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The biologically inspired framework of port-graphs has been successfully used to specify complex
systems. It is the basis of the PORGY modelling tool. To facilitate the specification of proof nor-
malisation procedures via graph rewriting, in this paper weadd higher-order features to the original
port-graph syntax, along with a generalised notion of graphmorphism. We provide a matching algo-
rithm which enables to implement higher-order port-graph rewriting in PORGY, thus one can visually
study the dynamics of the systems modelled. We illustrate the expressive power of higher-order port-
graphs with examples taken from proof-net reduction systems.

1 Introduction

Rewriting systems[15] are used to specify and study computational processes,where the execution of a
program is described as a sequence of transformation steps on syntactic objects. For instance, interm
rewriting [5], objects are abstract syntax trees, and their rewritingconsists of replacing subtrees. In
the functional paradigm, representing a program as a term enables, amongst other things, to specify
evaluation strategies, and to prove properties of computations, such as termination.

Graphical formalisms are used in various fields of computer science, andgraph rewritingprovides
visual support for studying the dynamics of complex structures, such as proofs, programs or biological
systems. Graph rewriting rules describe graph transformations; a rewriting step consists of replacing an
instance of the left-hand side with the right-hand side.

Port-graphs[2, 4] are a specific class of labelled graphs introduced as anabstract representation of
proteins, and used to model biochemical interactions and autonomous systems. Port-graphs have also
been used to study and visualise the normalisation of proof nets [1]. Port-graph rewriting has been
implemented in the PORGY environment [3].

Although the original notion of port-graphs provides a natural graphical representation of proofs en-
compassing proof nets and interaction nets, as detailed in [1], the associated rewriting system suffers
from two drawbacks. First, the cut-elimination procedure cannot be expressed directly, and its encoding
involves a huge enumeration of cases. Second, the duplication and erasure of subproofs during normali-
sation, performed locally, leads to additional rules that are not directly linked with proof theory.

Contribution. We address the problems mentioned above, by defining an extension of the original
port-graph rewriting notion with higher-order features. The extension provides further functionalities to
program with port-graph rewriting rules, so that the encoding of the proof normalisation procedure in
intuitionistic logic can be expressed in a simple and natural way. We illustrate this extension through ex-
amples. A matching algorithm is provided, enabling the automation of the associated rewriting relation.

In order to focus on this extension, we chose to base our work on a restriction of the preexisting
(first-order) port-graphs. Nevertheless, we keep a sufficiently expressive part of the port-graph syntax to
represent proofs as port-graphs as described in [1], and postulate that this extension can be generalised
to include all the features of the original syntax defined in [2,4].

http://dx.doi.org/10.4204/EPTCS.101.3
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Related work. Higher-order extensions have been defined for more restricted formalisms: Term rewrit-
ing has been extended with higher-order features, with formalisms such asCombinatory Reduction Sys-
tems[11] andNominal Rewriting Systems[9] amongst others. Higher-order graph rewriting theorieshave
been defined in [10, 13] via textual calculi instead of graphical formalisms. The examples that motivate
the higher-order extension of port-graphs presented in this paper come from the graphical representation
of proofs in intuitionistic logic given in [1]. Other graphical formalisms for the representation of proofs
have been proposed in [6,7,14] amongst others.

Organisation of the article. In Section 2 we present some preliminary notions. In Section3 we define
the syntax of higher-order port-graphs, and in Section 4 we give the associated rewriting calculus and
apply it to some example port-graphs representing proofs. We provide a matching algorithm in Section 5
and discuss properties in Section 6. Section 7 concludes.

2 Preliminaries and motivation

Graphs from proofs. Structured formalisms such as graphs can be used to represent proofs in a simple
and concise way. For instance, a graph based formalism generalising Lafont’s interaction nets [12] is
introduced in [1], which enables to represent proofs and processes over proofs in a natural way. Namely,
proof derivations from intuitionistic logic, expressed innatural deduction style, are inductively translated
into port-graphs, so that the normalisation of a proof is visually expressed as a step by step process
consisting in applying transformation rules on port-graphs.

Port-graphs. The computational model of port-graphs was introduced to model biochemical pro-
cesses, for example, protein interactions where two proteins connect via sites of chemical compatibility.
Visually, a port-graph is a graph where edges are attached tonodes at points calledports. Below we give
a short and informal introduction to port graphs (see [2,4] for more details and examples).

Nodes and ports are labelled withnames, and the association of ports to nodes is subject to a typing
via ap-signature, that associates a finite set of port names to a node name. Ap-signature can be extended
with variable nodes, that might have variable port-names. An edge((v, p),(v′, p′)) connects the nodev
to the nodev′ via the portsp and p′. A port in a node might be associated to a state (for instance,
active/inactive or principal/auxiliary) and similarly, nodes can have associated properties (like colour
or shape that are used for visualisation purposes). A port graph can be considered as a labelled graph
where ports are represented by nodes, and the nodes are only connected to their ports. As a consequence,
expressivity results and properties of labelled graphs canbe translated to port graphs.

Port-graph rewriting. Rules are pairs of port-graphs describing transformations. Intuitively, a rule
consists of two port-graphsL and R and a mapping between their ports, given by therule interface,
which is graphically represented in an arrow node separating L andR. A rule specifies how to transform
an occurrence ofL into R inside a given port-graph. The arrow node has the following characteristics:
for each portp in L, to which corresponds a non-empty set of ports{p1, . . . , pn} in R, the arrow node has
a unique portr and the incident directed edges(p, r) and(r, pi), for all i = 1, . . . ,n; all ports fromL that
are deleted inRare connected to theblack holeport of the arrow node.

The application of a rule for port-graphs is inspired by the standard definition for graphs, using the
“double pushout approach” (see [8]), and relies on a definition of matching. In this definition, applying
a ruleL → Ron a graphG is performed in four steps:
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• find a matchingm from L to G

• define the context graphG− = G\m(L)

• addm(R) to G−

• reconnectm(R) andG− as specified by the rule’s interface

3 Higher-order port-graphs

In this section we introduce higher-order port-graphs. Throughout the paper we use the following con-
ventions: ordered pairs are written(a,b); unordered pairs are written{a,b}, so{a,b} = {b,a}.

3.1 Typing

The formal definition of higher-order port-graph relies on the association of port names to node names
via ap-signature.

Definition 1 (p-signature) A p-signatureis a tuple of disjoint sets

∇X
G = ((∇N ,XN ),XG ,(∇P ,XP))

together with two functions arity and Interface such that:

• (∇N ,XN ) are the sets of constant and variable first-order node names

• XG is the set of variable higher-order node names

• (∇P ,XP) are the sets of constant and variable port names

• arity : ∇N ∪XN ∪XG → N associates a number of ports to a node name

• Interface associates the names of its ports to any node name:

– ∀N ∈ ∇N , InterfaceN : J1,arity(N)K
inj
−→ ∇P

– ∀X ∈ XN , InterfaceX : J1,arity(X)K
inj
−→ ∇P ∪XP

– ∀X ∈ XG , InterfaceX : J1,arity(X)K
inj
−→ XP

Note that the interface of a constant first-order node name isa list of pairwise different constant port
names. The interface of a variable first-order node name may contain variables, and the interface of a
higher-order node name is a list of variables.

In our examples, the following symbols will be used:

a,b,c, . . . ∈ ∇P A,B,C, . . . ∈ ∇N

x,y,z, . . . ∈ XP U,V,W, . . . ∈ XN X,Y,Z, . . . ∈ XG

As shown in Figure 1, a signature can be represented by eithera table associating to any node name
its arity and the list of its ports’ names, or by a graph representing disconnected nodes with names and
port names. Even if a node is disconnected, the location of its ports are indicated by “dangling edges”.
As the port names are unique, one can forget to represent the physical identifiers of ports on a node.
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node
name

arity
1st port
name

2nd port
name

. . .

A 1 a
B 1 b
X 1 x
X 2 y z

A76540123a
✤
✤

B76540123b
✤
✤

X76540123x
✤
✤

X

y z

✤
✤
✤
✤

✤
✤
✤
✤

Figure 1: A simplep-signature represented in two different ways.

We illustrate the idea with an example from logic.

Example 1 The port-graph representation of proofs given in [1] relieson the signature presented in
Figure 2: there are constant node names representing axioms, weakening and contraction rules, and the
introduction and elimination rules for the connectives of the logic. The node name s is used to represent
the scope of⇒I (box).
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Figure 2: Ap-signature to represent proofs as port-graphs.

3.2 Syntax

The definition of port-graphs (Definition 2) has been designed to highlight the differences between first-
order and higher-order nodes. The “hat” notation (as in “ĥat”) is used to distinguish the higher-order
functions and entities from the first-order ones.

The setsV andV̂ provide unique identifiers for first and higher-order nodes,and each node is labelled
by a namefrom a givenp-signature. First-order nodes have first-order names and higher-order nodes
have higher-order names. The name of a node determines the number of ports it has, which enables us to
identify them concretely by integers starting from 1. The signature then fixes the associated list of port
names, that has no repetition.

An edge connects two nodes via their ports. Each port acceptsat most one edge, but this assumption
could be relaxed later – for example by considering a maximalnumber of connections for each port,
depending on its name.

Definition 2 (Port graph) A labelled higher-order port-graphover the p-signature∇X
G

is a tuple com-
posed of:

• V andV̂ are finite sets of first-order and higher-order nodes, respectively.
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• lv : V → ∇N ∪XN andl̂v : V̂ →XG are labelling functions associating first-order names to first-
order nodes, and higher-order names to higher-order nodes.These two functions fully determine
concrete properties of the nodes:

– degree: V ∪V̂ → N associates to every first-order or higher-order node its number of ports,
which must coincide with the arity of its label:

∀v∈V,degree(v) = arity(lv(v))

∀v ∈ V̂,degree(v) = arity(l̂v(v))

– ∀v∈V, l pv : J1,degree(v)K → ∇P ∪XP and∀v ∈ V̂, l̂ pv : J1,degree(v)K→ XP associate
a port name to a port identifier:

∀v∈V, l pv = Interfacelv(v)

∀v ∈ V̂, l̂ pv = Interfacêlv(v)

• E is a finite set of undirected edges between ports:

E ⊆





((v1, p1),(v2, p2)) |
(vi , pi) ∈ (V × J1,degree(vi)K)

∪(V̂ × J1,degree(vi)K)





and to simplify, we assume that each specific port(v, p) occurs at most once in E (this is always
the case in interaction nets).

When using several port-graphs, indices will be used to identify the corresponding sets and functions.
For instance, the tuple(VG,V̂G, . . . ) is associated to the port-graphG. The set of port-graphs over the
p-signature∇X

G
is denoted byG (∇X

G
) (or simplyG when there is no ambiguity).

Intuitionistic proofs in natural deduction can be encoded as first-order port-graphs [1]. The proof
of a sequentΓ ⊢ P is encoded as a port-graph with #(Γ)+ 1 free ports corresponding to the premisses
and conclusion formulas. Each application of a rule is represented using nodes from the signature in
Figure 2. For instance, the port-graph representing the axiom inference rule (A ⊢ A) is a simple node
with two ports; Figure 3 shows a proof of⊢ A⇒ B⇒ A (nodes and port identifiers are usually omitted
when representing graphically a port-graph). Details of this encoding are presented in [1].

sGFED@ABC
p

out

in

AxGFED@ABC
p

in
WGFED@ABC
p

⇒I
GFED@ABC

p

inl

inrs

⇒c
I

GFED@ABC
p

inl

inr

✤
✤
✤
✤

✤
✤
✤
✤

✤
✤
✤
✤

✤
✤
✤
✤

Figure 3: A port-graph representing a proof [1].
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4 Matching and rewriting

4.1 Sub-graph and Equality

Two notions, which are trivial instances of morphisms, are introduced below. Intuitively, aport sub-
graphis a subset of nodes, along with a subset of edges connecting them. Two port-graphs are considered
equalwhen they are identical up to renaming of the concrete identifiers.

Definition 3 (Port sub-graph) Given two port-graphs G and H over the same p-signature∇X
G

, G is a
port sub-graphof H if:

VG ⊆VH V̂G ⊆ V̂H

lvG = lvH↾VG l̂vG = l̂vH↾V̂G

EG ⊆ EH

Note that sinceH is typed, this definition impliesdegreeG = degreeH↾VG∪V̂G
, as well as∀v, l pG,v =

l pH,v and∀v, l̂ pG,v = l̂ pH,v.

Definition 4 (Equality) Two port-graphs G and H over the same signature aresyntactically equalvia
(tr, t̂r) when tr andt̂r are two bijections:

(tr : VG
bij
−→VH , t̂r : V̂G

bij
−→ V̂H)

such that:

• lvH = lvG◦ tr−1 andl̂vH = l̂vG◦ t̂r−1

• EH =




{(v1, p1),(v2, p2)} |

{(tr−1(v1), p1),(tr−1(v2), p2)} ∈ EG

∨{(t̂r−1
(v1), p1),(tr−1(v2), p2)} ∈ EG

∨{(t̂r
−1
(v1), p1),(t̂r

−1
(v2), p2)} ∈ EG





Again, inH, the preservation of node names implies a preservation of the list of ports for each node.
A full port sub-graphis a sub-graph containing all edges between the selected nodes. A full port

sub-graphG of H can be seen as a subset of nodes ofH, with the same names and port lists, and with all
the edges that link them to each other. Checking this property is purely syntactic, so easy to implement.

4.2 Matching

A definition of matching can now be given, using a notion of morphism. Intuitively, a morphism relates
the elements of two port-graphsG andH in instantiatingG in a sub-graph ofH. This is performed by
mapping first-order nodes to first-order nodes, higher-order nodes to port-graphs, and edges to edges,
while preserving the interface and connections between ports.

A definition of interfacehas to be given for a port-graph, in order to formalise these preservation
constraints. The interface of a port-graph is the set of all the free ports it has. As in the case of simple
nodes, the interface represents the points through which itcan connect to the outside.

Definition 5 (Interface of a port-graph) The interface InterfaceG (G) of a port-graph G is the set of its
ports(v, p) that are not connected (i.e., that do not appear in EG).



M. Fernández and S. Maulat 31

The definition of morphism should be as restrictive as possible — without hampering the expressivity
regarding proofs — in order to decrease the number of morphisms between two port-graphs. The aim is
to help preventing a combinatorial explosion, thus enabling a simple and efficient implementation.

Regarding its first-order part, a morphism instantiates or renames each variable node with a function
σN . The name of a first-order node is preserved if it is constant,and translated byσN if it is variable.
Due to typing, an image node has the same number of ports as itsantecedent, and these ports are in a
one-to-one correspondence that preserves constant port names. A higher-order nodev is mapped to a
sub-graph ofH. The interface ofv is bijectively mapped to the interface of its image. Finally, these two
mappings provide an injective translation of ports, such that sources and targets of edges are preserved.

Definition 6 (Morphism) Given two port-graphs G and H over the same p-signature∇X
G

, a (higher-
order) port-graph morphismis a triple of functions

f = ( fV : VG →VH , fV̂ : V̂G → G (∇X
G ), fE : EG → EH)

relating thepatternG and H, and satisfying the following properties:

• Instantiation of first-order variables
there exists a mapping for first-order variable nodes:

σN : XN → ∇N ∪XN

such that:

– constant node names are preserved, andσN instantiates or renames first-order variable
nodes:

∀v∈VG, lvH( fV(v)) =

{
lvG(v) if lvG(v) ∈ ∇N

σN (lvG(v)) if lvG(v) ∈ XN

– σN specifies and renames ports:

∀X ∈ XN , arity(σN (X)) = arity(X)
∧ ∀16 p6 arity(X), InterfaceX(p) = n∈ ∇P ⇒ Interface(σN (X))(p) = n

• Instantiation of higher-order variables
for each higher-order variableX ∈ X̂ , there exists

– a port-graph JX = (VX,V̂X, lvX, . . . ,EX) over∇X
G

– a bijection tr portsX : J1,arity(X)K
bij
−→ Interface(JX)

such that for allv ∈ V̂G, letX= l̂vG(v):

– fV̂(v) is a full port sub-graph of H, and syntactically equal to JX for (tr, t̂r)

we denote by trportsv the bijective mapping of higher-order interface induced bytr portsX and
(tr, t̂r) as follows:

– tr portsv : J1,degreeG(v)K
bij
−→ InterfaceG ( fV̂(v))

– ∀p∈ J1,degreeG(v)K,

tr portsv(p) =

{
(tr−1(v′), i) if tr portsX(p) = (v′, i) with v′ ∈VG

(t̂r−1
(v′), i) if tr portsX(p) = (v′, i) with v′ ∈ V̂G
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• Injection
all the nodes in the images are disjoint:

∀v 6= v′,∀v 6= v′,





fV(v) 6= fV(v′)
fV(v) /∈ fV̂(v)

(V( fV̂ (v))
∪V̂( fV̂(v))

)∩ (V( fV̂(v
′))∪V̂( fV̂(v

′))) = /0

• Edge preservation
sources and targets of edges are preserved:

∀e= {(v1, p1),(v2, p2)} ∈ EG, fE(e) = {(v′1, p
′
1),(v

′
2, p

′
2)}

where∀i,(v′i , p
′
i) =

{
( fV(vi), pi) if vi ∈VG

tr portsvi
(pi) if vi ∈ V̂G

If there is a higher-order port-graph morphism between G andH we say that theymatch.

We now give some examples to illustrate this definition. Figure 4 shows four pattern port-graphs
L1, . . . ,L4 and a central port-graphG.

• There is no morphism fromL1 to G: By preservation of constant node names, the nodes of L1

would be mapped to the nodes of G. Then, by preservation of the edges sources and targets, the
image of the edge inL1 would have an endpoint at the portin of s in G. By preservation of source
and targets again, the nodeZ would be mapped to the node⇒c

I
. But as they have different names

and numbers of ports, this contradicts the definition.

• There is no morphism fromL2 to G either. Otherwise, by instantiation of first-order variables, the
two physical nodes would be mapped to nodes with the same name. As all nodes have different
names inG, the two image nodes would be physically identical, which contradicts the injection
property of the morphism.

• L3 matchesG. By conservation of the number of ports, a morphism fromL3 to G maps the two
nodes tosand⇒c

I
.

• Similarly, a morphism betweenL4 andG mapsX andY to s and⇒c
I

. Note that the port variables
are local to a node (more precisely, they are local to a node name but global to all the physical
nodes that share this name).

4.3 Rewriting

A set of port-graph rewriting rules induces a rewriting relation, using the definition of morphism. We
show in Section 6 that higher-order variables are more permissive than first-order ones (they allow us to
express families of rules in a more concise way).

The notion of morphism induces a definition of matching: thepattern port-graphL matchesthe
subjectport-graphG if there exists a morphismm from L to G. This is denoted byL ≪ G.

The same operations are performed to define arewrite stepas in the case of graph rewriting (see
Section 2). The rule interface (represented graphically inthe arrow node) specifies the correspondence
between ports in the interface of the left-hand side and ports in the interface of the right-hand side. Once
the instantiation (via a morphismm) of the left hand sideL of a rule has been replaced inG by the
corresponding right-hand sideR, the original edges betweenG\m(L) andm(L) are transferred, using the
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Figure 4: A target port-graphG with four patterns port-graphsL1, . . . ,L4.

information given in the rule interface, to edges fromG\m(L) to m(R). This defines a rewriting system
for higher-order port-graphs.

Several subgraphsm(L) may exist inG (leading to different rewriting steps); they are computed as
solutions of amatchingproblem fromL to (a subgraph of)G. If there is no such injective morphism, we
say thatG is irreducibleby L ⇒ R.

Eachrule applicationis a rewriting step and aderivation, or computation, is a sequence of rewriting
steps. A port graph on which no rule is applicable is innormal form. Rewriting is intrinsically non-
deterministic since it may be possible to rewrite several subgraphs of a port graph with different rules or
use the same one at different places, possibly obtaining different results.

5 Automation

In this section we give an algorithm to compute the set of all possible rewriting steps from a port-graph
G, given a set of higher-order rewrite rulesR. The extension of the port-graph syntax with higher-order
features introduces a potential combinatorial explosion when enumerating all possible rule applications
on a given port-graph. This is due to the fact that higher-order variables are matched to sub-graphs. The
definition of morphism includes conditions that limit this explosion, especially when dealing with proof
port-graphs.

The algorithm is based on the first-order algorithm implemented in PORGY [16], for the original
definition of port-graphs. Intuitively, it matches the edges first, identifying the source and target nodes
and ports inG andH. All along the execution of the algorithm, a context is updated, that stores some
useful information. The context is seen abstractly as a tuple of:
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• a partial mapping of first-order nodes:image: VG →֒VH

• a partial mapping of higher-order nodes to sets of nodes:̂image: V̂G → P(VH ∪V̂H)

• a state for each node inH that represents its availability to be matched

For instance, adding a node to an image means mapping this node to its image inimage, and putting its
state to “hidden” so that it cannot be reused in another node’s image.

The edge matching is performed using a “first-order nodes first, constant names first” priority. This
way, the algorithm first provides an image for all the first-order nodes. Some ports in the images of
higher-order nodes are also identified, and used as startingpoint to match the interface of the correspond-
ing higher-order variables. The algorithm then maps the edges between the other ports of higher-order
nodes, and finally maps the free ports of higher-order nodes to ports inH. In order to enumerate all the
solutions, some nodes are added to this image, and to ensure that it defines a proper morphism between
G andH, check that this image has exactly the same interface as the node.

More details about the two main phases of the algorithm (match the edges and extend the image sets
of higher-order nodes) are given in Algorithm 1.

Algorithm 1 Matching algorithm.
• match the edges between first-order nodes
and update their images accordingly in the context
• map all the disconnected first-order nodes
• match the edges between first-order nodes and higher-order nodes
setting the first-order nodes’ images and adding one node to the higher-order nodes’ images in the
context
• match the edges between higher-order variables
updating the context accordingly
• add all the connected nodes to the higher-order images
• check the interface of the higher-order images

Note that once all edges are matched in Algorithm 1, all first-order nodes, and all higher-order’s
interface ports are mapped. When every higher–order node has its connected interface mapped, the
images of higher-order nodes are extended to greater node sets. The aim is to enumerate all the possible
solutions, that is all the tuples of port-graphs ofH that constitute valid images for the higher-order nodes
in G. For this, we find all the possible solutions for the image of the first higher-order node, and for each
of these solutions, all the solutions for the second one (that are disjoint with the first ones), and so on1.

For the current definition (where ports of higher-order nodes are variables only), the last check is
reduced to count the number of free ports in the sub-graph (free meaning not linked to another port in
the same sub-graph). This can be done dynamically, maintaining a variable representing the number of
free ports in the image of each higher-order variable. It is easy to extend the interface of higher-order
variables to constant and variable node names, and a similardynamic updating of a list of ports can be
performed to achieve the same result then.

We perform some dynamic checking along the expansion of the higher-order images, to try to prevent
the solutions from getting irreversibly wrong (for instance, including nodes that can obviously not be
included in higher-order images).

1Even if it seems inefficient, there is no better algorithm in the case where the subject graph has no edges, and all higher-
order variables have no interface.
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6 Properties

Relating higher-order and first-order port-graphs. The higher-order port-graphs defined in this pa-
per constitute a proper extension of first-order ones. This intuition is reflected by the notation similarities
between first- and higher-order, and can be expressed mathematically as follows.

Theorem 1 (Simulation by higher-order variables) The solution of the matching problem between two
port-graphs G and H is a subset of the solutions of the matching problem of G′ by H, where G′ consists
of the graph G where every first-order variable node has been replaced by a higher-order one with the
same number of ports. More precisely, if for every first-order variable Xi , we introduce a higher-order
variableXi with same interface, using the higher-order variableXi instead ofXi preserves solutions.

The proof is omitted, but we remark that the syntax and morphism have been specifically developed
with this result in mind.

Specification of proof net and interaction net reductions. We briefly present some examples inspired
by [1], where the original notion of port-graph is used to represent intuitionistic proofs graphically, and
to study their normalisation as a rewriting process. In fact, the first-order port-graphs used in [1] are
generalised interaction nets, as indicates the presence ofprincipal ports.

Figure 5 gives an example of a higher-order patternL, along with a subject graphG′. The pattern
corresponds to the intuitive formulation of a redex in the cut-elimination procedure (eliminating an intro-
duction of⇒ followed by its elimination). It is expressed directly withthe syntax defined in Section 3.
The higher-order variableX represents a proof. Note that in [1], this single rule was implicitely expanded
into a large family of first-order rules to fit the first-order syntax. Although in interaction nets axioms are
represented using only edges, here axioms are explicitly represented as nodes. In this way, a higher-order
variable with two ports can be mapped to an axiom using the matching algorithm.
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Figure 5: Higher-order pattern and target port-graphs.
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7 Conclusion

We have described an extension of the port-graph rewriting notion from [2,4] with higher-order features,
designed to facilitate the modelling of proof normalisation procedures as graph rewriting system.

This extension does not provide more computational power (port graphs are already Turing complete)
but if we see port graphs as a specification or modelling tool,the extended language is more expressive
in that it allows us more concise, high-level definitions.

Properties of higher-order port-graph rewriting, such as confluence and termination, have not been
studied yet. This will be the subject of future work.
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