
D. Kesner and P. Viana (Eds.): LSFA 2012
EPTCS 113, 2013, pp. 45–60, doi:10.4204/EPTCS.113.7

© M. Ayala-Rincón, M. Fernández & D. Nantes-Sobrinho
This work is licensed under the
Creative Commons Attribution License.

Elementary Deduction Problem for Locally Stable Theories
with Normal Forms ∗

Mauricio Ayala-Rincón†

Departamentos de Matemática e
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We present an algorithm to decide the intruder deduction problem (IDP) for a class of locally stable
theories enriched with normal forms. Our result relies on a new and efficient algorithm to solve a re-
stricted case of higher-order associative-commutative matching, obtained by combining theDistinct
Occurrences of AC-matchingalgorithm and a standard algorithm to solve systems of linear Diophan-
tine equations. A translation between natural deduction and sequent calculus allows us to use the
same approach to decide theelementary deduction problemfor locally stable theories. As an appli-
cation, we model the theory of blind signatures and derive analgorithm to decide IDP in this context,
extending previous decidability results.

Introduction

There are different approaches to model cryptographic protocols and to analyse their security proper-
ties [17]. One technique consists of proving that an attack requires solving an algorithmically hard
problem; another consists of using a process calculus, suchas the spi-calculus [3], to represent the oper-
ations performed by the participants and the attacker. In recent years, the deductive approach of Dolev
and Yao [20], which abstracts from algorithmic details and models an attacker by a deduction system, has
successfully shown the existence of flaws in well-known protocols. A deduction system under Dolev-
Yao’s approach specifies how the attacker can obtain new information from previous knowledge obtained
either by eavesdropping the communication between honest protocol participants (in the case of a passive
attacker), or by eavesdropping and fraudulently emitting messages (in the case of an active attacker). The
intruder deduction problem(IDP) is the question of whether a passive eavesdropper can obtain a certain
information from messages observed on the network.

Abadi and Cortier’s approach [1] proposes conditions for analysing message deducibility and indis-
tinguishability relations for security protocols modelled in the applied pi-calculus [2]. In particular, [1]
shows that IDP is decidable forlocally stabletheories. However, to ensure the soundness of this ap-
proach, the definition of locally stable theories given in [1] needs to be modified (as confirmed via per-
sonal communication with the second author of [1]). In this work, we made the necessary modifications
and propose a new approach to solve IDP in the context of locally stable theories.
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Our notion of locally stable theory is based on the existenceof a finite and computable saturated set,
but, unlike [1], our saturated sets include normal forms1. The new approach we propose in order to prove
the decidability of IDP is based on an algorithm to solve a restricted case of higher-order associative-
commutative matching (AC-matching). To design this algorithm we use well-known results for solving
systems of linear Diophantine equations (SLDE) [12, 15, 22,27], which we combine with a polynomial
algorithm to solve the DO-ACM problem (Distinct Occurrences of AC-Matching) [8].

In the case where the signature of the equational theory contains, for each AC function symbol⊕,
its corresponding inversei⊕, we obtain a decidability result which is polynomial with relation to the size
of the saturated set (built from the initial knowledge of theintruder). Thanks to the use of the algorithm
for solving SLDE overZ, we avoid an exponential time search over the solution spacein the case of
AC symbols (improving over [1], where an exponential numberof possible combinations have to be
considered). For more details we refer the reader to the extended version of this paper [5].

After introducing the class of locally stable theories and proving the decidability of the IDP for
protocols in this class, we show that the Elementary Deduction Problem (EDP) introduced in [29] is also
decidable in polynomial time with relation to the size of a saturated set of terms. EDP is stated as follows:
given a setΓ of messages and a messageM, is there anE-contextC[. . .] and messagesM1, . . . ,Mk ∈ Γ
such thatC[M1, . . . ,Mk] ≈E M? Here,E is the equational theory modelling the protocol. We use this
approach to model theories with blind signatures. As an application, using a previous result that links the
decidability of the EDP to the decidability of the IDP when the theoryE satisfies certain conditions, we
obtain decidability of IDP for a subclass of locally stable theories combined with the theoryB of blind
signatures. In this way, we generalise a result from [1] (Section 5.2.4): it is not necessary to prove that
the combination of the theoriesE andB is locally stable.

Related Work. The analysis of cryptographic protocols has attracted a lotof attention in the last
years and several tools are available to try to identify possible attacks, see Maude-NPA [21], ProVerif [10],
CryptoVerif [11], Avispa [4], Yapa [7].

Sequent calculus formulations of Dolev Yao intruders [28] have been used in a formulation of open
bisimulation for the spi-calculus. In [29], deductive techniques for dealing with a protocol with blind
signatures in mutually disjoint AC-convergent equationaltheories, containing a unique AC operator each,
are considered. As an alternative approach, the intruder’sdeduction capability is modelled inside a
sequent calculus modulo a rewriting system, following the approach of [9]. Then, the IDP is reduced in
polynomial time to EDP.

By combining the techniques in [29] and [13], the IDP formulation for an Electronic Purse Protocol
with blind signatures was proved to reduce in polynomial time to EDP for an AC-convergent theory
containing three differentAC operators and rules for exponentiation [26], extending theprevious results.
However, no algorithm was provided to decide EDP. More precisely, assuming that EDP is solved in time
O( f (n)), it was proved that IDP reduces polynomially to EDP with complexity O(nk× f (n)), for some
constantk. Thus, whenever the former problem is polynomial, the IDP isalso polynomial.

Contributions. We present a technique to decide EDP or IDP in AC-convergent equational theories.
Our approach is based on a “local stability” property inspired by [1], instead of proving that the deduction
rules are “local” in the sense of [25] as done in many previousworks [13,16,19,24]. More precisely, the

1With this simple modification, the correctness proof in [1] can also be carried out, fixing a gap in Lemma 11.
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main contributions of this paper are:

• We adapt and refine the technique proposed in [1], where deducibility and indistinguishability rela-
tions are claimed to be decidable in polynomial time for locally stable theories. First, we changed
the definition of locally stable theories, adding normal forms, which are needed to carry out the
decidability proofs. Second, we designed a new algorithm todecide IDP in locally stable theo-
ries. The algorithm provided in [1] is polynomial for the class of subterm theories (Proposition
10 in [1]), but the proof does not extend directly to locally stable theories (despite the statement
in Proposition 16). Our algorithm relies on solving a restricted case of higher-order AC-matching
problem that is used to decide the deduction relation. It is acombination of two standard algo-
rithms: one for solving the DO-ACM problem [8] which has a polynomial bound in our case;
and one for solving systems of Linear Diophantine Equations(SLDE), which is polynomial in
Z [12, 15, 22, 27]. Using this algorithm we prove that IDP is decidable in polynomial time with
respect to the saturated set of terms, for locally stable theories with inverses.

• A decidability result for the EDP for locally stable theories, which extends the work of Tiu and
Goré [29]. As an application, we present a strategy to decide IDP for locally stable theories
combined with blind signatures. Here, the combination of theories does not need to be locally
stable.

In order to get the polynomial decidability result claimed in [1] for locally stable theories, we had
to restrict to theories that contain, for eachAC symbol in the signature, the corresponding inverse. The
inverses are necessary when we interpret our term algebra inside the integersZ to solve SLDE (terms
headed by the inverse function will be seen as negative integers). If the theory does not contain inverses,
we would have to solve the SLDE forN which is a well known NP-complete problem.

1 Preliminaries

Standard rewriting notation and notions are used (e.g. [6]). We assume the following sets: a countably
infinite setN of names(we usea,b,c,m to denote names); a countably infinite setX of variables(we
usex,y,z to denote variables); and a finitesignatureΣ, consisting of function names and their arities. We
write arity( f ) for the arity of a functionf , and letar(Σ) be the maximal arity of a function symbol inΣ.

The set oftermsis generated by the following grammar:

M,N := a|x| f (M1, . . . ,Mn)

where f ranges over the function symbols ofΣ andn matches the arity off , a denotes a name inN
(representing principal names, nonces, keys, constants involved in the protocol, etc) andx a variable. We
denote byV(M) the set of variables occurring inM. A messageM is ground if V(M) = /0. Thesize|M|

of a termM is defined by|u|= 1, if u is a name or a variable; and| f (M1, . . . ,Mn)|= 1+∑n
i=1 |Mi|.

The set ofpositionsof a termM, denoted byPos(M), is defined byPos(M) := {ε}, if M is a name
or a variable; andPos(M) := {ε}∪

⋃n
i=1{ip | p∈ Pos(Mi)}, if M = f (M1, . . . ,Mn) where f ∈ Σ. The

positionε is called theroot position. The size of|M| coincides with the cardinality ofPos(M). The set
of subtermsof M is defined asst(M) = {M|p | p∈ Pos(M)}, whereM|p denotes the subterm ofM at
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position p. For a setΓ of terms, the notion of subterm can be extended as usual:st(Γ) :=
⋃

M∈Γ st(M).
For p ∈ Pos(M), we denote byM[t]p the term that is obtained fromM by replacing the subterm at
positionp by t.

A term rewriting system (TRS) is a setR of oriented equations over terms in a given signature. For
termssandt, s→R t denotes thats rewrites tot using an instance of a rewriting rule inR. The transitive,
reflexive-transitive and equivalence closures of→R are denoted by

+
→R ,

∗
→R and

∗
↔R , respectively. The

equivalence closure of the rewriting relation,
∗
↔R , is denoted by≈R.

Given a TRSR in which some function symbols are assumed to be AC, and two terms s and t,
s→R∪AC t if there existsw such thats=AC w andw →R t, where=AC denotes equality modulo AC
(according to the AC assumption on function symbols). For every terms, the set of normal formss↓R

(closed modulo AC) ofs is the set of termst such thats
∗
→R∪AC t andt is irreducible for→R∪AC. R is

said to be AC-convergent whenever it is AC-terminating and AC-confluent.

We equip the signatureΣ with an equational theory≈E induced by a set ofΣ-equationsE, that is,
≈E is the smallest equivalence relation that containsE and is closed under substitutions and compatible
with Σ-contexts. An equational theory≈E is said to be equivalent to a TRSR whenever≈R = ≈E.
An equational theory≈E is AC-convergent when it has an equivalent rewrite systemR which is AC-
convergent. In the next sections, given an AC-convergent equational theory≈E, normal forms of terms
are computed with respect to the TRSR associated to≈E, unless otherwise specified. To simplify
the notation we will denote byE the equational theory induced by the set ofΣ-equationsE. We will
denote byΣE the signature used in the set of equationsE. Thesize cE of an equational theoryE with an
associated TRSR consisting of rules

⋃k
i=1{l i → r i} is defined ascE = max1≤i≤k{|l i |, |r i |,ar(Σ)+1}. For

R = /0, definecE = ar(Σ)+1.

Let � be a new symbol which does not yet occur inΣ ∪X. A Σ-context is a termt ∈ T(Σ,X ∪

{�}) and can be seen as a term with “holes”, represented by�, in it. Contexts are denoted byC. If
{p1, . . . , pn} = {p∈ Pos(C) |C|p = �}, wherepi is to the left ofpi+1 in the tree representation ofC,
thenC[T1 . . . ,Tn] := C[T1]p1 . . . [Tn]pn. In what follows a context formed using only function symbols in
ΣE will be called anE-contextto emphasize the equational theoryE.

A termM is said to be anE-alien if M is headed by a symbolf /∈ ΣE or a private name/constant. We
write M == N to denote syntactic equality of ground terms.

In the rest of the paper, we use signatures, terms and equational theories to model protocols.Mes-
sagesexchanged between participants of a protocol during its execution are represented by terms. Equa-
tional theories and rewriting systems are used to model the cryptographic primitives in the protocol and
the algebraic capabilities of an intruder.

2 Deduction Problem

Given a setΓ that represents the information available to an attacker, we may ask whether a given
ground termM may be deduced fromΓ using equational reasoning. This relation is writtenΓ ⊢ M and
axiomatised in a natural deduction like system of inferencerules.
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Table 1: SystemN : a natural deduction system for intruder equational deduction

M ∈ Γ
(id)

Γ ⊢ M
Γ ⊢ M1 . . . Γ ⊢ Mn ( fI ) f ∈ ΣEΓ ⊢ f (M1, . . . ,Mn)

Γ ⊢ N (≈)M ≈E N
Γ ⊢ M

2.1 Locally Stable Theories

Let ⊕ be an arbitrary function symbol inΣE for an equational theoryE. We writeα ·⊕ M for the term
M⊕ . . .⊕M, α times (α ∈ N). Given a setSof terms, we writesum⊕(S) for the set of arbitrary sums of
terms inS, closed moduloAC:

sum⊕(S) = {(α1 ·⊕ T1)⊕ . . .⊕ (αn ·⊕ Tn) |αi ≥ 0,Ti ∈ S}

Definesum(S) =
⋃k

i=1sum⊕i (S), where⊕1, . . . ,⊕k are the AC-symbols of the theory.
For a rulel → r ∈ R and a substitutionθ such that

• either there exists a terms1 such thats=AC s1, s1 =AC lθ andt = rθ ;

• or there exist termss1 ands2 such thats=AC s1⊕s2, s1 =AC lθ andt =AC rθ ⊕s2.

we writes
h
→ t and say that the reduction occurs in the head.

As in [1] we associate with each setΓ of messages, a set of subterms inΓ that may be deduced from
Γ by applying only “small” contexts. The concept of small is arbitrary — in the definition below, we
have bound the size of anE-contextC by cE and the size ofC′ by c2

E, but other bounds may be suitable.
Notice that limiting the size of anE-context bycE makes the context big enough to be an instance of any
of the rules in the TRSR associated toE.

Definition 1 (Locally Stable). An AC-convergent equational theory E islocally stableif, for every finite
set Γ = {M1, . . . ,Mn}, where the terms Mi are ground and in normal form, there exists a finite and
computable set sat(Γ), closed modulo AC, such that

1. M1, . . . ,Mn ∈ sat(Γ);

2. if M1, . . . ,Mk ∈ sat(Γ) and f(M1, . . . ,Mk) ∈ st(sat(Γ)) then f(M1, . . . ,Mk) ∈ sat(Γ), for f ∈ ΣE;

3. if C[S1, . . . ,Sl ]
h
→ M, where C is an E-context such that|C| ≤ cE, and S1, . . . ,Sl ∈ sum⊕(sat(Γ)),

for some AC symbol⊕, then there exist an E-context C′, a term M′, and terms S′1, . . . ,S
′
k ∈

sum⊕(sat(Γ)), such that|C′| ≤ c2
E, and M

∗
→R∪AC M′ =AC C′[S′1, . . . ,S

′
k];

4. if M ∈ sat(Γ) then M↓∈ sat(Γ).

5. if M ∈ sat(Γ) thenΓ ⊢ M.

Notice that the setsat(Γ) may not be unique. Any setsat(Γ) satisfying the five conditions is adequate
for the results.

Remark 1. The addition of rule 4 in the Definition 1 is necessary to provecase 1b of Lemma 1, where the
rewriting reduction occurs in a term Mi ∈ sat(Γ) in a position different from the “head”. Normal forms
are strictly necessary in the set sat(Γ), they are essential to lift the applications of rewriting rules in the
head of “small” contexts to applications of rewriting rulesin arbitrary positions of “small” contexts.
With this additional condition, Lemma 11 in [1] can also be proved. This fact was confirmed via personal
communication with the second author of [1].
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The lemma and the corollary below, adapted from [1], are usedin the proof of Theorem 2.

Lemma 1. Let E be a locally stable theory andΓ = {M1, . . . ,Mn} a set of ground terms in normal form.
For every E-context C1, for every Mi ∈ sat(Γ), for every term T such that C1[M1, . . . ,Mk]→R∪AC T, there
exist an E-context C2, and terms M′i ∈ sat(Γ), such that T

∗
→R∪AC C2[M′

1, . . . ,M
′
l ].

Proof. Suppose thatC1[M1, . . . ,Mk]→AC T, for anE-contextC1 andMi ∈ sat(Γ). The proof is divided
in two cases:

1. The reduction happens inside one of the termsMi:

(a) if Mi
h
→ M′

i then by definition ofsat(Γ) (sinceE is locally stable), there exist anE-contextC
such that|C| ≤ c2

E andM′
i

∗
→C[S1, . . . ,Sl ] whereSj ∈ sum⊕(sat(Γ)).

EachSj ∈ sum⊕(sat(Γ)) is of the formSj = (α1 ·⊕ M j1)⊕ . . .⊕ (αn ·⊕ M jn), for M jk ∈ sat(Γ).
That is,Sj =Cj [M j1, . . . ,M jk], for 1≤ j ≤ l . Therefore,

C1[M1, . . . ,Mi , . . . ,Mk]
h
→C1[M1, . . . ,M

′
i , . . . ,Mk]

∗
→AC C1[M1, . . . ,C[S1, . . . ,Sl ], . . . ,Mk]

=AC C2[M
′′

1, . . . ,M
′′

s ],
(1)

whereM
′′

t ∈ sat(Γ), for 1≤ t ≤ s.
(b) if Mi →AC M′

i in a position different from “head”, then

C1[M1, . . . ,Mi, . . . ,Mk]→C1[M1, . . . ,M
′
i , . . . ,Mk]

∗
→AC C1[M1, . . . ,Mi ↓, . . . ,Mk].

By case 4 in Definition 1,Mi ↓∈ sat(Γ).

2. The case where the reduction does not occur inside the terms Mi: this case if very technical and
will be omitted here. The complete proof can be found in the extended version of this paper.

As a consequence we obtain the following Corollary:

Corollary 1 ( [1]). Let E be a locally stable theory. LetΓ = {M1, . . . ,Mn} be a set of ground terms
in normal form. For every E-context C1, for every M′

i ∈ sat(Γ), for every T in normal form such
that C1[M′

1, . . . ,M
′
k]

∗
→R∪AC T, there exist an E-context C2 and terms Mj

′′ ∈ sat(Γ) such that T=AC

C2[M
′′

1, . . . ,M
′′

l ].

Proof. The proof is the same as in [1].

In the following we show that any termM deducible fromΓ is equal modulo AC to anE-context
over terms insat(Γ).
Lemma 2 ( [1]). Let E be a locally stable theory. LetΓ = {M1, . . . ,Mn} be a finite set of ground terms in
normal form, and M be a ground term in normal form. ThenΓ ⊢ M if and only if there exist an E-context
C and terms M′1, . . . ,M

′
k ∈ sat(Γ) such that M=AC C[M

′

1, . . . ,M
′

n].

Proof. The proof is the same as in [1].

As a consequence of the previous results decidability of IDPfor locally stable theories is obtained:

Theorem 1. The Intruder Deduction Problem is decidable for locally stable theories.

In the next section we will provide a complexity bound for thedecidability of the intruder deduction
problem for a restricted case of locally stable theories.
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3 Locally Stable Theories with Inverses

In order to obtain the polynomial complexity bound of our decidability algorithm we will need to con-
sider the existence of inverses for eachAC symbol in the signature of our equational theory. Our al-
gorithm will rely on solving systems of linear Diophantine equations overZ and the inverses will be
interpreted asnegative integers.

(*) In the following results, let E be a locally stable theory whose signatureΣE contains, for each
AC function symbol⊕, its correspondinginversei⊕.

That is, the following results are related to equational theoriesE containing the following equation:

x⊕ i⊕(x) = e⊕ (2)

for each AC-symbol⊕ in ΣE, wherei⊕ is the unary function symbol representing the inverse of⊕ and
e⊕ is the corresponding neutral element.

Definition 2 (Locally Stable with Inverses). An AC-convergent equational theory E satisfying (*) is
locally stableif, for every finite setΓ = {M1, . . . ,Mn}, where the terms Mi are ground and in normal
form, there exists a finite and computable set sat(Γ), closed modulo AC, such that

1. M1, . . . ,Mn ∈ sat(Γ), e⊕ ∈ sat(Γ) for each⊕ ∈ ΣE;

2. if M1, . . . ,Mk ∈ sat(Γ) and f(M1, . . . ,Mk) ∈ st(sat(Γ)) then f(M1, . . . ,Mk) ∈ sat(Γ), for f ∈ ΣE;

3. if C[S1, . . . ,Sl ]
h
→ M, where C is an E-context such that|C| ≤ cE, and S1, . . . ,Sl ∈ sum⊕(sat(Γ)),

for some AC symbol⊕, then there exist an E-context C′, a term M′, and terms S′1, . . . ,S
′
k ∈

sum⊕(sat(Γ)), such that|C′| ≤ c2
E, and M

∗
→R∪AC M′ =AC C′[S′1, . . . ,S

′
k];

4. if M ∈ sat(Γ) then M↓∈ sat(Γ).

5. if M ∈ sat(Γ) then i⊕(M) ↓∈ sat(Γ) for each AC symbol⊕ in E.

6. if M ∈ sat(Γ) thenΓ ⊢ M.

Based on a well-founded ordering over the symbols in the language, we prove that a restricted
case of higher-order AC-matching (“is there anE-contextC such thatM =AC C[M1, . . . ,Mk] for some
M1, . . . ,Mk ∈ sat(Γ)?”) can be solved in polynomial time in|sat(Γ)| and|M|. This AC-matching prob-
lem is solved using the DO-ACM (Distinct-Occurrences of AC-matching) [8], where every variable in
the term being matched occurs only once. In addition, we alsouse a standard and polynomial time
algorithm for solving SLDE overZ [12,15,22,27].

To facilitate the description of the algorithm below we haveconsidered only one AC-symbol⊕
whose corresponding inverse will be denoted byi. The proof can be extended similarly for theories with
multiple AC-symbols each one with its corresponding inverse.

Lemma 3. Let E be a locally stable theory satisfying (*),Γ = {M1, . . . ,Mn} a finite set of ground mes-
sages in normal form and M a ground term in normal form. Then the question of whether there exists an
E-context C and T1, . . . ,Tk ∈ sat(Γ) such that M=AC C[T1, . . . ,Tk] is decidable in polynomial time in|M|

and |sat(Γ)|.
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Proof. Given Γ, we construct the setsat(Γ) = {T1, . . . ,Ts}, which is computable and finite by Defini-
tion 1. We can then check whetherM =?

AC C[T1, . . . ,Tk] for someE-contextC and termsT1, . . . ,Tk ∈

sat(Γ) using the following algorithm which is divided in its main component A), and procedures B) and
C) for reducing linear Diophantine equations and selectingTi ’s from sat(Γ), respectively.
A) Algorithm 1.

1. For all positionsp in M headed by⊕ starting from the longest positions in decreasing order (po-
sitions seen as sequences) solve thesystem of linear Diophantine equations(see part B below) for
M|p with sat(Γ)∪S, whereS is built incrementally fromsat(Γ), starting withS0 = /0, including all
M|p that have solutions. In other words:

Let P ′ = {p1, . . . , pt} be the set of positions ofM such thatM|p is headed with⊕, organised in
decreasing order. For eachp j ∈ P ′ let M|pj be the subterm ofM such that

M|pj = n j1 ⊕ . . .⊕n jk j ( j = 1, . . . , t)

Recursively find, but suppressing step 1 in this recursive call, solutions for the argumentsn ji1
, . . . ,n jil

of M|pj with n jim ∈ {n j1, . . . ,n jkj
} with respectiveE-contextsCji1

, . . . ,Cjil
such that

n jim =Cjim[T1, . . . ,Tsim
]

whereTq ∈ sat(Γ)∪Sj−1, q= 1, . . . ,sim.

Then one checks satisfiability of the SLDE generated fromM|pj andsat(Γ)∪Sj−1∪{n ji1
, . . . ,n jkl

}

(see steps B and C).

If there is a solution thenSj := Sj−1∪{n ji1
, . . . ,n jkl

}∪{M|pj}

2. LetS:= St . Classify the terms insat(Γ)∪Sby size.

3. For each termTi ∈ sat(Γ)∪S(from terms of maximal size to terms of minimal size) check:

• For each positionq∈ Pos(M) such thatTi =AC M|q do

Check whether the path betweenTi and the root ofM contains a⊕:

– if NOT, then deleteM|q from M and move toTi+1.
– if YES (there is a⊕) thenM has a subtermN such thatN = n1⊕ . . .⊕n j [Ti ]⊕ . . .⊕nk

and N cannot be constructed fromsat(Γ)∪S. Therefore,M cannot be written as an
E-context with terms fromsat(Γ).

4. Check whether the remaining part ofM still containsE-aliens. If it is not the case, we have
found anE-contextC and termsM1, . . . ,Mk ∈ sat(Γ) andM =AC C[M1, . . . ,Mk]; otherwise such an
E-context does not exist.

B) Reduction to linear Diophantine equations.
First, notice that, for each positionp such thatM|p is headed with⊕ we have

M|p = α1m1⊕ . . .⊕αrmr , α j ∈ N (3)

wheremj is not headed with⊕ andα jmj counts formj ⊕ . . .⊕mj
︸ ︷︷ ︸

α j−times

.
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We want to prove that there areβ1, . . . ,βq ∈ N such that

β1T1⊕ . . .⊕βqTq =AC M|p = α1m1⊕ . . .⊕αrmr (4)

This AC-equality is only possible whenTi = γ1im1⊕ . . .⊕ γri mr for eachi, 1≤ i ≤ q≤ sandγ ji ∈ N.
That is,β1T1⊕ . . .⊕βqTq =AC α1m1⊕ . . .⊕αrmr if and only if

β1(γ11m1⊕ . . .⊕ γr1mr)⊕β2(γ12m1⊕ . . .⊕ γr2mr)⊕ . . .

. . .⊕βq(γ1qm1⊕ . . .⊕ γrqmr) = α1m1⊕ . . .⊕αrmr
(5)

if and only if

(γ11β1⊕ γ12β2 . . .⊕ γ1qβq)m1⊕ (γ21β1⊕ γ22β2 . . .⊕ γ2qβq)m2⊕ . . .

. . . (γr1β1⊕ γr2β2 . . .⊕ γrqβq)mr = α1m1⊕ . . .⊕αrmr
(6)

if and only if

S=







γ11β1⊕ γ12β2 . . .⊕ γ1qβq = α1

γ21β1⊕ γ22β2 . . .⊕ γ2qβq = α2

...

γr1β1⊕ γr2β2 . . .⊕ γrqβq = αr

(7)

whereS is a system of linear Diophantine equations overZ which can be solved in polynomial time [12,
15,22,27].

Remark 2. We will interpret the equations 3 and 4 inside integer arithmetic. If there exists an index j
such that mj = i(m′

j) and m′
j is not headed with i thenα jmj = α j(i(m′

j)) and we will take it as(−α j)m′
j .

Therefore, we can takeα j ∈ Z, for all j. We can use the same reasoning to conclude thatβ j ∈ Z, for all
1≤ j ≤ q andγ ji ∈ Z, for all i and j.

C) Selecting theT ′
j s from sat(Γ).

For eachTi ∈ sat(Γ), 1≤ i ≤ swe want to check ifTi = γ1i m1⊕ . . .⊕ γr i mr .
Algorithm 2:
For eachTi ∈ sat(Γ), 1≤ i ≤ s, solve the equationTi ⊕xi =AC α1m1⊕ . . .⊕αrmr wherexi is a fresh

variable.
Since theT ′

i s andM are ground terms, this equation can be seen as an instance of the DO-ACM
matching problem which can be solved in timeO(|Ti ⊕xi|.|M|p|) [8].

If there existsTi ∈ sat(Γ) such thatTi = γ∗1i
m1⊕ . . .⊕ γ∗r i

mr ⊕u, whereu is not empty,γ∗i j
∈N and the

Algorithm 2 can no longer be applied thenTi will not be selected.
Notice that each step of the algorithm can be done in polynomial time in|M| and|sat(Γ)|. Therefore,

the whole procedure is polynomial in|M| andsat(Γ).

Remark 3. For the proof we can adopt an ordering in which, for instance,variables are smaller than
constants, constants smaller than function symbols, and function symbols are also ordered, but other
suitable order can be used. Terms are compared by the associated lexicographical ordering built from
this ordering on symbols.
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Example 1 (Finite Abelian Groups). We consider the theory of Abelian Groups where the signatureis
ΣAG = {+,0, i} for i the inverse function and+ the AC group operator. The equational theory EAG is:

EAG=







x+(y+z) = (x+y)+z
x+y = y+x

i(x+y) = i(y)+ i(x)

x+0 = x
x+ i(x) = 0

i(i(x)) = x
i(0) = 0

We defineRAG by orienting the equations from left to right (excluding theequations for associativity
and commutativity).RAG is AC-convergent. The size cEAG of the theory is at least 5. In the following
prove that EAG is locally stable with inverses for finite models, i.e., we define a set sat(Γ) satisfying the
properties in the Definition 1. For a given setΓ = {M1, . . . ,Mk} of ground terms in normal form, sat(Γ)
is the smallest set such that:

1. M1, . . . ,Mk ∈ sat(Γ);

2. M1, . . . ,Mk ∈ sat(Γ) and f(M1, . . . ,Mk) ∈ st(sat(Γ)) then f(M1, . . . ,Mk) ∈ sat(Γ), f ∈ ΣAG;

3. if Mi,M j ∈ sat(Γ) and Mi +M j
h
→ M via rule x+ i(x)→ 0 then M↓∈ sat(Γ);

4. if M j ∈ sat(Γ) then i(M j) ↓∈ sat(Γ);

5. if Mi =AC M j and Mi ∈ sat(Γ) then Mj ∈ sat(Γ).

The set sat(Γ) defined for Finite Abelian Groups is finite.

Although it was said in [1] that the theory of Abelian Groups is locally stable, no proof of such fact
was found in the literature. With the proviso that the Abelian Group under consideration is finite, we
have demonstrated that|sat(Γ)| is exponential in the size of|Γ|.

These results give rise to the decidability of deduction forlocally stable theories. Notice that poly-
nomiality on|sat(Γ)| relies on the use of the AC-matching algorithm proposed in Lemma 3. Unlike [1],
we do not need to compute of the congruence class modulo AC ofM (which may be exponential). This
gives us a slightly different version of the decidability theorem:

Theorem 2. Let E be a locally stable theory satisfying (*). IfΓ = {M1, . . . ,Mn} is a finite set of ground
terms in normal form and M is a ground term in normal form, thenΓ ⊢ M is decidable in polynomial
time in|M| and |sat(Γ)|.

Proof. The result follows directly from Lemmas 3 and 2.

In the following example we consider thePure AC-theorywhich can be proven to be locally stable
but does not contain the inverse of the AC-symbol+.

Example 2(PureACTheory). ΣAC contains only constant symbols, the AC-symbol⊕ and the equational
theory contains only the AC equations for⊕:

AC=
{

x⊕y= y⊕x x⊕ (y⊕z) = (x⊕y)⊕z
}

In this case, E= AC andR = /0 is the AC-convergent TRS associated to E. LetΓ = {M1, . . . ,Mk} be a
finite set of ground terms in normal form. Let us define sat(Γ) for the pure AC theory as the smallest set
such that
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1. M1, . . . ,Mk ∈ sat(Γ);

2. if Mi,M j ∈ sat(Γ) and Mi ⊕M j ∈ st(sat(Γ)) then Mi ⊕M j ∈ sat(Γ).

3. if Mi =AC M j and Mi ∈ sat(Γ) then Mj ∈ sat(Γ).

The set sat(Γ) is finite since we add only terms whose size is smaller or equalthan the maximal size of
the terms inΓ. It is easy to see that the set sat(Γ) satisfies the rules 1,2, 4 and 5. SinceR = /0 it follows
that 3 is also satisfied. Therefore, AC is locally stable.

The size ofsat(Γ):

• Steps 1 and 2: only subterms in sat(Γ) are added.

• Step 3: for each Mi ∈ sat(Γ) add Mj =AC Mi ∈ sat(Γ). Notice that the number of terms added in
sat(Γ), in this case, depends on the number of occurrences of⊕ in Mi. Suppose that Mi contains n
occurrences of⊕:

Mi = Mi1 ⊕ . . .⊕Min+1.

There are(n+1)! terms Mj such that M1 =AC M j .

Suppose that each Mi in Γ contains ni occurrences of⊕.Then,|Mi |=
ni+1

∑
j=1

|Mi j |+ni. Let n=max1≤i≤k{ni}.

There exists an index r such that Mr contains nr = n occurrences of⊕. Since|Γ| =
k

∑
i=1

|Mi | it follows

that n≤ |Mr |−
n+1

∑
j=1

|Mr j | ≤ |Γ|. Then the number of terms added in step 3 is
k

∑
i=1

(ni +1)! ≤ (n+1)! ·k ≤

(|Γ|+1)! ·k.

Remark 4. In this case one can adapt Lemma 3 such that the algorithm would rely on solving systems
of linear Diophantine equations overN which is NP-complete [27]. Therefore, the complexity of IDPfor
pure AC would be exponential, agreeing with previous results [23].

4 Elementary Deduction Problem for Locally Stable Theories

To establish necessary concepts for the next results, we recall the well-known translation between natural
deduction and sequent calculus systems to model the IDP as a proof search in sequent calculus, whose
properties (such as cut or subformula) facilitate the studyof decidability of deductive systems. For an
AC-convergent equational theory E, the SystemN in Table 1 is equivalent to the(id)-rule of the sequent
calculus (Table 2) introduced in [29]:

M≈EC[M1,...,Mk]

C[ ] an E-context, andM1, . . . ,Mk ∈ Γ
(id)Γ ⊢ M

Consequently, IDP for SystemN is equivalent to theElementary Deduction Problem:

Definition 3. Given an AC-convergent equational theory E and a sequentΓ ⊢ M ground and in normal
form, theelementary deduction problem(EDP) for E, writtenΓ
E M, is the problem of deciding whether
the(id)-rule is applicable inΓ ⊢ M.



56 Elementary Deduction for Locally Stable Theories Combinedwith Normal Forms

The theorem below decides EDP for locally stable theories :

Theorem 3. Let E be a locally stable equational theory satisfying (*). LetΓ ⊢ M be a ground sequent in
normal form. Theelementary deduction problemfor the theory E (Γ 
E M) is decidable in polynomial
time in|sat(Γ)| and |M|.

Proof. By Lemma 3, the problem whetherM =ACC[M1, . . . ,Mk] for anE-contextC and termsM1, . . . ,Mk ∈

sat(Γ) is decidable in polynomial time in|sat(Γ)| and|M|. If M =AC C[M1, . . . ,Mk] for anE-contextC
and termsM1, . . . ,Mk ∈ sat(Γ) then there exist anE-contextC′ and termsM′

1, . . . ,M
′
n ∈ Γ such that

C[M′
1, . . . ,M

′
n]

∗
→R∪AC M. It is enough to observe that for allT ∈ sat(Γ), T can be constructed from the

terms inΓ.
If there is noE-contextC and termsM1, . . . ,Mk ∈ sat(Γ) such thatM =AC C[M1, . . . ,Mk] then, by

Corollary 1, there are noE-context and termsM′
1, . . . ,M

′
t ∈ sat(Γ) such thatC[M′

1, . . . ,M
′
t ]

∗
→R∪AC M.

Therefore, there is noE-contextC′′ and termsM′′
1 , . . . ,M

′′
l ∈ Γ such thatC′′[M′′

1 , . . . ,M
′′
l ]

∗
→R∪AC M.

Thus, the EDP forE is decidable in polynomial time in|sat(Γ)| and|M|.

4.1 Extension with Blind Signatures

Blind signature is a basic cryptographic primitive in e-cash. This concept was introduced by David
Chaum in [14] to allow a bank (or anyone) sign messages without seeing them. David Chaum’s idea
was to use this homomorphic property in such a way that Alice can multiply the original message with
a random (encrypted) factor that will make the resulting image meaningless to the Bank. If the Bank
agrees to sign this random-looking data and return it to Alice, she is able to divide out the blinding factor
such that the Bank’s signature in the original message will appear.

Given a locally stable equational theoryE, we extend the signatureΣE with ΣC, a set containing
function symbols for “constructors” for blind signatures,in order to obtain decidability results for the
extension of the IDP for SystemN taking into account some rules for blind signatures.

Extended Syntax

The signatureΣ consists of function symbols and is defined by the union of twosets:Σ = ΣC∪ΣE ( with
ΣE∩ΣC = /0), where

ΣC = {pub( ),sign( , ),blind( , ),{ } ,< , >}

represents theconstructors, whose interpretations are:pub(M) gives the public key generated from a
private keyM; blind(M,N) givesM encrypted withN using blinding encryption;sign(M,N) givesM
signed with a private keyN; {M}N gives M encrypted with the keyN using Dolev-Yao symmetric
encryption;〈M,N〉 constructs a pair of terms fromM andN. Then the extended grammar of the set of
termsor messages is given as

M,N := a | x | f (M1, . . . ,Mn)|pub(M)|sign(M,N)|blind(M,N)|{M}N |〈M,N〉

Notice that, with the extension anE-alien termM is a term headed withf ∈ ΣC or M is a private
name/constant. AnE-alien subtermM of N is said to be anE-factor of N if there is another subtermF
of N such thatM is an immediate subterm ofF andF is headed by a symbolf ∈ ΣE. This notion can
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be extended to sets in the obvious way: a termM is anE-factor ofΓ if it is an E-factor of a term inΓ.
These notions were introduced in [29].

The operational meaning of each constructor will be defined by their corresponding inference rules
in the sequent calculus to be described.

Extending the EDP to Model Blind Signatures

Following the approach proposed in [29], we extend EDP with blind signatures using the sequent calculus
S described in Table 2. In this way, we can model intruder deduction for the combination of a locally
stable theoryE with blind signatures in a modular way: the theoryE is used in theid rule, while
blind signatures are modelled with additional deduction rules. As shown below, this approach has the
advantage that we can derive decidability results for the intruder deduction problem without needing to
prove that the combined theory is locally stable (in contrast with the results in the previous section and
in [1]).

Table 2: SystemS : Sequent Calculus for the Intruder

M≈EC[M1,...,Mk]

C[ ] an E-context,M1, . . . ,Mk ∈ Γ
(id)

Γ ⊢ M

Γ ⊢ M Γ,M ⊢ T
(cut)

Γ ⊢ T

Γ,〈M,N〉 ,M,N ⊢ T
(pL)

Γ,〈M,N〉 ⊢ T
Γ ⊢ M Γ ⊢ N (pR)

Γ ⊢ 〈M,N〉

Γ ⊢ M Γ ⊢ K (eR)
Γ ⊢ {M}K

Γ,{M}K ⊢ K Γ,{M}K ,M,K ⊢ N
(eL)

Γ,{M}K ⊢ N

Γ ⊢ M Γ ⊢ K (signR)
Γ ⊢ sign(M,K)

Γ ⊢ M Γ ⊢ K (blindR)
Γ ⊢ blind(M,K)

Γ,sign(M,K), pub(L),M ⊢ N
(signL)K =ACL

Γ,sign(M,K), pub(L) ⊢ N

Γ,blind(M,K) ⊢ K Γ,blind(M,K),M,K ⊢ N
(blindL1)

Γ,blind(M,K) ⊢ N

Γ,sign(blind(M,R),K) ⊢ R Γ,sign(blind(M,R),K),sign(M,K),R⊢ N
(blindL2)Γ,sign(blind(M,R),K) ⊢ N

Γ ⊢ A Γ,A⊢ M
(acut), A is anE-factor ofΓ∪{M}

Γ ⊢ M

Analysing the systemS one can make the following observations:

1. The rulespL,eL,signL,blindL1, blindL2 andacutare calledleft ruleswith 〈M,N〉, {M}K , sign(M,K),
blind(M,K), sign(blind((M,R),K) andA asprincipal term, respectively. The rulespR,eR,signR

andblindR are calledright rules.
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2. The rule(acut), calledanalytic cutis necessary to prove cut ruleadmissibility. A complete proof
can be found in [26,29].

Remark 5. Considerations about locally stable theories with blind signatures:

1. All the results proved on Section 2 are valid under this extension with blind signatures since the
results depend only on the equational theory E and on the symbols inΣE. Unlike example 5.2.4 [1],
the theory of Blind Signatures is not considered as part of the equational theory, the functions
are abstracted in the set of constructors with the operational meaning represented in the sequent
calculus.

2. In [29] it is shown that the intruder deduction problem forS is polynomially reducibleto the
EDP for E: if the EDP problem inE has complexityf (m) then the deduction problemΓ ⊢ M in
S has complexityO(nk. f (n)) for some constantk2. This result was proved for an AC-convergent
equational theory E containing only one AC symbol and extended to finite a combination of disjoint
AC-convergent equational theories each one containing only one AC-symbol.

3. In [26], it was proved that deduction inS reduces polynomially to EDP in the case of the AC-
convergent equational theoryEP, which contains three different AC-symbols and rules for expo-
nentiation and cannot be split into disjoint parts.

As a consequence of the results mentioned in the above remark, we can state the following result:

Corollary 2. Let E be a locally stable theory satisfying (*) containing only one AC-symbol or formed by
a finite and disjoint combination of AC-symbols. LetΓ a finite set of ground terms in normal form and
M a ground term in normal form. The IDP for the theory E combined with blind signatures (Γ ⊢ M) is
decidable in polynomial time in|sat(Γ)| and |M|.

5 Conclusion

We have shown that the IDP is decidable for locally stable theories. In order to obtain the polynomiality
result, a restriction on the equational theory is necessary: the theory must contain inverses of all AC-
symbols. We have proposed an algorithm to solve a restrictedcase of higher-order AC-matching by using
the DO-ACM matching algorithm combined with an algorithm tosolve linear Diophantine equations over
Z. Based on this algorithm, we obtain a polynomial decidability result for IDP for a class of locally stable
theories with inverses. Our algorithm does not need to compute the set of normal forms modulo AC of
a given term (which may be exponential). Therefore, we can conclude that the deducibility relation is
decidable in polynomial time for a very restricted class of equational theories, it does not work for all
locally stable theories as [1] has claimed. It also decides the IDP for the combination of locally stable
theories with the theory of blind signatures, using a translation between natural deduction and sequent
calculus.
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