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We generalize the notion of symmetries of propositional formulas in conjunctive normal form to
modal formulas. Our framework uses the coinductive models introduced in [4] and, hence, the results
apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows
that the symmetries of a modal formula preserve entailment: if σ is a symmetry of ϕ then ϕ |= ψ if
and only if ϕ |= σ(ψ).

1 Symmetries in Automated Theorem Proving

Many concrete, real life problems present symmetries. For instance, if we want to know whether trying
to place three pigeons in two pigeonholes results in two occupying the same nest, it does not really matter
which of all pigeons gets in each pigeonhole. Starting by putting the first pigeon to the first pigeonhole
is the same as if we put the second one in it. In mathematical and common-sense reasoning these kinds
of symmetries are often used to reduce the difficulty of reasoning — one can analyze in detail only one
of the symmetric cases and generalize the result to the others. The exact same is done in propositional
theorem proving. Many problem classes and, in particular, those arising from real world applications,
display a large number of symmetries; and current SAT solvers take into account these symmetries to
avoid exploring duplicate branches of the search space. In the last years there has been extensive research
in this area, focusing on how to define symmetries, how to detect them efficiently, and how SAT solvers
can better profit from them [27].

Informally, we can define a symmetry of a discrete object as a permutation of its components that
leaves the object, or some aspect of it, intact (think of the rotations of a spatial solid). In the context
of SAT solving we can formally define a symmetry as a permutation of the variables (or literals) of a
problem that preserves its structure and, in particular, its set of solutions. Depending on which aspect
of the problem is kept invariant, symmetries are classified in the literature into semantic or syntactic [9].
Semantic symmetries are intrinsic properties of a Boolean function that are independent of any particu-
lar representation, i.e., a permutation of variables that does not change the value of the function under
any variable assignment. Syntactic symmetries, on the other hand, correspond to the specific algebraic
representation of the function, i.e., a permutation of variables or literals that does not change the repre-
sentation. A syntactic symmetry is also a semantic symmetry, but the converse does not always hold.

In [23], Krishnamurthy used symmetries in the context of SAT solving. In this article, the notions of
global and local symmetries as inference rules are used to strengthen resolution-based proof systems for
propositional logic, showing that they can shorten the proofs of certain difficult propositional problems
like the pigeonhole principle. Since then, many articles discuss how to detect and exploit symmetries.
Most of them can be grouped into two different approaches: static symmetry breaking and dynamic
symmetry breaking. In the first approach [14, 15, 1], symmetries are detected and eliminated from the
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problem statement before the SAT solver is used. They work as a preprocessing step. In contrast, dy-
namic symmetry breaking [13, 9, 10] detects and breaks symmetries during the search space exploration.
The first approach can be used with any theorem prover; the second is prover dependent but it can take ad-
vantage of symmetries that emerge during search. Despite their differences they share the same goal: to
identify symmetric branches of the search space and guide the SAT solver away from symmetric branches
already explored. A third alternative was introduced in [8], which combines symmetry reasoning with
clause learning [28] in Conflict-Driven Clause Learning SAT solvers [18]. The idea is to augment clause
learning by using the symmetries of the problem to learn the symmetric equivalents of conflict-induced
clauses. This approach is particularly appealing as it does not imply major modifications to the search
procedure and the required modifications to the clause learning process are minor.

Symmetries have been extensively investigated and successfully exploited for propositional logic
SAT and some results involve other logics, see [6, 7, 17]. To the best of our knowledge, symmetries
remain largely unexplored in automated theorem proving for modal logics.

In this paper, we generalize the notion of symmetries to modal formulas in conjunctive normal form
for different modal logics including the basic modal language over different model classes (e.g., reflex-
ive, linear or transitive models), and logics with additional modal operators (e.g., universal and hybrid
operators). The main result of the article shows that symmetries of a modal formula preserve entailment:
if σ is a symmetry of ϕ then ϕ |= ψ if and only if ϕ |= σ(ψ). In cases where the modal language has
a tree model property, we can actually use a more flexible notion of symmetry that enables different
permutations to be applied at each modal depth. We also present a method to detect the symmetries
of modal formulas in conjunctive normal form. This method reduces the symmetry detection problem
to the graph automorphism problem. A general graph construction algorithm, suitable for many modal
logics, is presented. In order to tackle a broad range of modal languages that may or may not enjoy the
tree model property, we use in our work the semantics provided by coinductive modal models [4] instead
of the more familiar Kripke relational semantics. Coinductive modal models provide a homogeneous
framework to investigate different modal languages at a greater level of abstraction. A consequence
of this is that results obtained in the coinductive framework can be easily extended to concrete modal
languages by just giving the appropriate definition of the model classes and fixing some parameters.

In Section 2 we present modal logics and coinductive modal models. In Section 3 we define modal
symmetries, together with the appropriate notion of simulation to show that symmetries preserve modal
entailment. In Section 4 we introduce layered permutations and show that they can be used when the
modal logic has the adequate notion of the tree model property. In Section 5 we present a graph con-
struction algorithm to detect symmetries in modal formulas and prove its correctness. We draw our
conclusions and discuss future research in Section 6.

2 Modal Logics and Coinductive Models

In what follows, we will assume basic knowledge of classical modal logics and refer the reader to [11, 12]
for technical details. The coinductive framework for modal logics was introduced in [4] to investigate
normal forms for a wide number of modal logics. Its main characteristic is that it allows the representa-
tion of different modal logics in a homogeneous form. For a start, the set of formulas is as for the basic
(multi) modal logic.

Definition 1 (Modal formula). A modal signature is a pair 〈Atom,Mod〉 where Atom and Mod are two
countable, disjoint sets. We usually assume that Atom is infinite. The set of modal formulas over 〈Atom,
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Mod〉 is defined as
ϕ ::= a | ¬ϕ | ϕ ∨ϕ | [m]ϕ,

for a ∈ Atom, m ∈ Mod. > and ⊥ stand for an arbitrary tautology and contradiction, respectively.
Connectives such as ∧,→ and 〈m〉, are defined as usual.

We will define a symmetry as a permutation of literals that preserve the structure of formulas in
conjunctive normal form (CNF).

Definition 2 (Literals and modal CNF). A literal l is either an atom a or its negation ¬a. The set of
literals over Atom is ALit= Atom∪{¬a | a ∈ Atom}.

A modal formula is in modal conjunctive normal form (modal CNF) if it is a conjunction of modal
CNF clauses. A modal CNF clause is a disjunction of atoms and modal literals. A modal literal is
a formula of the form [m]C or ¬[m]C where C is a modal CNF clause. Every modal formula can be
transformed into an equisatisfiable formula in modal CNF in polynomial time (see [4, 26] for details).

A formula in modal CNF can be represented as a set of modal CNF clauses (interpreted conjunc-
tively), and each clause can be represented as a set of atom and modal literals (interpreted disjunctively).
With the set representation we can disregard the order and multiplicity in which clauses and literals ap-
pear. This will be important when we define symmetries below. In the rest of the paper we will assume
that modal formulas are in modal CNF, and we will refer to them as modal CNF formulas.

Example 1. The modal formula ϕ = 〈m〉(p∧q∧ p)∧ [m]¬r is equisatisfiable to the modal CNF formula
ϕ ′ = {{¬[m]{¬p,¬q}},{[m]{¬r}}}.

Up to now, we have not departed from the standard presentation of classical modal logic in important
ways. The main change introduced by the coinductive approach is with the definition of model and
semantic conditions.

Definition 3 (Models). Let S = 〈Atom,Mod〉 be a modal signature and W be a fixed, non-empty set.
ModsW , the class of all models with domain W, for the signature S , is the class of all tuples 〈w,W,V,R〉
such that w ∈W, V (v)⊆ Atom for all v ∈W, and

R(m,v)⊆ModsW for m ∈Mod and v ∈W.

Given a model M = 〈w,W,V,R〉 we will say that w is the point of evaluation and denote it as wM ,
W is the domain and denote it as |M |, V is the modal valuation and denote it as V M , and R is the
accessibility relation and denote it as RM . Mods denotes the class of all models over all domains,
Mods =

⋃
W ModsW .

Given M ∈ModsW , let Ext(M ), the extension of M , be the smallest subset of ModsW that contains
M and is such that if N ∈ Ext(M ), then RN (m,v)⊆ Ext(M ) for all m ∈Mod, v ∈W.

The definition of a coinductive modal model is similar to the usual definition of a Kripke pointed
model. The difference lies in the way the accessibility relation is defined. In particular, for each m and
each state w, R(m,w) is defined as the set of (potentially different) models accessible from w through
the m modality. Observe that for each W , ModsW is well-defined (coinductively), and so does Mods,
the class of all models. Our results will apply not only to Mods but to many of its subclasses. We will
be interested in classes which are closed under accessibility relations (closed classes for short): M ∈ C
implies Ext(M ) ⊆ C . In the rest of the paper we will only consider classes of models closed under
accessibility relations.
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Figure 1: a) A Kripke model. b) Equivalent coinductive model.

Example 2. Consider the pointed Kripke model in Figure 1a, and its equivalent coinductive modal model
in Figure 1b. The point of evaluation in each model is circled. The main difference is that the relation of
a coinductive model leads to another coinductive model, whereas in a Kripke model the relation leads to
another point of the same model.

We are now ready to introduce the definition of the satisfiability relation |=.

Definition 4 (Semantics). Let ϕ be a formula in modal CNF and M = 〈w,W,V,R〉 a model in Mods.
We define |= for modal CNF formulas, clauses and literals as

M |= ϕ iff for all clauses C ∈ ϕ we have M |=C
M |=C iff there is some literal l ∈C such that M |= l
M |= a iff a ∈V (w) for a ∈ Atom
M |= ¬a iff a 6∈V (w) for a ∈ Atom
M |= [m]C iff M ′ |=C, for all M ′ ∈ R(m,w)
M |= ¬[m]C iff M 6|= [m]C.

For C a class of models, we write C |= ϕ whenever M |= ϕ for every M in C , and we say that
ΓC = {ϕ | C |= ϕ} is the logic defined by C .

The set of models in C of a formula ϕ is the set ModC (ϕ) = {M |M ∈ C and M |= ϕ} (when C is
clear from the context we will just write Mod(ϕ)). We say that ψ can be inferred from ϕ in C and write
ϕ |=C ψ if ModC (ϕ)⊆ModC (ψ).

As shown in [4], the logic ΓMods (generated by the class of all possible models) coincides with the
basic multi-modal logic K. By properly restricting the model class we can capture different modal logics.
Let us call a predicate P on models a defining condition for a class C whenever C is such that M ∈ C
if and only if P(M ) holds. Consider the signature S = 〈Atom,Mod〉 where Atom = Prop∪Nom,
Mod= Rel∪{A}∪{@i | i ∈Nom}; and Prop= {p1, p2, . . .}, Nom= {n1,n2, . . .} and Rel= {r1,r2, . . .}
are mutually disjoint, countable infinite sets. In what follows, we will usually be interested in sub-
languages of the language defined over S by Definition 1.

Class Defining condition
C K

m PK
m (M ) ⇐⇒ RM (m,w) ⊆ {〈v, |M |,V M ,RM 〉 | v ∈ |M |},m ∈ Rel

CA PA(M ) ⇐⇒ RM (A,w) = {〈v, |M |,V M ,RM 〉 | v ∈ |M |}
C@i P@i(M ) ⇐⇒ RM (@i,w) = {〈v, |M |,V M ,RM 〉 | i ∈V (v)}, i ∈ Nom

CNom PNom(M )⇐⇒ {w | i ∈V M (w)} is a singleton, ∀i ∈ Nom

Figure 2: Defining conditions for different modal logics

Figure 2 introduces a number of closed model classes by means of their defining conditions. Observe
that PK

m is true for a model M if every successor of wM is identical to M except perhaps on its point
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of evaluation. We call m a relational modality when it is interpreted in C K
m because over this class they

behave as classical relational modalities [4].
We can capture different modal operators, like the ones from hybrid logics [2], by choosing the proper

class of models. Predicates PA and P@i , for instance, impose conditions on the point of evaluation of
the accessible models restricting the evaluation to the class of models where the relation is, respectively,
the total relation (∀xy.R(x,y)) and the ‘point to all i’ relation (∀xy.R(x,y)↔ i(y)). Observe that whenever
the atom i is interpreted as a singleton set, the ‘point to all i’ relation becomes the usual ‘point to i’
relation (∀xy.R(x,y)↔ y = i) of hybrid logics. Finally, predicate PNom turns elements of Nom into
nominals, i.e., true at a unique element of the domain of the model.

An interesting feature of this setting is that we can express the combination of modalities as the
intersection of their respective classes. For example, CH (@), the class of models for the hybrid logic
H (@), can be defined as follows:

CH (@) = CNom∩C@∩CRel, where
C@ =

⋂
i∈NomC@i , and CRel =

⋂
m∈RelC

K
m .

The crucial characteristic of the coinductive approach is that all these different modal operators are
captured using the same semantic condition introduced in Definition 4. All the details defining each
particular operator are now introduced as properties of the accessibility relation. As a result, a unique
notion of bisimulation is sufficient to cover all of them.

Definition 5 (Bisimulations). Given two models M and M ′ we say that M and M ′ are bisimilar (nota-
tion M↔M ′) if M Z M ′ for some relation Z ⊆ Ext(M )×Ext(M ′) such that whenever 〈w,W,V,R〉Z
〈w′,W ′,V ′,R′〉 we have the following properties:

• Harmony: a ∈V (w) iff a ∈V ′(w′), for all a ∈ Atom.

• Zig: N ∈ R(m,w) implies N Z N ′ for some N ′ ∈ R′(m,w′).

• Zag:N ′ ∈ R′(m,w′) implies N Z N ′ for some N ∈ R(m,w).

Such Z is called a bisimulation between M and M ′.

The classic result of invariance of modal formulas under bisimulation [11] can easily be proved.

Theorem 1. If M↔M ′, then M |= ϕ iff M ′ |= ϕ , for all ϕ .

As stated in [4], this general notion of bisimulation works for every modal logic definable as a closed
subclass of Mods.

3 Modal Symmetries

We will show that consistent symmetries for modal formulas behave similarly as in the propositional
case and, hence, could assist in modal theorem proving. Let us start by introducing the basic notions.

Definition 6 (Complete, Consistent and Generated sets of literals). A set of literals L is complete if for
each a ∈ Atom either a ∈ L or ¬a ∈ L. It is consistent if for each a ∈ Atom either a 6∈ L or ¬a 6∈ L.
Any complete and consistent set of literals L defines a unique valuation v ⊆ Atom as a ∈ v if a ∈ L and
a 6∈ v if ¬a ∈ L. For S⊆ Atom, the consistent and complete set of literals generated by S (notation LS) is
S∪{¬a | a ∈ Atom\S}.
Definition 7 (Permutation). A permutation is a bijective function σ : ALit 7→ ALit. For L a set of literals,
σ(L) = {σ(l) | l ∈ L}.
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In this work, we only deal with permutations defined over finite sets of literals, namely, those oc-
curring in the formula ϕ under consideration. This restricts us to finite groups of symmetries [19]. This
kind of permutations can be succinctly defined using cyclic notation, e.g., σ = (p ¬q)(¬p q) is the per-
mutation that makes σ(p) = ¬q, σ(¬q) = p, σ(¬p) = q and σ(q) = ¬p and leaves unchanged all other
literals; σ = (p q r)(¬p ¬q ¬r) is the permutation σ(p) = q, σ(q) = r and σ(r) = p and similarly for the
negations. Finally, for n ∈ Z≥1 and σ a permutation, we denote the composition of σ with itself n times
by σn. σ0 denote the identity permutation, σ−1 the inverse of σ , and σ−n, for n ∈ Z≤1 is the n-times
composition of σ−1 with itself.

Because, in our language, atoms may occur in some modalities (like @i) we should take some care
when we apply permutations to modal formulas. We will say that a modality is indexed by atoms if its
definition depends on the value of an atom. If m is indexed by an atom a we will sometimes write m(a).

Definition 8. [Permutation of a formula] Let ϕ be a modal CNF formula and σ a permutation. We
define σ(ϕ) recursively:

σ(ϕ) = {σ(C) |C ∈ ϕ} for ϕ a modal CNF formula
σ(C) = {σ(A) | A ∈C} for C a modal CNF clause

σ([m]C) = [σ(m)]σ(C)
σ(¬[m]C) = ¬[σ(m)]σ(C)

where σ(m) = σ(m(a)) = m(σ(a)) if m is indexed by a, and σ(m) = m otherwise.

Definition 9. A permutation σ is consistent if for every literal l, σ(¬l) = ¬σ(l). A permutation σ is a
symmetry for ϕ if ϕ = σ(ϕ), when conjunctions and disjunctions in ϕ are represented as sets.

Example 3. Trivially, the identity permutation σ(l) = l is a consistent symmetry of any formula ϕ . More
interestingly, consider ϕ = {{¬p,r}, {q,r}, {r, [m]{¬p, q}}}, then the permutation σ = (p ¬q)(¬p q)
is a consistent symmetry of ϕ .

Now, since a permutation over literals can be lifted to transform some formula ϕ into another formula
σ(ϕ), we also want to consider permutations applied to models. Indeed, if ϕ is true in some M , we
intuitively want σ(ϕ) to be true in some model obtained from lifting σ to M . Thus the next step is to
define the notion of applying permutations to models.

Definition 10 (Permutation of a model). Let σ be a permutation and M = 〈w,W,V,R〉 a model. Then
σ(M ) = 〈w,W,V ′,R′〉, where,

V ′(v) = σ(LV (v))∩Atom for all v ∈W, and,
R′(m,v) = {σ(N ) |N ∈ R(σ(m),v)} for all m ∈Mod and v ∈W.

For M a set of models, σ(M) = {σ(M ) |M ∈M}.
The main ingredient to prove that symmetries preserve entailment is the relation between models that

we call σ -simulation.

Definition 11 (σ -simulation). Let σ be a permutation. A σ -simulation between models M = 〈w,W,V,R〉
and M ′ = 〈w′,W ′,V ′,R′〉 is a non-empty relation Z ⊆ Ext(M )×Ext(M ′) that satisfies the following
conditions:

• Root: M ZM ′.

• Harmony: l ∈ LV (w) iff σ(l) ∈ LV ′(w′).
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• Zig: If M ZM ′ and N ∈ R(m,w) then N ZN ′ for some N ′ ∈ R′(σ(m),w′).

• Zag: If M ZM ′ and N ′ ∈ R′(m,w′) then N ZN ′ for some N ∈ R(σ−1(m),w).

We say that two models M and M ′ are σ -similar (notation M �σ M ′) if there is a σ -simulation Z
between them.

Notice that while M �σ M ′ implies M ′�σ−1 M , the relation �σ is not symmetric (in particular
σ might differ from σ−1). From the definition of σ -simulations it intuitively follows that while they do
not preserve validity of modal formulas (as is the case with bisimulations) they do preserve validity of
permutations of formulas.

Proposition 1. Let σ be a consistent permutation, ϕ a modal CNF formula and M = 〈w,W,V,R〉,
M ′ = 〈w′,W ′,V ′,R′〉 models such that M �σ M ′. Then M |= ϕ iff M ′ |= σ(ϕ).

Proof. The proof is by induction on ϕ . Base Case: Suppose ϕ = a then, M |= a iff a∈V (w) iff a∈ LV (w)
iff, by definition of σ -simulation, σ(a) ∈ LV ′(w′) iff M ′ |= σ(a).

Suppose ϕ = ¬a then, M |= ¬a iff a 6∈ V (w) iff ¬a ∈ LV (w) iff, by definition of σ -simulation,
σ(¬a) = ¬σ(a) ∈ LV ′(w′) iff σ(a) 6∈V ′(w′) iff M ′ |= ¬σ(a).

When ϕ =C, with C a clause or a conjunction of clauses, the proof follows by induction directly.
Inductive Step: Suppose ϕ = [m]ψ . Then M |= [m]ψ iff N |= ψ for all N ∈ R(m,w). Given

that M �σ M ′, by Zig we know that for all N exist N ′ such that N �σ N ′ and N ′ ∈ R′(σ(m),w′).
Then, by inductive hypothesis, N ′ |= σ(ψ) for all N ′ ∈ R′(σ(m),w′) iff M ′ |= [σ(m)]σ(ψ). Then, by
Definition 8, M ′ |= σ([m]ψ). The converse uses Zag and the inductive hypothesis.

Suppose ϕ = ¬[m]ψ . Then M |= ¬[m]ψ iff there exists N ∈ R(m,w) such that, N |= ¬ψ . Given
that M �σ M ′, by Zig we know that for all N exist N ′ such that N �σ N ′ and N ′ ∈ R′(σ(m),w′).
Then, by inductive hypothesis, N ′ |= σ(¬ψ) = ¬σ(ψ) iff M ′ |= ¬[σ(m)]σ(ψ). Then, by Definition 8,
M ′ |= σ(¬[m]ψ). The converse follows using Zag and the inductive hypothesis.

An easily verifiable consequence of Definitions 10 and 11 is that M and σ(M ) are always σ -similar.

Proposition 2. Let σ be a consistent permutation and M = 〈w,W,V,R〉 a model. Then M �σ σ(M ).

Proof. Let us define the relation Z = {(N ,σ(N )) |N ∈ Ext(M )} and show that it is a σ -simulation
between M and σ(M ). The Zig and Zag conditions are trivial by definition of σ(M ).

For Harmony, we have to check that l ∈ LV (w) iff σ(l) ∈ LV ′(w). From the definition of σ(M ),
LV ′(w) = σ(LV (w)), hence if l ∈ LV (w) then σ(l) ∈ σ(LV (w)). Moreover, σ(LV (w)) is a complete set of
literals because LV (w) is a complete set of literals and σ is a consistent permutation, and hence the
converse also follows.

Interestingly, if σ is a symmetry of ϕ then for any model M , M is a model of ϕ if and only if
σ(M ) is. This will be a direct corollary of the following proposition in the particular case when σ is a
symmetry and hence σ(ϕ) = ϕ .

Proposition 3. Let σ be a consistent permutation, M a model and ϕ a modal CNF formula. Then
M |= ϕ iff σ(M ) |= σ(ϕ).

Proof. From Proposition 2 (M �σ σ(M )) and Proposition 1.

Corollary 1. If σ is a symmetry of ϕ then M ∈Mod(ϕ) iff σ(M ) ∈Mod(ϕ).

To clarify the implications of the Corollary 1, consider the following example.
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Example 4. Let ϕ = (p∨q∨ r)∧ (s∨q∨ r)∧ (¬p∨¬s)∧〈m〉(p∨ s)∧ [A](¬r). From Figure 3a we can
verify that M1 |= ϕ .

Now σ = (p s)(¬p ¬s) is a symmetry of ϕ . Then, by Corollary 1, we have σ(M1) |= ϕ , which can
be verified in the model of Figure 3b.

A

A

AA m

w v

w v

{p, q} {s}

{p, q} {s}

M1

M2

(a)

A

A

AA m

w v

w v

{s, q} {p}

{s, q} {p}

σ(M1)

σ(M2)

(b)

Figure 3: a) Model M1. b) Model σ(M1).

The notion of σ -simulation in coinductive modal models is general enough to be applicable to a wide
range of modal logics. Notice though, that our definition of σ -simulation makes no assumption about
the models being in the same class. Consider, for example, a model M ∈ CH (@) and a permutation
σ = (i p)(¬i ¬p) for i ∈ Nom, p ∈ Prop. By the defining condition CH (@), nominals in M are true at a
unique element in the domain, but this does not necessary hold for σ(M ), and hence σ(M ) might not
be in CH (@). Hence, when working with subclasses of Mods we will often have to require additional
conditions to a permutation σ to ensure that for every M , σ(M ) is in the intended class.

Definition 12. Let σ be a permutation and C a closed class of models. We say that C is closed under σ

if for every M ∈ C , σ(M ) ∈ C .

Example 5 (σ -simulation in hybrid logic). Consider the class CH (@). CH (@) is not closed under
arbitrary permutations, but it is closed under permutations that send nominals to nominals.

Everything is now in place to show that modal entailment is preserved under symmetries.

Theorem 2. Let ϕ and ψ be modal formulas, let σ be a consistent symmetry of ϕ and C a class of
models closed under σ . Then ϕ |=C ψ if and only if ϕ |=C σ(ψ).

Proof. We first show that under the hypothesis of the theorem the following property holds

Claim: ModC (ϕ) = σ(ModC (ϕ)).

[⊇] Let N ∈ σ(ModC (ϕ)) and M ∈ ModC (ϕ) be such that N = σ(M ). Then M |= ϕ and by
Corollary 1, σ(M ) |= ϕ . Given that C is closed under σ , σ(M ) ∈ C and, hence, σ(M ) ∈ModC (ϕ).

[⊆] Let M ∈ModC (ϕ), then M |= ϕ . By Corollary 1, σ(M ) |= ϕ and, given that C is closed under σ ,
σ(M ) ∈ C . Therefore, σ(M ) ∈ModC (ϕ). Because σ is arbitrary, the results holds also for σ k, k ∈ Z.

Because σ is a permutation over a finite set, there exists n such that σn is the identity permutation.
Now consider σn−1(M ), we know σn−1(M ) ∈ModC (ϕ). Hence σn(M ) = M ∈ σ(ModC (ϕ)).
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Now, we have to prove that ϕ |=C ψ iff ϕ |=C σ(ψ). By definition, ϕ |=C ψ iff ModC (ϕ) |=C ψ .
By Proposition 3, this is the case if and only if σ(ModC (ϕ)) |=C σ(ψ).

Given that σ is a symmetry of ϕ , by the Claim above, σ(ModC (ϕ)) |=C σ(ψ) iff ModC (ϕ) |=C

σ(ψ), which by definition means ϕ |=C σ(ψ).

Theorem 2 provides an inexpensive inference mechanism that can be used in every situation where
entailment is involved during modal automated reasoning. Indeed, applying a permutation on a formula
is a calculation that is arguably computationally cheaper than a tableau expansion or a resolution step.
Therefore, new formulas obtained by this mean may reduce the total running time of an inference algo-
rithm. In the case of propositional logic, the strengthening of the learning mechanism has already shown
its results in [8]. In the case of modal logic, it remains to see when cases of ϕ |= ψ occur during a
decision procedure, and how to better take advantage of them.

4 Layered Permutations

In this section we present the notion of layered permutations. First, we present a definition of the tree
model property [11] for coinductive modal models that we will use.

Given a model M , a (finite) path rooted at M is a sequence π = (M0,m1,M1, . . . ,mk,Mk), for mi ∈
Mod where M0 =M , k≥ 0, and Mi ∈R(mi,wMi−1) for i= 1, . . . ,k. For a path π =(M0,m1,M1, . . . ,mk,
Mk) we define first(π) = M0, last(π) = Mk, and length(π) = k. We denote the set of all paths rooted
at M as Π[M ]. A coinductive tree model is a model that has a unique path to every reachable model
(every model in Ext(M )). Formally we can define the class of all coinductive tree models, CTree, with
the following defining condition:

CTree := PTree(M )⇐⇒ last : Π[M ] 7→ Ext(M ) is bijective.

For example, the unravelling construction (in its version for coinductive modal models) shown below
always defines a model in CTree.

Definition 13 (Model Unravelling). Given a model M = 〈w,W,V,R〉, the unravelling of M , (notation
T (M )), is the rooted coinductive model T (M ) = 〈(M ),Π[M ],V ′,R′〉 where

V ′(π) = V (wlast(π)), for all π ∈Π[M ],
R′(m,π) = {〈π ′,Π[M ],V ′,R′〉 | last(π ′) ∈ R(m, last(π))}, for m ∈Mod,π ∈Π[M ].

It is easy to verify that given a model M , its unravelling T (M ) is a tree (T (M ) ∈ CTree) and, as
expected, M and T (M ) are bisimilar.

In what follows, we will use trees to define a more flexible family of symmetries that we call layered
symmetries. The following will give a sufficient condition ensuring that layered symmetries also preserve
entailment.

Definition 14 (Tree model closure property). We say that a class C of models is closed under trees if for
every model M ∈ C there is a tree model T ∈ C such that M↔T .

From this definition, it follows that a class of models C closed under unravellings (T (M ) ∈ C for all
M ∈ C ) is also closed under trees.

Example 6. Trivially the class Mods (i.e., the basic modal logic) is closed under trees, and so does the
class CKAlt1 of models where the accessibility relation is a partial function. Many classes like CA, C@i

and CNom fail to be closed under trees.
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Logics defined over classes closed under trees have an interesting property: there is a direct correla-
tion between the syntactical modal depth of the formula and the depth in a tree model satisfying it. In
tree models, a notion of layer is induced by the depth (distance from the root) of the nodes in the model.
Similarly, in modal formulas, a notion of layer is induced by the nesting of the modal operators. A
consequence of this correspondence is that literals occurring at different formula layers are semantically
independent of each other (see [3] for further discussion), i.e., at different layers the same literal can be
assigned a different value.

Example 7. Consider the formula ϕ = (p∨ q)∧ (r∨¬�(¬p∨ q∨�¬r)) and a tree model M of ϕ .
Figure 4 shows the layers induced by the modal depth of the formula and the corresponding depth in M .

∧

¬�q r

∨

∨

∨

¬p �q

¬r

Layer 1

Layer 2

Layer 3

Model MFormula ϕ

p := true

p := true

r :=true

p

modal depth =  0

modal depth =  1

modal depth =  2

depth =  0

depth =  1

depth =  2

Figure 4: Induced layering on a model and a formula.

The independence between literals at different layers enables us to give a more flexible notion of a
permutation that we will call layered permutation. Key to the notion of layered permutation is that of a
permutation sequence.

Definition 15 (Permutation Sequence). We define a finite permutation sequence σ̄ as either σ̄ = 〈〉 (i.e., σ̄

is the empty sequence) or σ̄ = σ : σ̄2 with σ a permutation and σ̄2 a permutation sequence. Alternatively
we can use the notation σ̄ = 〈σ1, . . . ,σn〉 instead of σ̄ = σ1: . . . :σn:〈〉.

Let |σ̄ |= n be the length of σ̄ (〈〉 has length 0). For 1≤ i≤ n, we write σ̄i for the subsequence that
starts from the ith element of σ̄ . For i≥ n, we define σ̄i = 〈〉. In particular σ̄ = σ̄1. Given a permutation
sequence σ1 : σ̄2 we define head(σ1 : σ̄2) = σ1 and head(〈〉) = σId , where σId is the identity permutation.
We say that a permutation sequence is consistent if all of its permutations are consistent.

Applying a permutation sequence to a modal CNF formula can be defined as follows:

Definition 16 (Layered permutation of a formula). Let ϕ be a modal CNF formula and σ̄ a permutation
sequence. We define σ̄(ϕ) recursively:

〈〉(ϕ) = ϕ

(σ1 : σ̄2)(l) = σ1(l) for l ∈ ALit
(σ1 : σ̄2)([m]C) = [σ1(m)]σ̄2(C)

σ̄(C) = {σ̄(A) | A ∈C} for C a clause or a formula.
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Notice that layered permutations are well defined even if the modal depth of the formula is greater
than the size of the permutation sequence. Layered permutations let us use a different permutation at
each modal depth. This enables symmetries (layered symmetries) to be found, that would not be found
otherwise.

Example 8. Consider the formula ϕ = (p∨ [m](p∨¬r))∧ (¬q∨ [m](¬p∨ r)). If we only consider
non-layered symmetries then ϕ has none. However, the permutation sequence 〈σ1,σ2〉 generated by
σ1 = (p ¬q) and σ2 = (p ¬r) is a layered symmetry of ϕ .

As we can see from the previous example, layered permutations let us map the same literal to different
targets at each different modal depth. This additional degree of freedom can result in new symmetries
for a given formula.

From now on we can mostly repeat the work we did in the previous section to arrive to a result similar
to Theorem 2 but involving permutation sequences, with one caveat: the obvious extension of the notion
of permutated model σ(M ) to layered permutations is ill defined if M is not a tree. Hence, we need the
additional requirement that the class C of models is closed under trees for the result to go through.

Definition 17 (Layered Permutation of a model). Let σ̄ be a permutation sequence and M = 〈w,W,V,R〉
a tree model. Then σ̄(M ) = 〈w,W,V ′,R′〉, where,

V ′(v) = head(σ̄)(LV (v))∩Atom for all v ∈W, and,
R′(m,v) = {σ̄2(N ) |N ∈ R(head(σ̄)(m),v)} for all m ∈Mod and v ∈W.

For M a set of tree models, σ̄(M) = {σ̄(M ) |M ∈M}.
We can now extend the notion of σ -simulation to permutation sequences.

Definition 18 (σ̄ -simulation). Let σ̄ be a permutation sequence. A σ̄ -simulation between models M =
〈w,W,V,R〉 and M ′ = 〈w′,W ′,V ′,R′〉 is a family of relations Zσ̄i ⊆ Ext(M )× Ext(M ′), 1 ≤ i, that
satisfies the following conditions:

• Root: M Zσ̄1M
′.

• Harmony: If wZσ̄iw
′ then l ∈ LV (w) iff head(σ̄i)(l) ∈ LV ′(w′).

• Zig: If M Zσ̄iM
′ and N ∈ R(m,w) then N Zσ̄i+1N

′ for some N ′ ∈ R′(head(σ̄i)(m),w′).

• Zag: If M Zσ̄iM
′ and N ′ ∈ R′(m,w′) then N Zσ̄i+1N

′ for some N ∈ R(head(σ̄i)
−1(m),w).

We say that two models M and M ′ are σ̄ -similar (notation M �σ̄ M ′), if there is a σ̄ -simulation
between them.

An important remark about the previous definition is that it does not make any assumption about the
size of the permutation sequence. In fact, it is well defined even if the permutation sequence at hand is
the empty sequence. In that case, it just behave as the identity permutation at each layer, thus the relation
defines a bisimulation between the models.

Given a closed class of tree models C and σ̄ a permutation sequence, we say that C is closed under
σ̄ if for every M ∈ C , σ̄(M ) ∈ C .

Now we are ready to prove the main result concerning layered symmetries and entailment.

Theorem 3. Let ϕ and ψ be modal formulas and let σ̄ be a consistent permutation sequence, and let C
be a class of models closed under trees and C ∩CTree closed under σ̄ . If σ̄ is a symmetry of ϕ then for
any ψ we have that ϕ |=C ψ if and only if ϕ |=C σ̄(ψ).
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Proof. We first show that under the hypothesis of the theorem the following two properties hold.
Claim 1: ModC∩CTree(ϕ) = σ̄(ModC∩CTree(ϕ)).

The argument is the same as for the Claim in Theorem 2 but using permutation sequences.

Claim 2: ModC (ϕ) |=C ϕ iff ModC∩CTree(ϕ) |=C ϕ .
The left-to-right direction is trivial by the fact that ModC∩CTree(ϕ) ⊆ ModC (ϕ). For the other di-

rection, assume ModC∩CTree(ϕ) |=C ϕ and ModC (ϕ) 6|=C ϕ . Then there is M ∈ ModC (ϕ) such that
M 6|=C ϕ . But we know that M↔T , and T ∈ModC∩CTree(ϕ). Hence T |=C ϕ which contradicts our
assumption.

It rests to prove that ϕ |=C ψ if and only if ϕ |=C σ̄(ψ). By definition, ϕ |=C ψ if and only if
ModC (ϕ) |=C ψ . By Claim 2, this is case if and only if ModC∩CTree(ϕ) |=C ψ . By the layered version of
Proposition 3, this is the case if and only if σ̄(ModC∩CTree(ϕ)) |=C σ̄(ψ). Given that σ̄ is a symmetry of
ϕ , by Claim 1, σ̄(ModC∩CTree(ϕ)) |=C σ̄(ψ) if and only if ModC∩CTree(ϕ) |=C σ̄(ψ), which by Claim 2
is the case if and only if ModC (ϕ) |=C σ̄(ψ) which by definition means that ϕ |=C σ̄(ψ).

5 Symmetry Detection

Different techniques have been proposed for detecting symmetries of propositional formulas in clausal
form. Some of them, deal directly with the formula [10], while others, reduce the problem to the problem
of finding automorphisms in colored graphs constructed in such a way that the automorphism group of
the graph is isomorphic to the symmetry group of the formula under consideration [14, 15, 1].

The availability of efficient tools to detect graph automorphisms (e.g., [24, 16, 21]) has made the
later approach the most successful one because it is fast and easy to integrate.

In this section we present a technique for the detection of symmetries in modal formulas that extends
the construction proposed for propositional formulas to modal CNF formulas. We present the graph
construction algorithm and prove its correctness.

We now introduce some notation and definitions. In what follows, we consider modal CNF formulas
as set of sets as defined in Section 2 and write ψ ∈ ϕ to express that ψ is subformula of ϕ . Clauses
occurring at modal depth 0 are named top clauses and clauses occurring in modal literals are named
modal clauses. Let s : Mod×{0,1} 7→ N\{0,1} be an injective function and let t : Sub(ϕ) 7→ N be a
partial function defined as:

t(ψ) =


1 if ψ is a top clause
s(m,0) if ψ = [m]C
s(m,1) if ψ = ¬[m]C

The typing function t assigns a numeric type to every clause (top or modal). For modal clauses, the type
is based on the modality and the polarity of the modal literal in which it occurs. Let us assign to each
clause C occurring in ϕ a unique identifier id(C) = 〈m,k, i〉 where m is the modal depth at which the
clause occurs, k = t(ψ) is the type of the clause as returned by the typing function t and i ∈N is different
for each clause. To simplify notation, in what follows we will assume that each clause C is labeled by its
unique identifier id(C) = 〈m,k, i〉 and write Cm,k,i.

By definition, a symmetry of a formula ϕ is a bijective function that maps literals to literals. It can
naturally be extended to a function σext that also maps each clause C to σ(C). Notice that because σ

is a symmetry of ϕ both C and σ(C) are clauses in ϕ . Hence, both C and σ(C) will be assigned some
identifier by the id function.
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The following are properties of σext that are easy to verify.

Proposition 4. Let ϕ be a modal CNF formula and σ a symmetry of ϕ . Then for the extension of σ , σext ,
the following holds:

i) σext is a bijective function.

ii) If σext(Cm,k,i) =Cm′,k′,i′ then m = m′.

iii) If σext(Cm,k,i) =Cm′,k′,i′ then k = k′.

iv) If l ∈Cm,k,i then σext(l) ∈ σext(Cm,k,i).

v) σext is a symmetry of ϕ .

We can now introduce the construction of the colored graph corresponding to a given formula ϕ . We
will construct an undirected colored graph with two types of edges. As coloring function we will use the
typing function t introduced earlier in this section.

Definition 19. Let ϕ be a modal CNF formula and let At(ϕ) denote the set of atoms occurring in ϕ . The
colored graph G(ϕ) = (V,E1,E2) is constructed as follows:

1. For each atom a ∈ At(ϕ):

(a) Add two literal nodes of color 0: one labelled a and one labelled ¬a.
(b) Add an edge to E1 between these two nodes to ensure Boolean consistency.

2. For each top clause C of ϕ add a clause node of color t(C).

3. For each atom literal occurring in C, add an edge to E1 from C to the corresponding literal node.

4. For each modal literal [m]C′ (¬[m]C′) occurring in C:

(a) Add a clause node of color t([m]C′) (t(¬[m]C′)) to represent the modal clause C′.
(b) Add an edge to E1 from the node of C to this node.
(c) If m is indexed by an atom literal l then add an edge to E2 from the node C′ to the indexing

literal l.
(d) Repeat the process from point 3 for each literal (atom or modal) occurring in C′.

This construction creates a graph with 2+ 2|Mod| colours and at most (2|V |+ #(TopClauses) +
#(ModalClauses)) nodes.

Example 9. Let us consider the following formula ϕ = (a∨ [m](b∨¬[m]c))∧ (b∨ [m](a∨¬[m]c)). This
formula has six clauses (2 at modal depth 0, 2 at modal depth 1 and 2 at modal depth 2) and three
atoms (six literals). The associated colored graph, G(ϕ), is shown in Figure 5 (colors are represented
by shapes in the figure).

Note that the construction of Definition 19 induces a mapping g that associates to each literal and
clause the corresponding node in the graph.

To prove that the proposed construction is correct, we first have to show that each symmetry of the
formula is a colored automorphism of the graph.

Proposition 5. Let ϕ be a modal CNF formula, σ a symmetry of ϕ , G(ϕ) = (V,E1,E2) the colored
graph of ϕ as defined by Definition 19, and g the mapping induced by the construction of G(ϕ). Then
π = g◦σext is an automorphism of G(ϕ).
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A = (a∨ [m](b∨¬[m]c))
B = (b∨ [m](a∨¬[m]c))
C = [m](b∨¬[m]c)
D = [m](a∨¬[m]c)
E = [m]c
F = [m]c

Figure 5: Graph representation of ϕ .

Proof. To simplify notation lets assume that g is the identity function (i.e., we do not differentiate be-
tween a clause (or literal) and its associated node in the graph) and as a consequence π = σext . Then π is
an automorphism of G(ϕ) if the following holds:

1. (l,¬l) ∈ E1 iff (π(l),π(¬l)) ∈ E1 for all l ∈V .
We have to consider the following cases:

- σ is a permutational symmetry:
(→): Assume π = σext = (a b)(¬a ¬b). Then (π(a),π(¬a)) = (b,¬b) ∈ E1 by construction
of G(ϕ).
(←): (a,¬a) ∈ E1 by construction of G(ϕ).

- σ is a phase-shift symmetry:
(→): Assume π = σext = (a ¬a). Then (π(a),π(¬a)) = (¬a,a), but given that G(ϕ) is an
undirected graph (¬a,a) = (a,¬a) ∈ E1 by construction.
(←): (a,¬a) ∈ E1 by construction of G(ϕ).

- σ is a compositional symmetry: It follows directly from the previous two cases.

2. (l,Cm,k,i) ∈ E1 iff (π(l),π(Cm,k,i)) ∈ E1 for all l,Cm,k,i ∈V .
(→): By construction, (l,Cm,k,i) ∈ E1 only if l ∈Cm,k,i. Then, given that σext is a symmetry and by
Proposition 4iv), we know that σext(l) and σext(Cm,k,i) both occur in ϕ and σext(l) ∈ σext(Cm,k,i).
Then, by construction, we have that (π(l),π(Cm,k,i)) ∈ E1.
(←): It follows directly by construction of G(ϕ).

3. (Cm,k,i,Cm′,k′,i′) ∈ E1 iff (π(Cm,k,i),π(Cm′,k′,i′)) ∈ E1 for all Cm,k,i,Cm′,k′,i′ ∈V .
(→): If (Cm,k,i,Cm′,k′,i′) ∈ E1 we know that either m < m′ or m > m′. Assume m < m′ then
Cm′,k′,i′ is a modal clause occurring in Cm,k,i. By Proposition 4iv), we have that σext(Cm′,k′,i′) is
a modal clause occurring in σext(Cm,k,i), and given that σext is a symmetry of ϕ , σext(Cm,k,i) and
σext(Cm′,k′,i′) both occur in ϕ , therefore, by construction, π(Cm,k,i) ∈V and, π(Cm′,k′,i′) ∈V , there-
fore (π(Cm,k,i),π(Cm′,k′,i′)) ∈ E1.
(←): It follows directly by construction of G(ϕ).

4. (l,Cm,k,i) ∈ E2 iff (π(l),π(Cm,k,i)) ∈ E2 for all l,Cm,k,i ∈V .
(→): (l,Cm,k,i) ∈ E2 if the modality of the modal clause Cm,k,i is indexed by l. Given that σext

is a symmetry of ϕ , we know that σext(l) ∈ ϕ and σext(Cm,k,i) ∈ ϕ and that σext(l) index the
modality of the modal clause σext(Cm,k,i), therefore, by construction, π(l) ∈ V and π(Cm,k,i) ∈ V
and (π(l),π(Cm,k,i)) ∈ E2.
(←): It follows directly by construction of G(ϕ).
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5. For every cycle (x y) ∈ π , x and y have the same color.
Follows from Proposition 4iii) and the fact that by construction different types of clauses are
assigned different colors in the graph.

We now prove that any colored automorphism of G(ϕ) induces a symmetry of ϕ .

Proposition 6. Let ϕ be a modal CNF formula, G(ϕ) = (V,E1,E2) the colored graph of ϕ as defined
by Definition 19, π an automorphism of G(ϕ) and g the mapping induced by the construction of G(ϕ).
Then σext = g−1 ◦π is a symmetry of ϕ .

Proof. Once more, assume g is the identity. To prove that σext is a symmetry of ϕ , we have to prove the
following properties:

1. σext is a consistent permutation, i.e., σext(¬l) = ¬σext(l) for all l ∈ ALit.
By construction, Boolean consistency edges only connect literal nodes. Let li ∈ V be a literal
node. Then by construction we have that (li,¬li) ∈ E1. Now assume that π(li) = l j for l j ∈ V .
Given that π is an automorphism it must be the case that (π(li),π(¬li)) ∈ E1, and therefore that
π(¬li) = ¬l j = ¬π(li), which implies that σext(¬li) = ¬σext(li).

2. If Cm,k,i ∈ ϕ then σext(Cm,k,i) ∈ ϕ .
By construction Cm,k,i ∈V implies that Cm,k,i ∈ ϕ . As π is an automorphism, π(Cm,k,i) ∈V , there-
fore, π(Cm,k,i) ∈ ϕ which implies that σext(Cm,k,i) ∈ ϕ .

3. If l ∈ ϕ then σext(l) ∈ ϕ .
It follows by the same argument as in the previous case.

4. If σext(Cm,k,i) =Cm′,k′,i′ then k = k′.
It follows from the fact that π is a colored automorphism, mapping only nodes of the same color,
and that by construction, clauses of the same type are assigned the same color in the graph.

5. If σext(Cm,k,i) =Cm′,k′,i′ then m = m′.
We prove this by induction on m, the modal depth at which a clause occurs in ϕ .
Base Case: m = 0. We have to prove that if σext(C0,k,i) =Cm′,k′,i′ then m′ = 0. Assume that m′ 6= 0.
Then, there is a clause Cn,s, j, with n < m′ such that, Cm′,k′,i′ is a modal clause occurring in it. By
construction, we then have that (Cn,s, j,Cm′,k′,i′)∈ E1. As π is an automorphism of G(ϕ), we should
have (π(Cn,s, j),π(Cm′,k′,i′)) = (π(Cn,s, j),C0,k,i) ∈ E1, but by construction there is no such edge.
Inductive Step: n < m =⇒ m. By construction of G(ϕ) if (Cm,k,i,Cn,l, j) ∈ E1 then |m− n| = 1.
Now, assume m 6= m′. We know that there is a clause C(m′−1),s, j such that (C(m′−1),s, j,Cm′,k′,i′)∈ E1.
Then, as π is an automorphism of G(ϕ), it must be the case that (π(C(m′−1),s, j),π(Cm′,k′,i′)) =
(π(C(m′−1),s, j),Cm,k,i) ∈ E1. By the inductive hypothesis we know that π(C(m′−1),s, j) =C(m′−1),s, j′

and therefore, we have that (C(m′−1),s, j′ ,Cm,k,i)∈ E1. But then we get that |m−(m′−1)| ≥ 2, which
by construction cannot happen. Therefore (C(m′−1),s, j′ ,Cm,k,i) 6∈ E1, contradicting the fact that π is
an automorphism of G(ϕ).

6. If l index a clause Cm,k,i then σext(l) index the clause σext(Cm,k,i).
If l index a clause Cm,k,i, then by construction (l,Cm,k,i) ∈ E2. Given that π is an automorphism,
(π(l),π(Cm,k,i)) ∈ E2, which implies that σext(l) index the clause σext(Cm,k,i).
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We have proved that σext , the extension of σ , obtained from an automorphism of the graph, is a symmetry
of ϕ . To obtain the original symmetry σ we just take the restriction of σext to atom literals.

Finally we can prove that our construction is correct.

Theorem 4. Let ϕ be a modal CNF formula and G(ϕ) = (V,E1,E2) the colored graph constructed
following the construction of Definition 19. Then every symmetry σ of ϕ corresponds one-to-one to an
automorphism π of G(ϕ).

Proof. Immediate from Proposition 5 and 6.

This construction enables the detection of symmetries as defined in Section 3, that is, symmetries
defined over literals that can appear at various modal depths of a given formula. To detect layered
symmetries (see Section 4) for logics with the tree model closure property, the construction needs to
be modified to capture the notion of layers. This is easy to achieve by just changing the way literals
occurring in the formula are handled (see [25] for details). Properties 5 and 6 (suitably generalized) also
hold in this case.

6 Conclusions and Further Work

The notion of symmetry has been well studied in propositional logic, and various optimizations of de-
cision procedures based on it are known. In this article, we extend the notion of syntactic and semantic
symmetries to many different modal logics using the framework of coinductive models. The main con-
tribution is that a symmetry σ preserves entailments whenever the class is closed by σ . For example,
arbitrary symmetries preserve entailments in the basic modal logic, but for the hybrid logic H (@) we
can only consider symmetries that map nominals to nominals. The second contribution of the paper is to
show that if the class of models is closed under trees, then the more flexible notion of layered symmetry
also preserve entailments.

To arrive at the previous results, we defined the concept of σ -simulation and showed that it preserves
σ -permutation of formulas. We then presented permutation sequences σ̄ , and σ̄ -simulations. Permuta-
tion sequences are relevant in those classes of models that are closed under trees. This property enables
the use of layered symmetries, a notion that can capture more symmetries than the ordinary symmetry
definition. Indeed, layered symmetries can be detected independently within atoms at each modal depth
of a formula. σ̄ -simulations extend the notion of σ -simulations to permutation sequences, and enabled
us to prove that layered symmetries also preserve entailment.

Finally, we presented a method to detect symmetries in modal formulas that reduces the problem to
the graph automorphism problem. Given a formula ϕ , the idea is to build a graph in such a way that the
automorphism group of the graph is isomorphic to the symmetry group of the formula that generated it. A
general construction algorithm, suitable for many modal logics, was presented and its correctness proved.
The presented graph construction algorithm can be extended to detect layered symmetries. Preliminary
results on modal symmetries concerning this last construction can be found in [25] where we developed
an efficient algorithm to detect symmetries for the basic modal logic, and empirically verified that many
modal problems (both randomly and hand generated) contain symmetries.

Our ongoing research focuses on the incorporation of symmetry information into a modal tableau
calculi such as [22, 20] or modal resolution calculi such as [5]. One promising theme that we will
investigate in the future is permutations involving also modal literals.
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