Formalizing the Confluence of Orthogonal Rewriting Systems*

Ana Cristina Rocha Oliveira” and Mauricio Ayala-Rincén*
Grupo de Teoria da Computagao
Departamentos de Matematica e Ciéncia da Computacao
Universidade de Brasilia
Brasilia D.F., Brazil
Email: anacrismarie@gmail.com, ayala@unb.br

Orthogonality is a discipline of programming that in a syntactic manner guarantees determinism of
functional specifications. Essentially, orthogonality avoids, on the one side, the inherent ambiguity
of non determinism, prohibiting the existence of different rules that specify the same function and
that may apply simultaneously (non-ambiguity), and, on the other side, it eliminates the possibility
of occurrence of repetitions of variables in the left-hand side of these rules (left linearity). In the
theory of term rewriting systems (TRSs) determinism is captured by the well-known property of
confluence, that basically states that whenever different computations or simplifications from a term
are possible, the computed answers should coincide. Although the proofs are technically elaborated,
confluence is well-known to be a consequence of orthogonality. Thus, orthogonality is an important
mathematical discipline intrinsic to the specification of recursive functions that is naturally applied in
functional programming and specification. Starting from a formalization of the theory of TRSs in the
proof assistant PVS, this work describes how confluence of orthogonal TRSs has been formalized,
based on axiomatizations of properties of rules, positions and substitutions involved in parallel steps
of reduction, in this proof assistant. Proofs for some similar but restricted properties such as the
property of confluence of non-ambiguous and (left and right) linear TRSs have been fully formalized.

1 Introduction

Termination and confluence of term rewriting systems (TRSs) are well-known undecidable properties
that are related with termination of computer programs and determinism of their outputs. Under the
hypothesis of termination, confluence is guaranteed by the critical pair criterion of Knuth-Bendix(-Huet)
[8, 9], which establishes that whenever all critical pairs of a given terminating rewriting system are
joinable, the system is confluent. This criterion as well as other criteria for abstract reduction systems
such as Newman’s lemma were fully formalized in the proof assistant PVS in [5.|7] over the PVS theory
trs [6], that is available in the NASA LaRC PVS library [14]. Without termination, confluence analysis
results more complex, but several programming disciplines, from which one could remark orthogonality,
guarantee confluence without the necessity of termination.

In the context of the theory of recursive functions and functional programming as in the one of TRSs,
the programming discipline of orthogonality follows two restrictions: left-linearity and non-ambiguity.
The former restriction allows only definitions or rules in which each variable may appear only once on
the left-hand side (Ihs, for short) of each rule; the latter restriction avoids the inclusions of definitions or
rules that could simultaneously apply.

*Work supported by grants from CNPqg/Universal, CAPES/STIC-AmSud and FAPDF/PRONEX.
T Author supported by CAPES.
¥ Author partially supported by CNPq.

© A.C.R. Oliveira & M. Ayala-Rinc6n
This work is licensed under the
Creative Commons Attribution License.

D. Kesner and P. Viana (Eds.): LSFA 2012
EPTCS 113, 2013, pp. 145 , doi:10.4204/EPTCS.113.14

http://dx.doi.org/10.4204/EPTCS.113.14
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

146 On Formalizing Confluence of Orthogonal Systems

This work reports a formalization of the property of confluence of orthogonal systems in the proof
assistant PVS. The formalization uses the PVS theory trs, but several additional notions such as the
one of parallel rewriting relation were included in order to follow the standard inductive proof approach
of this property, that is based on the proof of the diamond property for the parallel reduction associated
to any orthogonal TRS as presented in [3]]. In the current state of this formalization, several technical
details that are related with properties of terms and subterms involved in one-step of parallel reduction
are axiomatized. Additionally, the PVS theory includes a complete formalization of the confluence of
non-ambiguous and linear TRSs. An extended version of this paper as well as the PVS development are
available at www.mat .unb.br/~ayala/publications.html.

Proofs of confluence of orthogonal TRSs have been known at least since Rosen’s seminal study on
Church-Rosser properties of tree manipulating systems [|12]] and several of them are based on a similar
strategy through the famous Parallel Moves Lemma. Rosen’s proof uses a notion of residuals of positions
in a notation that was standardized further by Huet in [8], paper in which Huet presented a proof of
confluence of left-linear and parallel closed TRSs that unlike Rosen’s proof admits critical pairs that
should be joinable from left to right in a sole step of parallel reduction.

In the chapter on orthogonality of [4], the authors presented five styles of proof of confluence of
orthogonal systems as well as an extension of the confluence result to weakly orthogonal TRSs. All the
given styles of proof are not different in essence: the first one uses the notions of residuals and descen-
dants via the parallel moves lemma, the second one avoids explicit mention of residuals by underlining
reductions, the third one imports from A-calculus and combinatory logic the notion of complete develop-
ments and the fourth style uses elementary and reduction diagrams. The fifth given proof is an inductive
confluence proof that is the more related with our approach of formalization and follows lines of reason-
ing based on analysis of properties of the parallel rewriting relation and the parallel moves lemma, just
by changing the definition of parallel reduction. In this proof the parallel relation is defined from the
rewriting relation as the reflexive relation that is compatible with substitutions and, parallely compatible
with contexts. Thus, after proving a version of the parallel moves lemma, the diamond property of the
parallel reduction is proved by induction on the structure of terms based on the analysis of the six pos-
sible cases of a parallel divergence; that is, whether the divergence terms are obtained from a term by
application of two different steps of parallel reduction, by combinations of reflexivity, substitution and
context according to the definition of the parallel relation. In this analysis, the version of the parallel
moves lemma is applied for the case of a divergence in which on the one side a term is obtained by
substitution and on the other side by context.

For this formalization it has been chosen the inductive proof presented in [3]] because it uses the
nowadays standard rewriting notation as the PVS theory trs does, uses a standard definition of parallel
reduction and follows lines of reasoning that from the authors’ viewpoint are of great didactical interest.

2 Specification of basic Notions and Definitions

Standard notation of of the theory of rewriting is used as in [3]] or [4]. One says that a rewriting relation
—

is confluent whenever (f<—o0—=*) C (=" 0*¢),
triangle-joinable if («0—=)C (o0 ¢+)U(=>" 0 «),
has the diamond property if («0—=)C(—o+).

A well-defined set of terms is built from a given signature and an enumerable set of variables. A rule
e = (I,r) is an ordered pair of terms such that the first one cannot be a variable and all variables in the

A.C.R. Oliveira & M. Ayala-Rincon 147

second one occur in the first one. A TRS is given as a set of rules. The reduction relation —f induced by
a TRS E is built as follows: a term ¢ reduces to #y (denoted as t — f) if there are a position 7 of ¢, a rule
e € E and a substitution o such that: 7|z = lhs(e)o, i.e., the subterm of 7 at position 7 is the lhs of the
rule e instantiated by the substitution ¢; and #j is obtained from ¢, by replacing the subterm at position
7 by the corresponding instantiation of the right-hand side (rhs, for short) of the rule, that is rhs(e)o.
The only change done in order to obtain #y from ¢, occurs at position 7. All this is summarized by the
following notation: t = ¢[x < lhs(e)o] —g t[w <« rhs(e)o] = to, where, in general, u[m < v|
denotes the term obtained from u by replacing the subterm at position 7 of u by the term v.

Given terms #; and f,, one says that #; reduces in parallel to #,, denoted as f; =g t,, whenever there
exist finite sequences

II:=m,...,7,;

Y:=o,...,0, and
I'=ey,... e,

of parallel positions of ¢, substitutions and rules in E, respectively, such that:
t|z, = lhs(e;)oi, Vi=1,...,n,

i.e., the subterm of #; at position 7; is the lhs of the rule e¢; instantiated by the substitution o;; and 1, is
obtained from ¢, by replacing all subterms at positions in IT as

|z, = rhs(e;)o;, Vi=1,...,n,

i.e., for all i, the subterm at position 7;, that is the o; instance of the lhs of the rule ¢;, [hs(e;)0;, is replaced
by the o; instance of the rhs of the rule, rhs(e;)o;. The only changes done in order to obtain #, from ¢y,
occur at the positions in Il. All this is summarized by the following notation:

= wlm <+ Loy...[m < l,00] =g ti[m < rioy]... w0, = n,

where, [; = [lhs(e;) and r; = rhs(e;), for 1 <i<n.

The PVS theory trs includes all necessary basic notions and properties to formalize elaborated the-
orems of the theory of rewriting such as the one of confluence of orthogonal systems. trs includes
specifications and formalizations of the algebra of terms, subterms and positions, properties of abstract
reduction systems, confluence and termination, among others. The current development of the PVS the-
ory called orthogonality deals specifically with orthogonality related notions and properties. Among
the definitions specified inside the theory orthogonality one could mention the basic boolean ones
listed below, where E is a set of rewriting rules (equations).

- Ambiguous?(E): bool = EXISTS (t1, t2) : CP?(E)(t1,t2)

- linear?(t): bool = FORALL (x | member(x,Vars(t))) : Card[position](Pos_var(t,x)) =1
- Right_Linear?(E): bool = FORALL (el | member(el, E)) : linear?(rhs(el))

- Left_Linear?(E): bool = FORALL (el | member(el, E)) : linear?(lhs(el))

- Linear?(E): bool = Left_Linear?(E) & Right_Linear?(E)

- Orthogonal?(E): bool = Left_Linear?(E) & NOT Ambiguous?(E)

148 On Formalizing Confluence of Orthogonal Systems

In the specification of Ambiguous? (E), CP7(E) (t1,t2) specifies that t1 and t2 are critical pairs
of the rewriting system E. A term t is linear? whenever, each variable x in t occurs only once. The
expressions Right _Linear?(E) and Left_Linear? (E) indicate respectively that the rhs and the lhs of
all rules in E are linear. The predicate Linear? specifies linearity of sets of rewriting rules. Finally,
Orthogonal? specifies orthogonality of TRSs.

More elaborated auxiliary definitions are specified as:

- local_joinability_triangle?(R) : bool = FORALL(t, t1, t2) : R(t, t1) & R(t, t2) =>
EXISTS s : (RC(R)(t1, s) & R(t2, s)) OR (R(t1, s) & RC(R)(t2, s))

- replaceTerm(s: term, t: term, (p: positions?(s))): RECURSIVE term =
IF length(p) = 0 THEN t
ELSE LET st = args(s), i = first(p), q = rest(p),
rst = replace(replaceTerm(st(i-1), t, q), st,i-1) IN app(f(s), rst)
ENDIF MEASURE length(p)

- reduction?(E) (s,t): bool = EXISTS ((e | member(e, E)), sigma, (p: positions?(s))):
subtermOF (s, p) = ext(sigma)(lhs(e)) & t = replaceTerm(s, ext(sigma)(rhs(e)), p)

- replace_par_pos(s, (fsp : SPP(s)), fse | fse’length = fsp’length,
fss | fss’length = fsp’length) RECURSIVE term =
IF length(fsp) = O THEN s
ELSE replace_par_pos(replaceTerm(s, ext(fss(0)) (rhs(fse(0))),
fsp(0)), rest(fsp), rest(fse), rest(fss))
ENDIF MEASURE length(fsp)

- parallel_reduction?(E) (s,t): bool =
EXISTS (fsp: SPP(s), fse | (FORALL (i : below[fse’length]) : member(fse(i), E)), fss)
fsp’length = fse’length & fsp’length = fss’length
& (FORALL (i : below[fsp’lengthl) : subtermOF(s, fsp(i)) = ext(fss(i))(lhs(fse(i))))
& t = replace_par_pos(s, fsp, fse, fss)

RC(R), thatisused in local_joinability_triangle?, specifies the reflexive closure of the rewrit-
ing relation R. For a functional term s, £(s) and args(s) compute the head function symbol of s
and its arguments respectively; also, app (f (s) , args(s)) builds the functional term s. The function
replace with arguments (t, st, i) replaces the (i+1) term of the sequence of arguments st by t.
The recursive function replaceTerm replaces a subterm of a term: it gives as output for the input triplet
(s, t, p) the term obtained from s by replacing the subterm at position p of s by t, that in standard
rewriting notation is written as s[p < t|. Similarly, replace_par _pos specifies the parallel replacements
necessary in one step of parallel reduction. The specification of the relation of parallel reduction is given
by parallel_reduction?, in which the variables fsp, fse and fss are the sequences of parallel po-
sitions, rewrite rules and substitutions, that were denoted respectively as I,I" and X, in the definition of
the parallel reduction relation.

The main lemmas and theorems specified and formalized about orthogonality are presented be-
low. All presented lemmas were formalized. The lemma Linear_and Non_ambiguous_implies_
confluent is a weaker version of the lemma of confluence of Orthogonal TRSs that is the last one.

- Linear_and_Non_ambiguous_implies_triangle: LEMMA FORALL (E)
Linear?(E) & NOT Ambiguous?(E) => local_joinability_triangle?(reduction?(E))

- One_side_diamond_implies_conflent: LEMMA local_joinability_triangle?(R) => confluent?(R)

- Linear_and_Non_ambiguous_implies_confluent: LEMMA

A.C.R. Oliveira & M. Ayala-Rincon 149

FORALL (E) : ((Linear?(E) & NOT Ambiguous?(E)) => confluent?(reduction?(E)))

- parallel_reduction: LEMMA
(reduction?(E) (t1, t2) => parallel_reduction?(E) (t1, t2))
& (parallel_reduction?(E)(t1, t2) => RTC(reduction?(E)) (t1, t2))

- parallel_reduction_is_DP: LEMMA Orthogonal?(E) => diamond_property?(parallel_reduction?(E))

- Orthogonal_implies_confluent: LEMMA
FORALL (E : Orthogonal) : LET RRE = reduction?(E) IN confluent?(RRE)

RTC(R), that is used in parallel_reduction, specifies the reflexive transitive closure of the rewrit-
ing relation R.

The lemma Linear_and Non ambiguous_implies_confluent is proved in a standard manner. In
fact, since, in addition to orthogonality restrictions, variables cannot appear repeatedly in the rhs of the
rules this proof does not need elaborated manipulation of reductions and instantiations in order to build
the term of parallel joinability for divergence terms.

By the specification of these lemmas, one can observe that Orthogonal_implies_confluent, that
is the main lemma, depends on the formalization of parallel reduction and parallel reduction_
is DP . The former lemma is relatively simple and the latter is the crucial one.

In order to classify overlaps in a parallel divergence from a term in which, on the one side, a parallel
reduction is applied at positions IT; and, on the other side, at positions I,, positions involved in a parallel
divergence are classified through the following specified recursive relations:

-sub_pos((fsp : PP), p : position): RECURSIVE finseq[position] =
IF 1length(fsp) = O THEN empty_seq[position]
ELSIF p <= fsp(0) & p /= fsp(0) THEN add_first(fsp(0), sub_pos(rest(fsp), p))
ELSE sub_pos(rest(fsp), p)
ENDIF MEASURE length(fsp)

-Pos_0Over((fspl : PP), (fsp2 : PP)): RECURSIVE finseq[position] =
IF length(fspl) = O THEN empty_seq[position]
ELSE (IF (length(sub_pos(fsp2, fsp1(0))) > 0
OR PP?(add_first(£sp1(0), £sp2)))
THEN add_first(fsp1(0), Pos_Over(rest(fspl), fsp2))
ELSE Pos_0Over(rest(fspl), fsp2) ENDIF)
ENDIF MEASURE length(fspl)

sub_pos(I1,) builds the subsequence of positions of the sequence of parallel positions IT that are
strictly below the position 7; that is, 7' € IT such that 7 is a prefix of 7, as usual denoted as & < 7.
Pos_0ver(IT;,I1,) builds the subsequence of positions from IT; that are parallel to all positions in IT, or
that have positions in the sequence I, below them. In this specification, PP? is a predicate for the type
PP of sequences of parallel positions. These functions are crucial in order to build the term of one-step
parallel joinability, necessary in the proof of lemma parallel reduction_is DP.

Confluence of orthogonal TRSs is proved according to the following sketch: Firstly, it is proved
— C = C—*, from which one concludes that =* =—"*. The lemma parallel_reduction corresponds
to the latter inclusion. Then, it is proved that for orthogonal systems, = has the diamond property,
which corresponds to the lemma parallel reduction_is DP. For an analytical proof see the extended
version of this paper.

150 On Formalizing Confluence of Orthogonal Systems

3 Formalization of Confluence of Non Ambiguous and Linear TRSs

Computational formalizations do not admit mistakes and, in particular, those specifications based on
rewriting rules as well as on recursive functional definitions can profit from a formalization of conflu-
ence of orthogonality. Several works report efforts on specification of different computational objects
(software and hardware) through TRSs (e.g., [[1,/2,/10,/11]]). Consequently, it is relevant to have robust
and as complete as possible libraries for the theory of abstract reduction systems and TRSs in different
proof assistants. To construct the joinability term for the lemma parallel _reduction_is_DP, one has
to consider several cases from which one is explained in the sequel.

Suppose, one has a parallel divergence from term #; = s = f, at positions II; and I'l, with respective
associated rules and substitutions I'; and X, i € {1,2}. Let w € IT; and [— r and o denote the associated
rule and substitution, respectively. sub_pos(I1;,) builds the subsequence I, of positions in IT; below
m. LetIy ={m,...m}. For 1 <j<k,letg ; — d; and o; denote the rule and substitution associated
with position 7;. Then, by non-ambiguity, for all 1 < j <k, there exist 71'; and n}’ such that 7'[71?;7'[;/ = mj,
being 711} a variable position of the lhs of the rule [— r.

Let ¢’ be the substitution obtained from ¢ modifying all variables according to substitutions o,
then, the divergence at position 7, that is f,|; £ s|z = 1|z can be joined in one step of parallel reduction
as ty|x = ro = ro’ + 1o’ = t1|z. The construction of ¢’ is one of the most elaborated steps in this
formalization. Namely, suppose x is a variable occurring in the lhs of the rule / — r only at position
7’ (left-linearity guarantees unicity of 7'); if &/ # 7'[}, for all 1 < j <k, then x6' := xo. Otherwise, let
{J1,---,jm} be the set of indices such that 7’ = n}[, for1 <l <mand1 < j; <k. Since I1; are parallel
positions, {7z} ,...7] } are parallel positions of xo. By applying the rules g, — d;, with substitutions

o), for 1 <1 <m, one reduces in parallel xoc = xo[%} < d; 0}]...[n] < d;,0;,]. Thus, in this case,
X 1 1" o
xo' is defined as xo[x} < dj,0;]...[n] < d;,0),].

The polymorphic function choose_seq below was specified to construct associated subsequences
of positions, rules or substitutions. choose_seq(Il;,I1;,I'}) and choose_seq(I1;,I1;,X;) give re-
spectively the subsequences of rules and substitutions associated with I1;. In particular, choose_seq
can be used in order to choose the sequence of terms, instantiations of rhs’s of rules, that should be
changed in order to obtain xo’, for a variable x occurring at position 77t'. Namely, this is done calling
choose_seq(sub_pos(Ily,n'), I1;,{d,01,...,d,0,}), where the sequence of terms {d, 0y, ...,d,0,}
is straightforwardly built from the sequences of rules and substitutions associated with IT;, i.e., I'} =
{g1 —di,....gn > dy} and Ly = {0y,...,0,}.

choose_seq(seq:PP, seql:PP, (seq2 | seql’length=seq2’length)): RECURSIVE finseq[T] =
IF length(seq)=0 THEN empty_seq
ELSIF index(seql,seq(0)) < seql’length
THEN add_first(seq2(index(seql,seq(0))), choose_seq(rest(seq),seql,seq2))
ELSE choose_seq(rest(seq),seql,seq2)
ENDIF MEASURE(length(seq))

The function index (I, 7r) above returns the index of the position 7 in the sequence IT, which is less
than the length of IT, if & occurs indeed in I1. Otherwise, it returns the length of I1.
The construction of ¢’ requires the specification of two recursive functions SIGMA and SIGMAP.

SIGMA(sigma, x, fst, (fsp:SPP(sigma(x))|length(fsp)=length(fst)))(y:(V)): term =
IF length(fst)=0 OR y/=x
THEN sigma(y)
ELSE replace_terms(sigma(x),fst,fsp)
ENDIF

A.C.R. Oliveira & M. Ayala-Rincon 151

SIGMA has as arguments o, x and the associated subsequences of substituting terms and positions
relative to the necessary update of x. One has, SIGMA(0,x,{d}, 0y, ...,d;,0;,}, {7} ,...,7; }) applied
to x will give xo”, that is xo' (7}, < dj,0;]...[%] <« r;,0,].

The construction of the whole substitution ¢’, is done through the function SIGMAP below, that ade-
quately calls the function SIGMA. SIGMAP (0, {x1,...,x; }, {77},..., &m, },{d101,...,dpCn} { M1, ..., T }),
where {x1,...,x,} and {77},..., 77} are the sequence of variables at lhs of the rule / — r that should
change, assuming /0 occurs at position 7, and the associated sequence of positions of these variables
in the whole term ¢#;, respectively. For a variable y € {x,... ,xq}, say y = x,, SIGMAP calls the function
SIGMA giving as input the sequence of terms to be substituted and their associated positions in yo. This is

done through application of the functions choose_seq and complement_pos. The former one, is called

as choose_seq({nmx;,,....xmxm;; }.{m,....m},{dio,...,d,0,}), which gives the sequence of
substituting terms. The latter one is called as complement pos(an,{m,..., T, }), which gives as result
the associated positions inside /o, thatis {7’ ,..., 7, ; }.

SIGMAP(sigma,fsv, (fspl:PP|fspl‘length=fsv‘length),
fst, (fsp2:PP|fsp2‘length=fst‘length)) (y: (V)): RECURSIVE term=
IF length(£fsv)=0
THEN sigma(y)
ELSIF y=fsv‘seq(0) & SP7(sigma(fsv‘seq(0))) (complement_pos(fspl‘seq(0),fsp2))
THEN SIGMA(sigma,fsv‘seq(0),choose_seq(sub_pos(fsp2,fspl‘seq(0)),fsp2,fst),
complement_pos (fspl‘seq(0),fsp2)) (y)
ELSE SIGMAP(sigma,rest(fsv),rest(fspl),fst,fsp2) (y)
ENDIF MEASURE(length(£fsv))

A small number of lemmas were formalized in order to prove soundness of this definition. Namely,
the fact that it is in fact a substitution is axiomatized. Among these lemmas, as a matter of illustration, it
is necessary to prove that the subsequences of terms and positions given as third and second parameters
of the call of SIGMA have the same length.

This is stated as the following lemma easily formalized by induction on the length of the finite
sequences. In fact, this lemma says that, if one compares a position p with a sequence of parallel positions
fsp, the complementary positions are obtained from the same positions that are under p.

complement_pos_preserv_sub_pos_lengthl: LEMMA
PP?(fsp) => complement_pos(p, fsp) ‘length = sub_pos(fsp, p)‘length

Currently, the whole PVS orthogonal development consist of among 1.300 lines of specification
and 46.000 lines of proofs. Indeed, there are 40 definitions, 84 proved lemmas and 8 axioms.

4 Related work and Conclusions

PVS specifications of non trivial notions and formalizations of results of the theory of term rewriting
systems were presented, that are related with the properties of the parallel rewriting reduction and or-
thogonal rewriting systems. The PVS theory for orthogonal TRSs enriches the PVS theory trs for
TRSs introduced in [6] and available in [14]. The formalization of these properties of orthogonal TRSs
are close to the analytical inductive proofs presented in textbooks such as [3]] and [4]] that in essence are
based in the well-known parallel moves lemma which projects parallel reductions over a simple rewriting
reduction. These formalizations provide additional evidence of the appropriateness of both the higher-
order specification language and the proof engine of PVS to deal in a natural way with specification of
rewriting notions and properties and their formalizations. This consequently implies the good support of

152 On Formalizing Confluence of Orthogonal Systems

PVS to deal with soundness and completeness and integrity constraints of specifications of computational
objects specified through rewriting rules.

In its current status, the theory for orthogonal TRSs includes a complete formalization of conflu-
ence of non-ambiguous and linear TRSs as well as a proof of confluence of orthogonal TRSs by using
standard definitions and proof ideas shown in text books that ease the understanding of them. The last
theorem depends on both the lemma of equivalence of the reflexive-transitive closure of the rewriting and
the parallel reduction relations and of the lemma of diamond property of the parallel reduction relation
of orthogonal TRSs. The latter lemma is formalized axiomatizing some technical properties of parallel
positions, rules and substitutions involved in one-step of parallel reduction. In [[13]] the criterion of weak
orthogonality was integrated to ensure confluence applying the certification tool CeTA. Unlike orthog-
onality, weak orthogonality allows for trivial critical pairs. To the best of our knowledge any complete
formalization of the property of confluence of orthogonal TRSs is available in any proof assistant.

References

[1] Arvind & X. Shen (1999): Using Term Rewriting Systems to Design and Verify Processors. IEEE Micro
19(3), pp. 36—46, doi:10.1109/40.768501.

[2] M. Ayala-Rincén, C. Llanos, R. P. Jacobi & R. W. Hartenstein (2006): Prototyping Time and Space Efficient
Computations of Algebraic Operations over Dynamically Reconfigurable Systems Modeled by Rewriting-
Logic. ACM Trans. Design Autom. Electr. Syst. 11(2), pp. 251-281, doi:10.1145/1142155.1142156.

[3] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press.

[4] M. Bezem, J.W. Klop & R. de Vrijer, editors (2003): Term Rewriting Systems by TeReSe. Cambridge Tracts
in Theoretical Computer Science 55, Cambridge University Press.

[5] A.L. Galdino & M. Ayala-Rincén (2008): A Formalization of Newman’s and Yokouchi Lemmas in a Higher-
Order Language. Journal of Formalized Reasoning 1(1), pp. 39-50.

[6] A.L.Galdino & M. Ayala-Rincén (2009): A PVS Theory for Term Rewriting Systems. In: Proceedings of the
Third Workshop on Logical and Semantic Frameworks, with Applications - LSFA 2008, Electronic Notes in
Theoretical Computer Science 247, pp. 67-83, doij10.1016/j.entcs.2009.07.049.

[7] A. L. Galdino & M. Ayala-Rincén (2010): A Formalization of the Knuth-Bendix(-Huet) Critical Pair Theo-
rem. J. of Automated Reasoning 45(3), pp. 301-325, doi:10.1007/s10817-010-9165-2,

[8] G. Huet (1980): Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems.
Journal of the Association for Computing Machinery 27(4), pp. 797-821, doii10.1145/322217.322230.

[9] D. E. Knuth & P. B. Bendix (1970): Computational Problems in Abstract Algebra, chapter Simple Words
Problems in Universal Algebras, pp. 263-297. J. Leech, ed. Pergamon Press, Oxford, U. K.

[10] C. Morra, J. Becker, M. Ayala-Rincén & R. W. Hartenstein (2005): FELIX: Using Rewriting-Logic for
Generating Functionally Equivalent Implementations. In: 15th Int. Conference on Field Programmable
Logic and Applications - FPL 2005, IEEE CS, pp. 25-30, doi;10.1109/FPL.2005.1515694.

[11] C. Morra, J. Bispo, J.M.P. Cardoso & J. Becker (2008): Combining Rewriting-Logic, Architecture Gen-
eration, and Simulation to Exploit Coarse-Grained Reconfigurable Architectures. In Kenneth L. Pocek &
Duncan A. Buell, editors: FCCM, IEEE Computer Society, pp. 320-321, doi:10.1109/FCCM.2008.37.

[12] B. K. Rosen (1973): Tree-Manipulating Systems and Church-Rosser Theorems. J. of the ACM 20(1), pp.
160-187, doi:10.1145/321738.321750.

[13] R. Thiemann (2012): Certification of Confluence Proofs using CeTA. In: First International Workshop on
Confluence (IWC 2012), p. 45.

[14] Theory trs (consulted January 2013): Available in the NASA LaRC PVS library,
http://shemesh.larc.nasa.gov/fm/ftp/larc/ PVS-library/pvslib.html.

http://dx.doi.org/10.1109/40.768501
http://dx.doi.org/10.1145/1142155.1142156
http://dx.doi.org/10.1016/j.entcs.2009.07.049
http://dx.doi.org/10.1007/s10817-010-9165-2
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1109/FPL.2005.1515694
http://dx.doi.org/10.1109/FCCM.2008.37
http://dx.doi.org/10.1145/321738.321750

	1 Introduction
	2 Specification of basic Notions and Definitions
	3 Formalization of Confluence of Non Ambiguous and Linear TRSs
	4 Related work and Conclusions

