Higher-order port-graph rewriting

Maribel Fernandez Sébastien Maulat
King’s College London Ecole Normale Supérieure de Lyon
Maribel.Fernandez@kcl.ac.uk Sebastien.Maulat@ens-lyon.fr

The biologically inspired framework of port-graphs hasreaccessfully used to specify complex
systems. It is the basis of the PORGY modelling tool. To faté the specification of proof nor-

malisation procedures via graph rewriting, in this paperagd higher-order features to the original
port-graph syntax, along with a generalised notion of graphphism. We provide a matching algo-
rithm which enables to implement higher-order port-graptriting in PORGY, thus one can visually
study the dynamics of the systems modelled. We illustraexpressive power of higher-order port-
graphs with examples taken from proof-net reduction system

1 Introduction

Rewriting systemfl5] are used to specify and study computational procesdese the execution of a
program is described as a sequence of transformation steggntactic objects. For instance, term
rewriting [B], objects are abstract syntax trees, and their rewritiogsists of replacing subtrees. In
the functional paradigm, representing a program as a teablesy, amongst other things, to specify
evaluation strategies, and to prove properties of comipatsuch as termination.

Graphical formalisms are used in various fields of comput&nse, andyraph rewriting provides
visual support for studying the dynamics of complex strregusuch as proofs, programs or biological
systems. Graph rewriting rules describe graph transfoomsita rewriting step consists of replacing an
instance of the left-hand side with the right-hand side.

Port-graphsl[2}/4] are a specific class of labelled graphs introduced eabatract representation of
proteins, and used to model biochemical interactions amghamous systems. Port-graphs have also
been used to study and visualise the normalisation of pretd fi]. Port-graph rewriting has been
implemented in the PORGY environment [3].

Although the original notion of port-graphs provides a matgraphical representation of proofs en-
compassing proof nets and interaction nets, as detailed],irtife associated rewriting system suffers
from two drawbacks. First, the cut-elimination procedumarot be expressed directly, and its encoding
involves a huge enumeration of cases. Second, the duplicatid erasure of subproofs during normali-
sation, performed locally, leads to additional rules thiatraot directly linked with proof theory.

Contribution. We address the problems mentioned above, by defining ansioteaf the original
port-graph rewriting notion with higher-order featuretielextension provides further functionalities to
program with port-graph rewriting rules, so that the enogddf the proof normalisation procedure in
intuitionistic logic can be expressed in a simple and natueg. We illustrate this extension through ex-
amples. A matching algorithm is provided, enabling the enattion of the associated rewriting relation.

In order to focus on this extension, we chose to base our wor& estriction of the preexisting
(first-order) port-graphs. Nevertheless, we keep a suffilgi@xpressive part of the port-graph syntax to
represent proofs as port-graphs as described in [1], ardlptesthat this extension can be generalised
to include all the features of the original syntax defined®].

S.Alves and I. Mackie (Eds.): Second International Worlsho
on Linearity 2012 (LINEARITY'12).
EPTCS 101, 2012, pp. 25437, ¢0i:10.4204/EPTCS.101.3

http://dx.doi.org/10.4204/EPTCS.101.3

26 Higher-order port-graph rewriting

Related work. Higher-order extensions have been defined for more restrformalisms: Term rewrit-
ing has been extended with higher-order features, with &isms such a€ombinatory Reduction Sys-
temg[11] andNominal Rewriting Systenfi@] amongst others. Higher-order graph rewriting theohiage
been defined in [10,13] via textual calculi instead of graphformalisms. The examples that motivate
the higher-order extension of port-graphs presented sngdper come from the graphical representation
of proofs in intuitionistic logic given in[[1]. Other graptal formalisms for the representation of proofs
have been proposed in [6/ 7]14] amongst others.

Organisation of the article. In Sectiorf 2 we present some preliminary notions. In Se@iae define
the syntax of higher-order port-graphs, and in Sedfion 4 e the associated rewriting calculus and
apply it to some example port-graphs representing prooéspidvide a matching algorithm in Sectigh 5
and discuss properties in Sect[dn 6. Sediibn 7 concludes.

2 Preliminaries and motivation

Graphs from proofs. Structured formalisms such as graphs can be used to reppeeefs in a simple
and concise way. For instance, a graph based formalism @jesiey Lafont’s interaction net$ [12] is
introduced in[[1], which enables to represent proofs andgsses over proofs in a natural way. Namely,
proof derivations from intuitionistic logic, expressediatural deduction style, are inductively translated
into port-graphs so that the normalisation of a proof is visually expressea &tep by step process
consisting in applying transformation rules on port-gph

Port-graphs. The computational model of port-graphs was introduced taehdiochemical pro-
cesses, for example, protein interactions where two pretednnect via sites of chemical compatibility.
Visually, a port-graph is a graph where edges are attacheodes at points callggorts Below we give

a short and informal introduction to port graphs (seel[2o4]fiore details and examples).

Nodes and ports are labelled withmesand the association of ports to nodes is subject to a typing
via ap-signature that associates a finite set of port names to a node namsesignature can be extended
with variable nodes, that might have variable port-names.edge((v, p), (V,p’)) connects the node
to the nodev via the portsp and p’. A port in a node might be associated to a state (for instance,
active/inactive or principal/auxiliary) and similarlyodes can have associated properties (like colour
or shape that are used for visualisation purposes). A paglgcan be considered as a labelled graph
where ports are represented by nodes, and the nodes areoanigoted to their ports. As a consequence,
expressivity results and properties of labelled graphsbeaimanslated to port graphs.

Port-graph rewriting. Rules are pairs of port-graphs describing transformatidntuitively, a rule
consists of two port-graphs and R and a mapping between their ports, given by ithie interface
which is graphically represented in an arrow node separatendR. A rule specifies how to transform
an occurrence of into R inside a given port-graph. The arrow node has the followingracteristics:
for each portpin L, to which corresponds a non-empty set of pduts, ..., pn} in R, the arrow node has
a unique port and the incident directed edggsr) and(r, p;), for alli =1,...,n; all ports fromL that
are deleted iR are connected to thaack holeport of the arrow node.

The application of a rule for port-graphs is inspired by ttendard definition for graphs, using the
“double pushout approach” (see€ [8]), and relies on a dedimitif matching. In this definition, applying
aruleL — Ron a graphG is performed in four steps:

M. Fernandez and S. Maulat 27

e find a matchingnfrom L to G
e define the context grapB~ = G\m(L)
e addm(R) to G~

e reconnecm(R) andG™ as specified by the rule’s interface

3 Higher-order port-graphs

In this section we introduce higher-order port-graphs.otighout the paper we use the following con-
ventions: ordered pairs are writtéa b); unordered pairs are writtefa, b}, so{a,b} = {b,a}.

3.1 Typing

The formal definition of higher-order port-graph relies be tissociation of port names to node names
via ap-signature

Definition 1 (p-signature) A p-signatureis a tuple of disjoint sets

together with two functions arity and Interface such that:
e (O 4,Z) are the sets of constant and variable first-order node names
e 24y is the set of variable higher-order node names

e (Ox, Z5) are the sets of constant and variable port names

arity : 0y UZ 4 U Z» — N associates a number of ports to a node name

Interface associates the names of its ports to any node name:
— VN e O 4, Interfacg, : [1,arity(N)] i, O
- VX e Z y, Interface, : [1,arity(X)] i, OpUZs
— VX € 2, Interface, : [1,arity(X)] % 27,

Note that the interface of a constant first-order node naradiss of pairwise different constant port
names. The interface of a variable first-order node name roatain variables, and the interface of a
higher-order node name is a list of variables.

In our examples, the following symbols will be used:

a,b,c,...€c Uy AB.C,...c [y
X,Y,2Z,... € X UV,W,...e Z 4 X,9,3,...€ Zy

As shown in Figuréll, a signature can be represented by eittadnie associating to any node name
its arity and the list of its ports’ names, or by a graph repnéiag disconnected nodes with names and
port names. Even if a node is disconnected, the locatiors gfdtts are indicated by “dangling edges”.
As the port names are unique, one can forget to represenhytsicpl identifiers of ports on a node.

28 Higher-order port-graph rewriting

st nd a' b‘
node arity 1% port 2"% port @
name name name
A 1 a
B 1 b

Y z
X 1 X 89
X 2 y z X

Figure 1: A simplep-signature represented in two different ways.

We illustrate the idea with an example from logic.

Example 1 The port-graph representation of proofs given [in [1] relies the signature presented in
Figure[2: there are constant node names representing axiamakening and contraction rules, and the
introduction and elimination rules for the connectiveshd togic. The node name s is used to represent
the scope of » (box).

Figure 2: Ap-signature to represent proofs as port-graphs.

3.2 Syntax

The definition of port-graphs (Definitidd 2) has been desilgieehighlight the differences between first-
order and higher-order nodes. The “hat” notation (asﬁﬁt"‘) is used to distinguish the higher-order
functions and entities from the first-order ones.

The setd/ andV provide unique identifiers for first and higher-order no@esl each node is labelled
by anamefrom a givenp-signature. First-order nodes have first-order names agitehiorder nodes
have higher-order names. The name of a node determinesriigenwof ports it has, which enables us to
identify them concretely by integers starting from 1. Thgnsiture then fixes the associated list of port
names, that has no repetition.

An edge connects two nodes via their ports. Each port ace¢ptest one edge, but this assumption
could be relaxed later — for example by considering a maximiahber of connections for each port,
depending on its name.

Definition 2 (Port graph) A labelled higher-order port-graplover the p-signatur@;;[is a tuple com-
posed of:

e V andV are finite sets of first-order and higher-order nodes, respely.

M. Fernandez and S. Maulat 29

e lV:V—0O,UZ andiv:V — Z are labelling functions associating first-order names tstfir
order nodes, and higher-order names to higher-order nodésese two functions fully determine

concrete properties of the nodes:
— degree V UV — N associates to every first-order or higher-order node its hanof ports,

which must coincide with the arity of its label:
Vv e V,degregv) = arity
Vo €V, degreév) = arity

V)
(v))
—weV, Ipy: [1,degreév)] — 0, U2 andVo €V, Ip, : [1,degredv)] — 2» associate
a port name to a port identifier:
v eV.Ipy = Interface,
Yo eV,Ip, = Interface

(lv
(Iv

e E is afinite set of undirected edges between ports:

{ ((v1,p1),(v2,p2)) | }
EC (Vi,pi) € (V x[1,degregvi)])
U(V x [1,degre€v;)])

and to simplify, we assume that each specific panp) occurs at most once in E (this is always
the case in interaction nets).

When using several port-graphs, indices will be used tatifyethe corresponding sets and functions.
For instance, the tuplé\/<3,\7@,...) is associated to the port-gra@ The set of port-graphs over the
p-signature; is denoted by# (07) (or simply% when there is no ambiguity).

Intuitionistic proofs in natural deduction can be encodsdi@st-order port-graphs [1]. The proof
of a sequent + P is encoded as a port-graph witlii# + 1 free ports corresponding to the premisses
and conclusion formulas. Each application of a rule is regméed using nodes from the signature in
Figure[2. For instance, the port-graph representing thenainference ruleA - A) is a simple node
with two ports; Figuré13 shows a proof bfA = B = A (nodes and port identifiers are usually omitted
when representing graphically a port-graph). Details isf @mcoding are presented n [1].

Figure 3: A port-graph representing a prdof [1].

30 Higher-order port-graph rewriting

4 Matching and rewriting

4.1 Sub-graph and Equality

Two notions, which are trivial instances of morphisms, ateoduced below. Intuitively, @ort sub-
graphis a subset of nodes, along with a subset of edges connelsting fTwo port-graphs are considered
equalwhen they are identical up to renaming of the concrete itlergi

Definition 3 (Port sub-graph) Given two port-graphs G and H over the same p-signaﬁl@ié, Gisa
port sub-graphof H if:

Ve € W4 Vo € Vi
VG = IVH v lvg = v, Ve
Ec C En

Note that sinceH is typed, this definition implieslegreg, = degreq;”

Vel @S well asvy, Ipgy =
IpH,y andvo,lpg, = Ipy -

Definition 4 (Equality) Two port-graphs G and H over the same signature gmtactically equalia
(tr,fr) when tr andir are two bijections:

i i
(tr : Vg —”>VH,tr Vo —”>VH)
such that:
e lvy =lvg otrt andR/H = R/G Ot?il

{(tr_l(vl)v pl)v (tr_l(v2)> pZ)} S EG
o En =< {(v1,p1), (Va, p2)} | V{(EF *(va), 1), (tr1(v2), p2)} € Eg
V{(EF ™ (va), p1), (B (v2), p2)} € Ea

Again, inH, the preservation of node names implies a preservationedfghof ports for each node.

A full port sub-graphis a sub-graph containing all edges between the selectessnadl full port
sub-graphG of H can be seen as a subset of noded pivith the same names and port lists, and with all
the edges that link them to each other. Checking this prgedurely syntactic, so easy to implement.

4.2 Matching

A definition of matching can now be given, using a notion of pism. Intuitively, a morphism relates
the elements of two port-grapl@andH in instantiatingG in a sub-graph oH. This is performed by
mapping first-order nodes to first-order nodes, higherfondeles to port-graphs, and edges to edges,
while preserving the interface and connections betweets por

A definition of interfacehas to be given for a port-graph, in order to formalise thessgyvation
constraints. The interface of a port-graph is the set ofhallftee ports it has. As in the case of simple
nodes, the interface represents the points through whaanitonnect to the outside.

Definition 5 (Interface of a port-graph) The interface Interfacg(G) of a port-graph G is the set of its
ports (v, p) that are not connected (i.e., that do not appear i) E

M. Fernandez and S. Maulat 31

The definition of morphism should be as restrictive as ptssibwithout hampering the expressivity
regarding proofs — in order to decrease the number of marghizetween two port-graphs. The aim is
to help preventing a combinatorial explosion, thus enghdisimple and efficient implementation.

Regarding its first-order part, a morphism instantiateenames each variable node with a function
o . The name of a first-order node is preserved if it is constamd, translated by 4 if it is variable.
Due to typing, an image node has the same number of ports astésedent, and these ports are in a
one-to-one correspondence that preserves constant podsnaA higher-order node is mapped to a
sub-graph oH. The interface ob is bijectively mapped to the interface of its image. Finglhese two
mappings provide an injective translation of ports, sueth sources and targets of edges are preserved.

Definition 6 (Morphism) Given two port-graphs G and H over the same p-signaﬁl@%, a (higher-
order) port-graph morphismis a triple of functions

f=(fv:Ve—Vu,fg:Ve—9(07),fe:Ec— En)

relating thepatternG and H, and satisfying the following properties:

e Instantiation of first-order variables
there exists a mapping for first-order variable nodes:

Oy . Zy—04y,UZ 4

such that:
— constant node names are preserved, angd instantiates or renames first-order variable

nodes:
Iva(v if lvg(v) e O
W eV, v (fu(v)) = { e i Ive(v) € 0y
oy (lvg(v)) if lvg(v) e Z 4
— 0y specifies and renames ports:

vXe Zy, arity(o_y (X)) = arity(X)
A Vi< p<arty(X), Interfacg(p) =ne Uy = Interface, , (x))(p) =n

e Instantiation of higher-order variables
for each higher-order variablé& € 27, there exists

— aport-graph & = (Vx,Vx,IVx,...,Ex) over

— a bijection tr_portsy : [1,arity(X)] o, InterfaceJx)
such that for allo € Vg, let X = Ivg(v):

— f;(v) is a full port sub-graph of H, and syntactically equal te for (tr,fr)
we denote by tports, the bijective mapping of higher-order interface inducedttyports, and
(tr,fr) as follows:

— tr_ports, : [1,degreg(v)] LN Interface, (f;(v))

- Vpe Hl,degre%(U)H,

tr=1(v),i) iftr_port = (V,i) with V € V,
tr_ports, (p) — (tr==(V),i) iftr_portsy(p) = (V,i) wi €Ve

(F(0'),i) iftr_ports,(p) = (v/,i) with v’ € Vg

32 Higher-order port-graph rewriting

e Injection
all the nodes in the images are disjoint:
{ fv(v) # (V)
WV, Vo £ v, - MW gfg)
(Vitg (o) YUVt 0) N Vit 00) UV g 0))) = ©
e Edge preservation
sources and targets of edges are preserved:

Ve={(vi,p1),(V2,P2)} € Eq, fe(e) = {(Vy, p,), (Vs, Ph)}
whereVi, (v, pi) = (fv(vi), pi) ff Vi 6\16
tr_portS/i(pi) if Vi EVG

If there is a higher-order port-graph morphism between G ahde say that theynatch

We now give some examples to illustrate this definition. Fédgd shows four pattern port-graphs
L1,...,L4 and a central port-grapB.

e There is no morphism frorh; to G: By preservation of constant node names, the rodeL;
would be mapped to the nodeof G. Then, by preservation of the edges sources and targets, the
image of the edge ih; would have an endpoint at the pamtof sin G. By preservation of source
and targets again, the nodevould be mapped to the node®,. But as they have different names
and numbers of ports, this contradicts the definition.

e There is no morphism frorh, to G either. Otherwise, by instantiation of first-order vared)lthe
two physical nodes would be mapped to nodes with the same.n@mall nodes have different
names inG, the two image nodes would be physically identical, whichtcadicts the injection
property of the morphism.

e L3 matchesG. By conservation of the number of ports, a morphism friogrio G maps the two
nodes tas and=-"<,.

e Similarly, a morphism betweeln, andG mapsX andY to sand=-¢,. Note that the port variables
are local to a node (more precisely, they are local to a nodeeraut global to all the physical
nodes that share this name).

4.3 Rewriting

A set of port-graph rewriting rules induces a rewriting tiela, using the definition of morphism. We
show in Sectiof]6 that higher-order variables are more siw@ than first-order ones (they allow us to
express families of rules in a more concise way).

The notion of morphism induces a definition of matching: pattern port-graphL matchesthe
subjectport-graphG if there exists a morphismmfrom L to G. This is denoted bl <« G.

The same operations are performed to defimevaite stepas in the case of graph rewriting (see
Sectior[2). The rule interface (represented graphicalhénarrow node) specifies the correspondence
between ports in the interface of the left-hand side andsporthe interface of the right-hand side. Once
the instantiation (via a morphism) of the left hand sidd. of a rule has been replaced @ by the
corresponding right-hand sid® the original edges betwe&\m(L) andm(L) are transferred, using the

M. Fernandez and S. Maulat 33

Ll : L2
y
z X
p
%p
X
out
L3 La
y
X
p p

Figure 4: A target port-grapt with four patterns port-grapHhs, ..., La.

information given in the rule interface, to edges fr@ym(L) to m(R). This defines a rewriting system
for higher-order port-graphs.

Several subgraph®(L) may exist inG (leading to different rewriting steps); they are computsed a
solutions of anatchingproblem fromL to (a subgraph ofs. If there is no such injective morphism, we
say thatG is irreducibleby L = R.

Eachrule applicationis a rewriting step and derivation or computation, is a sequence of rewriting
steps. A port graph on which no rule is applicable ismormal form Rewriting is intrinsically non-
deterministic since it may be possible to rewrite severbysaphs of a port graph with different rules or
use the same one at different places, possibly obtainifgreliit results.

5 Automation

In this section we give an algorithm to compute the set of adigible rewriting steps from a port-graph
G, given a set of higher-order rewrite rulé& The extension of the port-graph syntax with higher-order
features introduces a potential combinatorial explositienvenumerating all possible rule applications
on a given port-graph. This is due to the fact that higheeox@riables are matched to sub-graphs. The
definition of morphism includes conditions that limit thigodosion, especially when dealing with proof
port-graphs.

The algorithm is based on the first-order algorithm impleteérin PORGY [[16], for the original
definition of port-graphs. Intuitively, it matches the eddest, identifying the source and target nodes
and ports inG andH. All along the execution of the algorithm, a context is uedatthat stores some
useful information. The context is seen abstractly as atapl

34 Higher-order port-graph rewriting

e a partial mapping of first-order noddmage: Vg < V4
e a partial mapping of higher-order nodes to sets of notieage: Vg — 22(Viy UVh)
e a state for each node H that represents its availability to be matched

For instance, adding a node to an image means mapping théstadid image image and putting its
state to “hidden” so that it cannot be reused in another sddege.

The edge matching is performed using a “first-order nodets fiomstant names first” priority. This
way, the algorithm first provides an image for all the firster nodes. Some ports in the images of
higher-order nodes are also identified, and used as stadingto match the interface of the correspond-
ing higher-order variables. The algorithm then maps theesdigtween the other ports of higher-order
nodes, and finally maps the free ports of higher-order naglesttts inH. In order to enumerate all the
solutions, some nodes are added to this image, and to esurié defines a proper morphism between
G andH, check that this image has exactly the same interface aotle n

More details about the two main phases of the algorithm (iméte edges and extend the image sets
of higher-order nodes) are given in Algoritimh 1.

Algorithm 1 Matching algorithm.
e match the edges between first-order nodes
and update their images accordingly in the context
e map all the disconnected first-order nodes
e match the edges between first-order nodes and higher-oodesn
setting the first-order nodes’ images and adding one nodeetdigher-order nodes’ images in the
context
e match the edges between higher-order variables
updating the context accordingly
e add all the connected nodes to the higher-order images
e check the interface of the higher-order images

Note that once all edges are matched in Algorifim 1, all brster nodes, and all higher-order’s
interface ports are mapped. When every higher—order nosgléth@onnected interface mapped, the
images of higher-order nodes are extended to greater ntglel$® aim is to enumerate all the possible
solutions, that is all the tuples of port-graphg-bthat constitute valid images for the higher-order nodes
in G. For this, we find all the possible solutions for the imageheffirst higher-order node, and for each
of these solutions, all the solutions for the second ond étedisjoint with the first ones), and sdbon

For the current definition (where ports of higher-order reodee variables only), the last check is
reduced to count the number of free ports in the sub-grajge (freaning not linked to another port in
the same sub-graph). This can be done dynamically, mainggavariable representing the number of
free ports in the image of each higher-order variable. laisyeto extend the interface of higher-order
variables to constant and variable node names, and a silyiteamic updating of a list of ports can be
performed to achieve the same result then.

We perform some dynamic checking along the expansion ofiffieehorder images, to try to prevent
the solutions from getting irreversibly wrong (for instendncluding nodes that can obviously not be
included in higher-order images).

1Even if it seems inefficient, there is no better algorithmtia tase where the subject graph has no edges, and all higher-
order variables have no interface.

M. Fernandez and S. Maulat 35

6 Properties

Relating higher-order and first-order port-graphs. The higher-order port-graphs defined in this pa-
per constitute a proper extension of first-order ones. Thistion is reflected by the notation similarities
between first- and higher-order, and can be expressed matiicalty as follows.

Theorem 1 (Simulation by higher-order variables) The solution of the matching problem between two
port-graphs G and H is a subset of the solutions of the matchimblem of Gby H, where Gceonsists

of the graph G where every first-order variable node has beptaced by a higher-order one with the
same number of ports. More precisely, if for every first-ondgriable X;, we introduce a higher-order
variable X; with same interface, using the higher-order variabdeinstead of; preserves solutions.

The proof is omitted, but we remark that the syntax and marphiave been specifically developed
with this result in mind.

Specification of proof net and interaction net reductions. We briefly present some examples inspired
by [1]], where the original notion of port-graph is used toresent intuitionistic proofs graphically, and

to study their normalisation as a rewriting process. In,féwoe first-order port-graphs used id [1] are
generalised interaction nets, as indicates the preserménefpal ports.

Figure[® gives an example of a higher-order patigralong with a subject grap8’. The pattern
corresponds to the intuitive formulation of a redex in the@imination procedure (eliminating an intro-
duction of=- followed by its elimination). It is expressed directly witfie syntax defined in Sectigh 3.
The higher-order variabl& represents a proof. Note thatn [1], this single rule wadiiiply expanded
into a large family of first-order rules to fit the first-ordgmnsax. Although in interaction nets axioms are
represented using only edges, here axioms are explicihgsented as nodes. In this way, a higher-order
variable with two ports can be mapped to an axiom using themrag algorithm.

Figure 5: Higher-order pattern and target port-graphs.

36 Higher-order port-graph rewriting

7 Conclusion

We have described an extension of the port-graph rewrititigpn from [2[4] with higher-order features,
designed to facilitate the modelling of proof normalisatfirocedures as graph rewriting system.

This extension does not provide more computational powat raphs are already Turing complete)
but if we see port graphs as a specification or modelling thel extended language is more expressive
in that it allows us more concise, high-level definitions.

Properties of higher-order port-graph rewriting, such @flaence and termination, have not been
studied yet. This will be the subject of future work.

References

[1] Sandra Alves, Maribel Fernandez, and lan Mackie. A neappical calculus of proofs. In Rachid Echahed,
editor, TERMGRAPHvolume 48 ofEPTCS pages 69-84, 2011. doi:10.4204/EPTCS.48.8

[2] Oana Andrei. A Rewriting Calculus for Graphs: Applications to BiologycaAutonomous System&hD
thesis, Institut National Polytechnique de Lorraine, Nober 2008.

[3] Oana Andrei, Maribel Fernandez, Hélene Kirchner,y@Qdelancon, Olivier Namet, and Bruno Pinaud.
PORGY: Strategy-Driven Interactive Transformation of @ra. INTERMGRAPH volume 48 ofEPTCS
pages 54-68, 2011. doi:10.4204/EPTCS.48.8

[4] Oana Andrei and Heélene Kirchner. A higher-order gragalficulus for autonomic computing. In Marina
Lipshteyn, Vadim E. Levit, and Ross M. Mcconnell, editdgaph Theory, Computational Intelligence and
Thought pages 15-26. Springer-Verlag, Berlin, Heidelberg, 20@210.1007/978-3-642-020292

[5] Franz Baader and Tobias Nipkow.Term rewriting and all that. Cambridge University Press, 1998.
doi{10.1017/CB09781139172752

[6] Samuel R. Buss. The undecidability of k-provabiliynnals of Pure and Applied LogiB3(1):75-102,1991.
doi{10.1016/0168-0072(91)90059-U

[7] Alessandra Carbone. A new mapping between combindt@raofs and sequent calculus proofs
read out from logical flow graphs. Information and Computatign 208(5):500-509, 2010.
doi{10.1016/}.ic.2009.01.007

[8] Andrea Corradini, Ugo Montanari, Francesca Rossi, iattEhrig, Reiko Heckel, and Michael Lowe. Alge-
braic approaches to graph transformation - part i: Basicepts and double pushout approach-Hamdbook
of Graph Grammars and Computing by Graph Transformatiomdyrivie 1: Foundationspages 163—-246,
1997.

[9] Maribel Fernandez, Murdoch Gabbay, and lan Mackie. hatrewriting systems. In Eugenio Moggi and
David Scott Warren, editor®PDP, pages 108—-119. ACM, 2004. d0i:10.1145/1013963.1013978

[10] Maribel Fernandez, lan Mackie, and Jorge Sousa PiAtbigher-order calculus for graph transformation.
Electr. Notes Theor. Comput. S¢i2(1):45-58, 2007. d6i:10.1016/j.entcs.2002.09.005

[11] Jan Willem Klop, Vincent van Oostrom, and Femke van Rs@donk. Combinatory reduction systems: Intro-
duction and surveyTheor. Comput. Sgi121(1&2):279-308, 1993. dbi:10.1016/0304-3975(93%00

[12] Yves Lafont. Interaction nets. IROPL, pages 95-108, 1990. coi:10.1145/96709.95718

[13] Cosimo Laneve. Optimality and concurrency in intei@ettsystems, 1993. PhD thesis, Dipartmento di
Informatica, Universita degli Studi di Pisa.

[14] Anjolina G. De Oliveira. Proofs from a geometric persfive, 2001. PhD thesis, Universidade Federal de
Pernambuco.

http://dx.doi.org/10.4204/EPTCS.48.8
http://dx.doi.org/10.4204/EPTCS.48.8
http://dx.doi.org/10.1007/978-3-642-02029-2_2
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1016/0168-0072(91)90059-U
http://dx.doi.org/10.1016/j.ic.2009.01.007
http://dx.doi.org/10.1145/1013963.1013978
http://dx.doi.org/10.1016/j.entcs.2002.09.005
http://dx.doi.org/10.1016/0304-3975(93)90091-7
http://dx.doi.org/10.1145/96709.96718

M. Fernandez and S. Maulat 37

[15] Detlef Plump.Handbook of graph grammars and computing by graph transétion, volume 2: applica-
tions, languages, and tools, chapter 1: term graph rewritWorld Scientific Publishing Co., Inc., River
Edge, NJ, USA, 1999.

[16] PORGY team. Porgy: technical documentation, 2011.ilalsée from the PORGY webpage.

	1 Introduction
	2 Preliminaries and motivation
	3 Higher-order port-graphs
	3.1 Typing
	3.2 Syntax

	4 Matching and rewriting
	4.1 Sub-graph and Equality
	4.2 Matching
	4.3 Rewriting

	5 Automation
	6 Properties
	7 Conclusion

