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Halld én’s Nonsense Logics

Marcelo E. Coniglio Marı́a I. Corbalán
Centre for Logic, Epistemology and the History of Science

and
Department of Philosophy

State University of Campinas, Brazil

coniglio@cle.unicamp.br inescorbalan@yahoo.com.ar

In this paper sequent calculi for the classical fragment (that is, the conjunction-disjunction-implica-
tion-negation fragment) of the nonsense logicsB3, introduced by Bochvar, andH3, introduced by
Halldén, are presented. These calculi are obtained by restricting in an appropriate way the application
of the rules of a sequent calculus for classical propositional logicCPL. The nice symmetry between
the provisos in the rules reveal the semantical relationship between these logics. The Soundness
and Completeness theorems for both calculi are obtained, aswell as the respective Cut elimination
theorems.

Introduction

The study of logical paradoxes from a formal perspective hasproduced several proposals in the liter-
ature. In particular, 3-valued propositional logics were proposed in which, besides the two ‘classical’
truth-values, the third one plays the role of a ‘nonsensical’ or ‘meaningless’ truth value. This is why
these logics are known as ‘logics of nonsense’. In 1938 ([3])A. Bochvar introduced the first logic of
nonsense, by means of 3-valued logical matrices. Since the nonsensical truth value is not distinguished,
Bochvar’s logic is paracomplete but it is not paraconsistent: the negation¬ is explosive (from a contra-
diction everything follows) but the third-excluded law does not hold. In 1949 S. Halldén ([6]) proposed
a closely related logic of nonsense by means of 3-valued logical matrices in which the third truth-value
is distinguished, producing a paraconsistent, non-paracomplete logic.

Both logics share the same main feature: the nonsensical truth-value is ‘infectious’ in the sense that,
given a valuationv, every formula having at least one propositional variable with nonsensical truth-value
underv also gets the non-sensical truth-value underv. Also, both logics contain, besides the connectives
¬ for negation and∧ conjunction, an unary connective which allows to recover all the classical inferences
(cf. [4, 5]).

The respective ‘classical’ fragments of each of these two logics (that is, the{¬,∨,∧,→}-fragments)
are interesting since they together constitute the only twopossibilities for extending the usual matrices
of classical logic with a third nonsensical, ‘infectious’ truth-value1

2: either 1
2 is designated or it is not.

The former corresponds to the ‘classical’ fragment of Halldén’s logic, while the latter corresponds to
the same fragment of Bochvar’s logic. It is not hard to establish, by semantical means, a relationship
between these two fragments and classical logic: given a classically valid inferenceΓ ⊢ α over the
language generated by{¬,∨,∧,→}, if the propositional variables ocurring inΓ also occur inα then
Γ ⊢ α is valid in Halldén’s logicH3. Dually, if the propositional variables ocurring inα also occur inΓ
then such classically valid inference is valid in Bochvar’slogic B3. This duality is a direct consequence
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of the criterion adopted in each logic with respect to the third truth-value (namely, designated vs. non-
designated), and the fact that this non-sensical truth-value propagates through any complex formula.
Since{∨,→} and{∧,→} can be defined as usual from{¬,∧} and{¬,∨}, respectively, the observation
above can also be applied to the{¬,∧} and{¬,∨}-fagments of both logics.

This paper introduced two cut-free sequent calculi for the{¬,∨,∧,→}-fragment of each logic of
nonsense mentioned above. Both systems are obtained by imposing restrictions on the rules of the
usual sequent calculus for classical propositional logicCPL. In the calculus for the classical fragment
of Halldén’s logic, the introduction rules for conjunction, implication and negation on the left side of
the sequent are restricted. In the calculus for the fragmentof Bochvar’s logic the restriction is imposed
to the introduction rule for disjunction, implication and negation on the right side. In this manner, the
relationship between classical logic and both logics became explicit through restrictions on the rules for
the logical connectives¬, ∧, ∨ and→.

1 Preliminaries

Along this paper, we fix a denumerable setpropof propositional variables, as well as three propositional
signatures:Σ1 just containing a negation (unary) connective¬ and a disjunction (binary) connective∨;
Σ2 just containing negation¬ and a conjunction (binary) connective∧; andΣ0, containing¬,∨,∧, and an
implication (binary) connective→. The set of formulas generated byΣi andpropwill be denoted byFori ,
for i = 0,1,2. The disjunction∨ and the implication→ are defined inFor2 asα ∨β =de f ¬(¬α ∧¬β )
and α → β =de f ¬(α ∧¬β ), respectively. By its turn, the conjunction∧ and the implication→ are
defined inFor1 asα ∧β =de f ¬(¬α ∨¬β ) andα → β =de f ¬α ∨β , respectively.

For i = 0,1,2, the functionvar : Fori →℘(prop) which assigns to each formula the set of proposi-
tional variables appearing in it is defined recursively as usual. WhenΓ ⊆ Fori is a set of formulas then
var(Γ) =

⋃

γ∈Γ var(γ).
The next step is to recall a well-known cut-free sequent calculus for classical propositional logic

CPL defined over the signatureΣ0.

Definition 1 By asequent SoverΣi (i = 0,1,2) we shall mean an ordered pair〈Γ,∆〉 of (non-simultaneously
empty) finite sets of formulas in Fori .

We shall use the more suggestive notationΓ ⇒ ∆ for the sequent〈Γ,∆〉. Sequents of the form〈Γ, /0〉,
〈 /0,∆〉, 〈Γ,{α}〉 and〈{α},∆〉 will be denoted byΓ ⇒, ⇒ ∆, Γ ⇒ α andα ⇒ ∆, respectively. As usual,
we writeα ,Γ (or Γ,α) andα ,β ,Γ (or Γ,α ,β ) instead ofΓ∪{α} andΓ∪{α ,β}, respectively.

Definition 2 The sequent calculusC overΣ0 is defined as follows:

Axioms

Ax
α ⇒ α

Structural rules

W⇒
Γ ⇒ ∆

α ,Γ ⇒ ∆ ⇒ W
Γ ⇒ ∆
Γ ⇒ ∆,α Cut

Γ ⇒ ∆,α α ,Γ ⇒ ∆
Γ ⇒ ∆
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Operational rules

¬⇒
Γ ⇒ ∆,α
¬α ,Γ ⇒ ∆ ⇒¬

α ,Γ ⇒ ∆
Γ ⇒ ∆,¬α

∧⇒
α1,α2,Γ ⇒ ∆
α1∧α2,Γ ⇒ ∆ ⇒∧

Γ ⇒ ∆,α1 Γ ⇒ ∆,α2

Γ ⇒ ∆,α1∧α2

∨⇒
α1,Γ ⇒ ∆ α2,Γ ⇒ ∆

α1∨α2,Γ ⇒ ∆ ⇒∨
Γ ⇒ ∆,α1,α2

Γ ⇒ ∆,α1∨α2

→⇒
Γ ⇒ ∆,α1 α2,Γ ⇒ ∆

α1 → α2,Γ ⇒ ∆ ⇒→
α1,Γ ⇒ ∆,α2

Γ ⇒ ∆,α1 → α2

For i = 0,1,2, consider the usual classical valuations fromFori over the setVCPL = {1,0} of classical
truth-values, where 1 denotes the “true” value and 0 denotes the “false” value. Let�CPL be the semantical
consequence relation ofCPL overFor0, that is:Γ �CPL α iff, for every classical valuationv: if v(γ) = 1
for everyγ ∈ Γ thenv(α) = 1. The following theorems are well known:

Theorem 3 (Soundness and Completeness of C)Let Γ∪∆ be a finite set of formulas in For0. Then:
the sequentΓ ⇒ ∆ is provable inC iff Γ �CPL

∨

α∈∆ α .1 In particular: the sequentΓ ⇒ α is provable in
C iff Γ �CPL α . The same holds for the{¬,∨} and the{¬,∧}-fragments ofC.

Theorem 4 (Cut elimination for C) Let Γ∪∆ be a finite nonempty set of formulas in For0. If the se-
quentΓ ⇒ ∆ is provable inC then there is a cut-free derivation of it inC, that is, a derivation without
using the Cut rule. The same holds for the{¬,∨} and the{¬,∧}-fragments ofC.

2 Three-valued nonsense logics B3 and H3

The logics of nonsenseB3 of Bochvar andH3 of Halldén are three-valued logics. Their set of truth-values
is V =

{

1, 1
2,0

}

where the third non-classical truth-value1
2 is interpreted as a nonsensical truth-value.

In H3 this third truth-value is designated; on the other hand,1
2 is undesignated inB3. So,DB3 = {1} is

the set of designated values ofB3 andDH3 =
{

1, 1
2

}

is the set of designated values of Halldén’s logic

H3. The logicB3 is defined over the signatureΣ#B
2 obtained from the signatureΣ2 by adding an unary

‘meaningful’ connective #B. By its turn,H3 is defined over the signatureΣ#H
1 obtained fromΣ1 by adding

an unary ‘meaningful’ connective #H . By means of the connectives #B and #H it is possible to express the
meaninglessness of a formula at the object-language level of each logic. The abbreviations for defining
the other classical connectives in each signature are the same as inCPL (recall Section 1). The truth-
tables for negation, conjunction, disjunction, implication and meaningful connectives inB3 andH3 are
as follows:

¬

1 0
1
2

1
2

0 1

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2

1
2

0 0 1
2 0

∨ 1 1
2 0

1 1 1
2 1

1
2

1
2

1
2

1
2

0 1 1
2 0

→ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2

1
2

0 1 1
2 1

1Here,
∨

α∈∆ α denotes the formulaα1∨(α2∨·· ·(αn−1∨αn) . . .), if ∆ = {α1, . . . ,αn}. If ∆ = {α} or ∆ = /0 then
∨

α∈∆ α =
α and

∨

α∈∆ α = p1∧¬p1, respectively, wherep1 is the first propositional variable.
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#B

1 1
1
2 0
0 0

#H

1 1
1
2 0
0 1

Additionally, #H can be defined in terms of the connectives ofB3 but the same relationship between
#B andH3 is not true, and so the expressive power of the matrices ofB3 is strictly stronger than that of
the matrices ofH3 (cf. [5]).

The key feature of both logics is the following, which can be easily proved by induction on the
complexity of the formulaα :

Proposition 5 Letα be a formula ofL without# and let v be a valuation ofL, whereL = B3 or L = H3.
Then: v(α) = 1

2 iff v(p) = 1
2 for some propositional variable p∈ var(α).

This means that in the ‘classical’ fragment ofB3 andH3 the non-classical truth-value12 is ‘infec-
tious’: an atomic formula ‘infects’ complex formulas with the nonsensical truth-value. It is easy to prove
that, over the respectiveΣi, bothB3 andH3 are deductive fragments of classical logic: every valid infer-
ence inB3 or in H3 written in the classical signatureΣi is valid inCPL. In fact, the following proposition
(whose proof is immediate) holds inB3 andH3.

Proposition 6 Let α be a formula ofL without #, let vCPL be a classical valuation and let vL be a
valuation ofL, whereL = B3 or L = H3. If vL (p) = vCPL (p) for every propositional variable p∈ var(α)
then vL (α) = vCPL (α) (and so vL (α) ∈ {1,0}).

Despite these similarities, there are important differences betweenB3 andH3 with respect to classical
logic as a consequence of choosing different sets of designed truth-valued:

• There are no tautological formulas overΣ2 in B3; H3 contain every classical tautology overΣ1.

• No contradiction written overΣ1 is a trivializing formula inH3; every contradiction overΣ2 is a
trivializing formula inB3.

• The Deduction Theorem is not valid inB3 andmodus ponensis not valid inH3. So, the following
metaproperty does not hold inB3: if Γ,α � β , thenΓ � α → β ; on the other hand, the following
metaproperty does not hold inH3: if Γ � α → β , thenΓ,α � β .

• The inferenceα � α ∨β does not hold inB3; in H3 the inferenceα ∧β � α does not hold.

• In B3 the Principle of Excluded Middle:

� α ∨¬α (PEM)

does not hold; inH3 the Principle of Explosion:

α ,¬α � β (PE)

does not hold. Thus,B3 is paracomplete w.r.t. the negation¬, while H3 is paraconsistent w.r.t.¬.

These differences between Bochvar and Halldén’s connectives with respect to classical connectives
are not independent from each other, and their connections are expressed in the following theorems,
which constitute the basis of our proposal.

Theorem 7 Let Γ∪{α} be a set of formulas in For2 such thatΓ �CPL α . Then:

if var(α) ⊆ var(Γ) or Γ �CPL p1∧¬p1 thenΓ �B3 α .
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Proof. Cf. [3, 9, 7, 5].

Theorem 8 Let Γ∪{α} be a set of formulas in For1 such thatΓ �CPL α . Then:

if var(Γ) ⊆ var(α) or �CPL α thenΓ �H3 α .

Proof. Assume thatΓ �CPL α . If Γ 2H3 α then there is a valuationvH3 for H3 such thatvH3 (Γ) ⊆
{

1, 1
2

}

and vH3 (α) = 0. Suppose thatvar(Γ) ⊆ var(α). SincevH3 (α) = 0 then, by Proposition 5,
vH3 (p)∈ {1,0} for every propositional variablep∈ var(α). ThusvH3 (Γ)⊆{1}. LetvCPL be a classical
valuation such thatvCPL (p) = vH3 (p) for everyp∈ var(α) = var(α)∪var(Γ). Then, by Proposition 6,
vCPL (Γ) ⊆ {1} but vCPL (α) = 0, a contradiction. Then,var(Γ) * var(α). Thus, ifvar(Γ) ⊆ var(α)
thenΓ �H3 α .

Finally, if α is a classical tautology, letvH3 be a valuation forH3. If vH3 (p) =
1
2 for somep∈ var(α)

thenvH3 (α) = 1
2, by Proposition 5. On the other hand, ifvH3 (var(α))⊆ {0,1} then, by Proposition 6,

vH3 (α) = 1. Then,�H3 α and soΓ �H3 α .

So, by Theorem 7, we have that if a valid classical inferenceΓ � α is invalid in Bochvar’s nonsense
logic thenΓ is a consistent set of formulas ofCPL such thatvar(α)  var(Γ). On the other hand,
Theorem 8 expresses that if a valid classical inferenceΓ � α is invalid in Halldén’s nonsense logic then
α is not a tautological formula inCPL andvar(Γ) var(α). Therefore, it is clear that�H3 α but2B3 α ,
for everyα such that�CPL α .

By Theorems 7 and 8 we obtain a sufficient condition in order todetermine whether a valid classical
inference is also valid in bothB3 andH3.

Corollary 9 Let Γ∪{α} be a set of formulas in For0 such thatΓ �CPL α . Then:2

if var (Γ) = var(α) , thenΓ �B3 α andΓ �H3 α .

We will introduce cut-free sequent calculi for the{¬,∨}-fragment ofH3 and for the{¬,∧}-fragment
of B3, where∧ and→ (∨ and→, respectively) are derived connectives. The strategy adopted is to
modify the classical sequent rules for classical connectives by adding suitable provisos. As we shall see,
the provisos are applied to symmetrical rules: in the fragment of Halldén’s logic, the provisos apply to
the introduction rules for conjunction, implication and negation on the left side of the sequent while, in
the case of Bochvar’s logic, the proviso applies to the introduction rules for disjunction, implication and
negation on the the right side. This reflects the relationship between these logics and classical logic, as
depicted in theorems 7 and 8.

3 Sequent calculus H for the{¬,∨}-fragment of Halldén’s logic H3

As suggested by Theorem 8, certain proofs inC should be blocked in any sequent calculus forH3. We
present now a cut-free sequent calculusH for the fragment ofH3 over Σ1 by adding provisos on the
application of (classical) rules such that the construction of complex formulas in the antecedent of the
sequents is blocked in some cases. By symmetry, a sequent calculusB for B3 will be also introduced by
adding provisos on the application of (classical) rules such that the construction of complex formulas in
the succedents of the sequents is blocked under certain circumstances.

2Obviously we are identifying here a primitive connective ofΣ0 with its abbreviation inΣi , for i = 1,2.
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Definition 10 The sequent calculusH is obtained from the{¬,∨}-fragment ofC by replacing the rule
¬⇒ by the following one:

¬H ⇒
Γ ⇒ ∆,α
¬α ,Γ ⇒ ∆ provided that var(α) ⊆ var(∆)

Proposition 11 The following rules are derivable inH:

∧H ⇒
α1,α2,Γ ⇒ ∆
α1∧α2,Γ ⇒ ∆ ⇒∧

Γ ⇒ ∆,α1 Γ ⇒ ∆,α2

Γ ⇒ ∆,α1∧α2

with the following proviso: var({α1,α2})⊆ var(∆) in ∧H⇒.

Proof. Assume thatvar({α1,α2}) ⊆ var(∆). Thenvar(¬α1 ∨¬α2) ⊆ var(∆) and so the following
derivation can be done inH:

α1,α2,Γ ⇒ ∆
Γ ⇒ ∆,¬α1,¬α2 (by ⇒¬)

Γ ⇒ ∆,¬α1∨¬α2 (by ⇒∨)

¬(¬α1∨¬α2) ,Γ ⇒ ∆ (by ¬H ⇒)

In order to obtain⇒∧, the following derivation can be done inH:

Γ ⇒ ∆,α1

Γ ⇒ ∆,¬(¬α1∨¬α2) ,α1

¬α1,Γ ⇒ ∆,¬(¬α1∨¬α2)
¬H ⇒

⇒W
Γ ⇒ ∆,α2

Γ ⇒ ∆,¬(¬α1∨¬α2) ,α2

¬α2,Γ ⇒ ∆,¬(¬α1∨¬α2)
¬H ⇒

⇒W

¬α1∨¬α2,Γ ⇒ ∆,¬(¬α1∨¬α2)

Γ ⇒ ∆,¬(¬α1∨¬α2)
⇒¬

∨⇒

Proposition 12 The following implicational rules are derivable inH:

→H ⇒
Γ ⇒ ∆,α1 α2,Γ ⇒ ∆

α1 → α2,Γ ⇒ ∆ ⇒→
α1,Γ ⇒ ∆,α2

Γ ⇒ ∆,α1 → α2

with the following proviso: var({α1,α2})⊆ var(∆) in →H ⇒.

Proof. Straightforward, by considering thatα1 → α2 stands for¬α1∨α2 in H.

3.1 Soundness of H

In this subsection we shall prove the soundness of sequent calculusH. Firstly, some semantical notions
will be extended from formulas to sequents.

Definition 13 Let L be a matrix logic over a signatureΣ. A valuation v ofL is a model of a sequent
Γ ⇒ ∆ overΣ iff, if v (Γ)⊆DL , then v(δ )∈ DL for someδ ∈ ∆. When v is a model of the sequentΓ ⇒ ∆,
we will write v�L Γ ⇒ ∆.
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Definition 14 A sequentΓ ⇒ ∆ is valid in L if, for every valuation v ofL, v is a model of the sequent
Γ ⇒ ∆. When the sequent is valid, we will write�L Γ ⇒ ∆.

It is worth noting that�L Γ ⇒ α iff Γ �L α . Additionally,�CPL Γ ⇒ ∆ iff Γ �CPL
∨

α∈∆ α

Definition 15 A sequent ruleR preservesvalidity in L if, for every instance
ϒ
S

of R and for every

valuation v ofL, if v �L S′ for every S′ ∈ ϒ then v�L S.

Lemma 16 Every sequent rule of the calculusH preserves validity.

Proof. Observe that the axiom Ax and the structural rules preserve validity, since they correspond to
properties which are valid in every Tarskian logic (andH is Tarskian since it is a matrix logic).

⇒¬ Let v be a valuation ofH3 such thatv�H3 α ,Γ ⇒ ∆, and suppose thatv(Γ)⊆
{

1, 1
2

}

. If v(¬α) = 0,
thenv(α) = 1. Then, by hypothesis, we infer thatv(δ ) ∈

{

1, 1
2

}

, for someδ ∈ ∆. If v(¬α) 6= 0,
thenv(¬α) ∈

{

1, 1
2

}

. This shows thatv�H3 Γ ⇒ ∆,¬α .

¬H ⇒ Let v be a valuation ofH3 such thatv�H3 Γ ⇒ ∆,α and assume thatvar(α)⊆ var(∆). Suppose
thatv(¬α) ∈

{

1, 1
2

}

andv(Γ) ⊆
{

1, 1
2

}

. Then, by hypothesis,v(δ ) ∈
{

1, 1
2

}

, for someδ ∈ ∆, or
v(α) ∈

{

1, 1
2

}

. Sincev(¬α) ∈
{

1, 1
2

}

, thenv(α) ∈
{

0, 1
2

}

. If v(α) = 0 thenv(δ ) ∈
{

1, 1
2

}

, for
someδ ∈ ∆. And if v(α) = 1

2, then, by Proposition 5, we infer thatv(p) = 1
2 for some atomic

formula p∈ var(α). Sincevar(α) ⊆ var(∆) then p ∈ var(δ ) for someδ ∈ ∆ and so, again by
Proposition 5, we infer thatv(δ ) =

{

1
2

}

. Therefore, we conclude thatv�H3 ¬α ,Γ ⇒ ∆.

⇒∨ Let v be a valuation ofH3 such thatv �H3 Γ ⇒ ∆,α1,α2 and assume thatv(Γ) ⊆
{

1, 1
2

}

. If
v(α1) = v(α2) = 0 then, by hypothesis, we infer thatv(δ ) ∈

{

1, 1
2

}

, for someδ ∈ ∆. Therefore
v�H3 Γ ⇒ ∆,α1∨α2. Otherwise, ifv(α1) ∈

{

1, 1
2

}

or v(α2) ∈
{

1, 1
2

}

thenv(α1∨α2) ∈
{

1, 1
2

}

and sov�H3 Γ ⇒ ∆,α1∨α2.

∨⇒ Letvbe a valuation ofH3 such thatv�H3 α1,Γ⇒∆ andv�H3 α2,Γ⇒∆. Suppose thatv(α1∨α2)∈
{

1, 1
2

}

andv(Γ) ⊆
{

1, 1
2

}

. Then, eitherv(α1) ∈
{

1, 1
2

}

or v(α2) ∈
{

1, 1
2

}

. By hypothesis, it fol-
lows thatv(δ ) ∈

{

1, 1
2

}

, for someδ ∈ ∆ and sov�H3 α1∨α2,Γ ⇒ ∆.

Theorem 17 (Soundness of H)Let Γ∪∆ be a set of formulas in For1. Then: ifΓ ⇒ ∆ is provable inH
then�H3 Γ ⇒ ∆. In particular, if Γ ⇒ α is provable inH thenΓ �H3 α .

Proof. If the sequentΓ ⇒ ∆ is an instance of axiom Ax, thenΓ ⇒ ∆ is valid in H3. By induction on
the depth of a derivation ofΓ ⇒ ∆ in H it follows, by the previous Lemma 16, that the sequentΓ ⇒ ∆ is
valid in H3.

Proposition 18 Let Γ be a nonempty set of formulas in For1. Then the sequentΓ ⇒ is not provable
in H.

Proof. Let v be aH3-valuation such thatv(p) = 1
2 for every p ∈ var(Γ). Thenv 2H3 Γ ⇒ and so

2H3 Γ ⇒ . By contraposition of Theorem 17, we conclude that the sequent Γ ⇒ is not provable inH.
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3.2 Completeness of H

The following result follows straightforwardly:

Proposition 19 Let Γ∪∆ be a finite nonempty set of formulas in For1. Then:

if �H3 Γ ⇒ ∆, then �CPL Γ ⇒ ∆.

Proof. Assume that�H3 Γ ⇒ ∆ and letv be a classical valuation such thatv(Γ)⊆ {1}. By Proposition 6,
v can be seen as aH3-valuation such thatv(Γ)⊆ {1, 1

2}. By hypothesis,v(δ ) ∈ {1, 1
2} for someδ ∈ ∆.

Sincev is classical, it follows thatv(δ ) = 1 for someδ ∈ ∆, therefore�CPL Γ ⇒ ∆.

Proposition 20 Let Γ∪∆ be a finite nonempty set of formulas in For1. Then: ifΓ ⇒ ∆ is provable inH
thenΓ ⇒ ∆ is provable in the{¬,∨}-fragment ofC.

Proof. This is obvious, sinceH is a restricted version of the{¬,∨}-fragment ofC.

Lemma 21 Let Γ∪∆ be a finite nonempty set of formulas in For1. Then: ifΓ ⇒ ∆ is provable in the
{¬,∨}-fragment ofC and var(Γ)⊆ var(∆) thenΓ ⇒ ∆ is provable inH without using the Cut rule.

Proof. Recall that derivations inC andH are rooted binary trees such that the root is the sequent being
proved, and the leaves are always instances of the axiom Ax ofthe formα ⇒ α for some formulaα .

Assume thatΠ is a cut-free derivation in the{¬,∨}-fragment ofC of a sequentΓ ⇒ ∆ such that
var(Γ) ⊆ var(∆) (we can assume this by Theorem 4). IfΠ is also a derivation inH then the result
follows automatically. Otherwise, there are inΠ, by force, applications of the rule¬⇒, namely

¬⇒
Γ′ ⇒ ∆′

,α
¬α ,Γ′ ⇒ ∆′

such that the proviso required by this rule inH is not satisfied. SinceΠ is cut-free then the set of variables
occurring in the root sequentΓ ⇒ ∆ contains all the propositional variables occurring inΠ. Then, by
hypothesis, all the propositional variables occurring inΠ belong to the setvar(∆). Consider now the
derivationΠ′ in C obtained fromΠ in two steps: firstly, the right-hand side of each sequent (that is, of
each node) ofΠ is enlarged by adding simultaneously all the formulas in∆. This generates a rooted
binary treeΠ0 whose leafs are sequents of the formα ⇒ α ,∆. Each of such leaves ofΠ0 corresponds
to the original occurrence of an axiom (that is, a leaf)α ⇒ α in the derivationΠ. In the second step, we
replace each leafα ⇒ α ,∆ of Π0 by a branch started byα ⇒ α and followed by iterated applications
of the weakening rule⇒ W until obtaining the sequentα ⇒ α ,∆. The resulting rooted binary treeΠ′

is clearly a (cut-free) derivation in the{¬,∨}-fragment ofC of the sequentΓ ⇒ ∆.3 But the critical
applications of the rule¬⇒ mentioned above have inΠ′ the form

¬⇒
Γ′ ⇒ ∆′

,∆,α
¬α ,Γ′ ⇒ ∆′

,∆.

Being so, these applications are allowed inH (since all the propositional variables occurring inΠ′ belong
to the setvar(∆)) and soΠ′ is in fact a cut-free derivation inH of the sequentΓ ⇒ ∆. That is,Γ ⇒ ∆ is
provable inH without using the Cut rule.

Corollary 22 Let ∆ be a finite nonempty set of formulas in For1. Then: ⇒ ∆ is provable in the{¬,∨}-
fragment ofC if and only if ⇒ ∆ is provable inH.

3Observe that some applications of the weakening rule⇒W in Π may be innocuous inΠ′.
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Corollary 23 (Modus Ponens) Let α ,β ∈ For1. Then: if ⇒ α and ⇒ α → β are provable inH then
⇒ β is provable inH.

Lemma 24 Let Γ∪∆ be a finite nonempty set of formulas in For1. If �H3 Γ ⇒ ∆ but var(Γ)  var(∆)
then there existsΓ′ ⊂ Γ such that�H3 Γ′ ⇒ ∆, where var(Γ′)⊆ var(∆).

Proof. Observe that if�H3 Γ ⇒ ∆ then∆ 6= /0.
Assume that�H3 Γ ⇒ ∆ such thatvar(Γ) var(∆). So, given a valuationv for H3, if v(Γ)⊆

{

1, 1
2

}

then v(δ ) ∈
{

1, 1
2

}

for some formulaδ ∈ ∆. Given thatvar(Γ)  var(∆) consider the setΓ′ = Γ \
{γ ∈ Γ : var(γ) var(∆)}. Then,Γ′ ⊂ Γ and var(Γ′) ⊆ var(∆). Let v be a valuation forH3 such
that v(Γ’) ⊆

{

1, 1
2

}

. If 1
2 ∈ v(Γ’) thenv(p) = 1

2 for some propositional variablep ∈ var(Γ′). Since
var(Γ′) ⊆ var(∆), then 1

2 ∈ v(∆). If v(Γ′) ⊆ {1}, suppose thatv(∆) = {0}. Thenv(p) ∈ {1,0} for
every propositional variablep ∈ var(∆), by Proposition 5. Sincevar(Γ′) ⊆ var(∆) then, for every
propositional variablep∈ var(Γ′), v(p)∈ {1,0}. Consider now a valuationv′ for H3 such thatv′ (p) = 1

2
for everyp∈ var(Γ)\var(∆), andv′ (p) = v(p) for everyp∈ var(∆). Then,v′ (Γ)⊆

{

1, 1
2

}

. But then,
by hypothesis,v′ (δ ) ∈

{

1, 1
2

}

, for someδ ∈ ∆. That is,v(δ ) ∈
{

1, 1
2

}

for someδ ∈ ∆, a contradiction.
Therefore, ifv(Γ′)⊆ {1} thenv(δ ) 6= 0, for someδ ∈ ∆. So,�H3 Γ’⇒ ∆.

Theorem 25 (Completeness of H)LetΓ∪∆ be a finite nonempty set of formulas in For1. If �H3 Γ ⇒ ∆
thenΓ ⇒ ∆ is provable inH without using the Cut rule. In particular, ifΓ �H3 α then the sequentΓ ⇒ α
is provable inH, for every finite setΓ∪{α}.

Proof. Assume that�H3 Γ ⇒∆. Then, by Proposition 19,�CPL Γ⇒ ∆. By Theorem 3,Γ⇒ ∆ is provable
in the{¬,∨}-fragment ofC. If var(Γ) ⊆ var(∆) then, by Lemma 21,Γ ⇒ ∆ is provable inH without
using the Cut rule. Ifvar(Γ) var(∆) then, by Lemma 24, there exist a setΓ′ ⊂ Γ such that�H3 Γ′ ⇒ ∆,
wherevar(Γ′) ⊆ var(∆). Then, using Proposition 19 and Theorem 3 again, we obtain that Γ′ ⇒ ∆ is
provable in the{¬,∨}-fragment ofC. Sincevar(Γ′)⊆ var(∆) then, by using Lemma 21, it follows that
Γ′ ⇒ ∆ is provable inH without using the Cut rule. By applying the structural ruleW ⇒ several times
we obtain a derivation ofΓ ⇒ ∆ in H without using the Cut rule, as desired.

Corollary 26 (Cut elimination for H) Let Γ ∪∆ be a finite nonempty set of formulas in For. If the
sequentΓ ⇒ ∆ is provable inH then there is a cut-free derivation of it inH.

Proof. Suppose thatΓ ⇒ ∆ is provable inH. By Theorem 17,�H3 Γ ⇒ ∆. Then, by Theorem 25, there
is a cut-free derivation ofΓ ⇒ ∆ in H.

4 Sequent calculus B for the{¬,∧}-fragment of Bochvar’s logic B3

In this section we introduce the sequent calculusB which will result cut-free, sound and complete for the
conjunction-negation fragment of the nonsense logicB3, where∨ and→ are derived connectives. As we
shall see, there exists a symmetry between the provisos imposed in the rules ofB and those imposed in
H, as long as the language¬, ∧, ∨, → is considered.

Definition 27 The sequent calculusB is obtained from the{¬,∧}-fragment ofC by replacing the rule
⇒¬ by the following one:

⇒¬B α ,Γ ⇒ ∆
Γ ⇒ ∆,¬α provided that var(α) ⊆ var(Γ)
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Proposition 28 The following rules are derivable inB:

∨⇒
α1,Γ ⇒ ∆ α2,Γ ⇒ ∆

α1∨α2,Γ ⇒ ∆ ⇒∨B Γ ⇒ ∆,α1,α2

Γ ⇒ ∆,α1∨α2

with the following proviso: var({α1,α2})⊆ var(Γ) in ⇒∨B.

Proof. We leave the easy proof as an exercise to the reader.

Proposition 29 The following implicational rules are derivable inB:

→⇒
Γ ⇒ ∆,α1 α2,Γ ⇒ ∆

α1 → α2,Γ ⇒ ∆ ⇒→B α1,Γ ⇒ ∆,α2

Γ ⇒ ∆,α1 → α2

with the following proviso: var({α1,α2})⊆ var(Γ) in ⇒→B.

Proof. The proof is also left to the reader.

4.1 Soundness of B

In order to prove the Soundness Theorem forB, we will prove that every sequent rule of the calculusB
preserves validity.

Lemma 30 Every sequent rule of the calculusB preserves validity.

Proof. As in the case ofH, it is enough to analyze the rules for connectives.

⇒¬B Assume thatv |=B3 α ,Γ ⇒ ∆ for some valuationv in B3, wherevar(α) ⊆ var(Γ). Suppose that
v(Γ)⊆{1}. Then, by Proposition 5,v(p)∈ {1,0}, for every propositional variablep such thatp∈
var(Γ). Sincevar(α)⊆ var(Γ), thenv(p) ∈ {1,0}, for every propositional variablep∈ var(α).
By Proposition 5 again, we obtain thatv(α) ∈ {1,0}. If v(α) = 1, then by hypothesis, we obtain
that{1} ⊆ v(∆). If v(α) = 0 thenv(¬α) = 1. In both cases it follows that{1} ⊆ v(∆∪{¬α}).
Thereforev |=B3 Γ ⇒ ∆,¬α .

¬⇒ Assume thatv |=B3 Γ ⇒ ∆,α for some valuationv in B3. Suppose thatv(¬α) = 1 andv(Γ)⊆ {1}.
So,{1} ⊆ v(∆) or v(α) = 1, by hypothesis. But, sincev(¬α) = 1, thenv(α) = 0. Thus,{1} ⊆
v(∆) and sov |=B3 ¬α ,Γ ⇒ ∆.

⇒∧ Assume thatv |=B3 Γ ⇒ ∆,α1 and v |=B3 Γ ⇒ ∆,α2 for some valuationv in B3. Suppose that
v(Γ)⊆ {1}. By hypothesis, we obtain that either{1} ⊆ v(∆) or bothv(α1) = 1 andv(α2) = 1. In
both cases it follows that{1} ⊆ v(∆∪{(α1∧α2)}). Thenv |=B3 Γ ⇒ ∆,α1∧α2.

∧⇒ Assume thatv |=B3 α1,α2,Γ ⇒ ∆ for some valuationv in B3. Suppose thatv(α1∧α2) = 1 and
v(Γ) ⊆ {1}. So, v(α1) = v(α2) = 1 andv(Γ) ⊆ {1}. By hypothesis,{1} ⊆ v(∆). Therefore,
v |=B3 α1∧α2,Γ ⇒ ∆.

As a consequence of this it follows the soundness theorem forB:

Theorem 31 (Soundness of B)LetΓ∪∆ be a finite nonempty subset of For2. Then: ifΓ⇒∆ is provable
in B then|=B3 Γ ⇒ ∆. In particular, if Γ ⇒ α is provable inB thenΓ |=B3 α .

Corollary 32 Let ∆ ⊆ For2 be a nonempty set of formulas. Then the sequent⇒ ∆ is not provable inB.

Proof. Consider a valuationv for B3 such thatv(p) = 1
2 for every p∈ var(∆). Thenv 6|=B3⇒ ∆ and so

6|=B3⇒ ∆. By Theorem 31, the sequent⇒ ∆ is not provable inB.
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4.2 Completeness of B

The proof of completeness ofB is similar to that ofH and so we will omit some proofs.

Proposition 33 Let Γ∪∆ be a finite nonempty subset of For2. Then:

if |=B3 Γ ⇒ ∆, then |=CPL Γ ⇒ ∆.

Proposition 34 Let Γ∪∆ be a finite nonempty subset of For2. Then: ifΓ ⇒ ∆ is provable inB then it is
provable in the{¬,∧}-fragment ofC.

Lemma 35 Let Γ∪∆ be a finite nonempty subset of For2. Then: ifΓ ⇒ ∆ is provable in the{¬,∧}-
fragment ofC and var(∆)⊆ var(Γ) thenΓ ⇒ ∆ is provable inB without using the Cut rule.

Proof. The proof is analogous to that of Lemma 21, but now using the rule W ⇒.

Lemma 36 LetΓ∪∆ be a finite nonempty subset of For2. If |=B3 Γ ⇒ ∆ but var(∆) var(Γ) then there
exist a set∆′ ⊂ ∆ such that|=B3 Γ ⇒ ∆′, where var(∆′)⊆ var(Γ).

Proof. Let ∆′ = ∆\{δ ∈ ∆ : var(δ ) var(Γ)}. Suppose that there is aB3-valuationv such thatv(Γ)⊆
{1} but v(∆′) ⊆

{

0, 1
2

}

. Thus, theB3-valuationv′ such thatv′ (p) = v(p) for every p ∈ var(Γ) and
v′ (p′) = 1

2 for every p′ ∈ var(∆)\var(Γ) is such thatv′ (Γ) ⊆ {1} but v′ (∆)⊆
{

0, 1
2

}

, a contradiction.
Therefore|=B3 Γ ⇒ ∆′, wherevar(∆′)⊆ var(Γ).

Theorem 37 (Completeness of B)Let Γ∪∆ be a finite nonempty subset of For2. If |=B3 Γ ⇒ ∆ then
Γ ⇒ ∆ is provable inB without using the Cut rule. In particular, ifΓ |=B3 α thenΓ ⇒ α is provable inB.

Proof. Assume that|=B3 Γ ⇒ ∆. Then, by Proposition 33 and Theorem 3, it follows thatΓ ⇒ ∆ is
provable in the{¬,∧}-fragment ofC. If var(∆) ⊆ var(Γ) then, by Lemma 35, the sequentΓ ⇒ ∆ is
provable inB without using the Cut rule. On the other hand, ifvar(∆)  var(Γ), then by Lemma 36,
�B3 Γ ⇒ ∆′, for some set∆′ ⊂ ∆ such thatvar(∆′)⊆ var(Γ). By Proposition 33 and Theorem 3 again, it
follows thatΓ ⇒ ∆′ is provable in the{¬,∧}-fragment ofC. Using again Lemma 35, the sequentΓ ⇒ ∆′

is provable inB without using the Cut rule. Finally, by applying the structural rule⇒W several times
we obtain a derivation ofΓ ⇒ ∆ in B without using the Cut rule.

Corollary 38 (Cut elimination for B) Let Γ∪∆ be a finite nonempty set of formulas in For2. If the
sequentΓ ⇒ ∆ is provable inB then there is a cut-free derivation of it inB.

Proof. Suppose thatΓ ⇒ ∆ is provable inB. By Theorem 31,|=B3 Γ ⇒ ∆. Then, by Theorem 37, there
is a cut-free derivation ofΓ ⇒ ∆ in B as desired.

5 Concluding Remarks

In this paper a cut-free sequent calculi for the{¬,∨}-fragment of Bochvar’s logic, as well as a cut-
free sequent calculi for the{¬,∧}-fragment of Halldén’s logic, were proposed. In the formercalculus,
conjunction and implication are derived connectives, while disjunction and implication are derived con-
nectives in the latter. The main feature of both calculi is that they are obtained by imposing provisos to
the rules of the respective fragments of a well-known sequent calculus for classical propositional logic.
The signature for each calculus was choosen in order to keep as close as possible to the respective frag-
ment of classical logic. Observe that both{¬,∨} and{¬,∧}-fragments are adequate, that is, they can
express all the other (classical) connectives.
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Thus, concerning the calculus for the{¬,∨}-fragment of Halldén’s logic, the only change required
with respect to the calculus for the respective fragment of classical logic was the inclusion of a proviso
in the introduction rule for negation on the left side of the sequent. As a consequence of this, a proviso
appear in the (derived) introduction rules for conjunctionand implication on the left side of the sequent.

In the calculus for the{¬,∧}-fragment of Bochvar’s logic, the situation is entirely symmetrical: the
restriction was imposed to the introduction rule for negation on the right side, and so this restriction also
applies to the introduction rules for disjunction and implication on the right side (both are derived rules).
In this manner, the existing relationship between classical logic and both logics became explicit through
restrictions on the rules for the logical connectives.

Since these two logic of nonsense are related to classical logic in such particular way, thead hoc
definition of sequent calculi presented here, which exploitthese particularities, seems to be justified.
However, it would be interesting to compare the cut-free sequent calculi introduced here with the ones
which could be obtained by applying general techniques suchas those proposed in [2, 1, 8].

As a future research, we plan to extend the calculi to the fulllanguage of both logics. Clearly the
resulting calculi will not be so simple and symmetrical because of the subtleties of the ‘meaningful’
connectives and their relationship with the other connectives.

Acknowledgements:We would like to thank the anonymous referees for their extremely useful com-
ments on an earlier draft, which have helped to improve the paper. The first author was financed by
FAPESP (Brazil), Thematic Project LogCons 2010/51038-0 and by an individual research grant from
The National Council for Scientific and Technological Development (CNPq), Brazil.

References

[1] A. Avron, J. Ben-Naim & B. Konikowska (2007):Cut-free Ordinary Sequent Calculi for Logics Having Gen-
eralized Finite-Valued Semantics. Logica Universalis1(1), pp. 41–70, doi:10.1007/978-3-642-32621-9_
24.

[2] M. Baaz, C.G. Fermüller & R. Zach (1993):Systematic Construction of Natural Deduction Systems for Many-
valued Logics: Extended Report. Technical Report TUW-E185.2-BFZ.1-93.
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