r~Just(ANY(x))

Bind (r) >< Just(x) => r~x;
Bind (r) >< Nothing => r~Aux;
Aux >< ANY(r) => r~Nothing;

For a complete and detailed descriptioniéts and its runtime, we refer to_[6]. Here, we will
concentrate on the extension of the matching function tpeumeneric rules.

4.1 Generic Rule Constraints

Individual interaction rules (both ordinary and generiog eepresented as C functions that take refer-
ences of the two agents of an active pair as arguments. Thasgdns replace an active pair by the
corresponding RHS net and connect it to the rest of the netrdingly. The runtime maintains a ta-
ble that maps a pair of agent symbols to an interaction ruletfon. This table also contains entries for
fixed generic rules, with a special symbol for generic ageh#sspecific arity. The following pseudocode
describes the matching and reduction function, wiggréenotes the generic agent of anity

void reduce(agentl, agent2) {
// is there an ordinary rule for the active pair?
rulePtr rule ruleTable[agentl] [agent2]

if (rulePtr == null) {
// is there a fized generic rule matching the pair?
bool success = reduceGeneric(agentl, agent2)

if (!success)
error ("no matching rule!")
}
else {
rule (agentl, agent2) //apply the ordinary rule
}

bool reduceGeneric(agentl, agent2) {
//is there a fized generic rule with matching arity?
n = arity(agentl)
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m = arity(agent?2)
rulePtr rule = ruleTable[@][agent2]

if (rule == 0) {
rule = ruleTablel[@y] [agent1]
if (rule == 0)

return false // no matching generic rule
}
// apply the generic rule
rule (agentl, agent2)
return true

The Generic Rule Constraint (GRC) is a property of the sentdraction rules, and can thus be
verified at compile time. We check each generic rule for agsiwith already compiled generic rules,
as shown by the following pseudocode:

void checkGRC (Rule r) {
if (r is a gemneric rule) {

let A be the ordinary agent of r’s LHS

let @n be the generic agent of r’'s LHS

n = arity(A)

if (a generic rule with LHS B >< ¢, exists
and arity(B) = m ) {
// we have two overlapping generic rules
if (no ordinary rule with LHS A >< B exists)

error ("generic rule overlap!")
}

add r to the existing rules

Clearly, the implementation needs to satisfy the genet& canstraints of Sectidn 3.3. Otherwise,
multiple generic rules may overlap, resulting in non-daiaersm in the evaluation of the program. It is
straightforward to see that the pseudocode above satiséeageheric rule constraints:

Proposition 4.1.1. The implementation of generic interaction rulesnetssatisfies the DPC and GRC.

Proof. Consider the functioreduce. The application of a generic rule via

reduceGeneric is only attempted if no ordinary interaction rule exists. nde, the DPC is satisfied.
For the GRC, considetheckGRC: if the generic rule currently being checked overlaps wigir@vious
generic rule and no matching ordinary rule exists (i.e.GIRC is violated), an error is reported. [

Implementation of Variadic Rules The current version ahetsalso supports variadic rules. During
compilation, a variadic rule is translated into a set of figederic rules, one for each possible arity. While
variadic rules are theoretically defined for agents withteahily large arities, we can easily identify the
maximum arityn of all agents in the current program. Hence, we onlyafided versions of the variadic
rule. After this step, the set of rules only contains fixedegenrules, which are handled as described
above.
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5 Discussion

5.1 Related Work

The textual calculus for interaction nets was initially defi in [3]. We based our extensions on the
improvedlightweightcalculus, which was introduced in/[7]. A different approdothigher-order com-
putation in the interaction calculus can be found_in [4].

Besidednets several implementations of interaction nets evaluateist.eExamples aramineLight
[7] or INblobs [1]. To the best of our knowledge, none of thegstems support generic interaction rules.
Another recent tool is PORGY[2], which can be used to anahys® evaluate interaction net systems
with a focus on evaluation strategies.

The extension of interaction nets to a practically usabbg@mmming language has been the topic of
several publications. For example, in[17] the authors psepa way to represent higher-order recursive
functions likefold or unfold Nested patternsan extension to allow more complex interaction rules, have
been dealt with in [5,18]. They combine well with generic sile

5.2 Conclusion and Further Work

In this paper, we extended the interaction nets calculuselmgigc rules. Our previous work on generic
rules [11] did not consider this textual calculus. Instead,defined generic rules and their constraints
(including a basic type system) in the graphical settinge &ktension of the lightweight calculus pro-
vides an alternative precise semantics to the graphicatinatof generic interaction rules. This is par-
ticularly important for variadic rules, which use a dot riimta to express an arbitrary number of ports.
Our approach using variadic names and ranges is conciseratidgly formulates the mechanics of the
dot notation of the graphical rewrite rules.

In addition, we discussed the ongoing implementation oegenules ininets This implementation
satisfies the generic rule constraints DPC and GRC and heaserpes uniform confluence.

Generic rules allow us to conveniently express higher+ofalections. An example can be found in
[10], where an interaction nets encodingwédipis given. Generic agents assume a role similar to function
variables in functional programming. Hence the definitibhigher-order functions via interaction rules
closely mimics functional programs without the need forletdambda and function application agents.
This brings interaction nets closer to a practically usgégramming language.

A major motivation for formally dealing with generic rule®rmes from our own previous work
[10,[11], where we used generic rules to model side effecistémaction nets via monads. As part of
future work, we plan to define an abstract, unified interfacerfonads, similar to type classes in Haskell.
The agent archetyp@pproach of[[1/7] may be a possible direction to achieve tinisaddition, we will
continue to contribute tmets Moreover, we are currently investigating an implementatf interaction
nets on parallel hardware (GPUS).
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