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We present an algorithm to decide the intruder deductioblpro (IDP) for a class of locally stable
theories enriched with normal forms. Our result relies oewa and efficient algorithm to solve a re-
stricted case of higher-order associative-commutativiehirag, obtained by combining tHgistinct
Occurrences of AC-matchirgdgorithm and a standard algorithm to solve systems of libéaphan-
tine equations. A translation between natural deductiahssayuent calculus allows us to use the
same approach to decide telementary deduction problefar locally stable theories. As an appli-
cation, we model the theory of blind signatures and derivalgorithm to decide IDP in this context,
extending previous decidability results.

Introduction

There are different approaches to model cryptographicopod$é and to analyse their security proper-
ties [17]. One technique consists of proving that an attacjuires solving an algorithmically hard
problem; another consists of using a process calculus,atte spi-calculus [3], to represent the oper-
ations performed by the participants and the attacker. danteyears, the deductive approach of Dolev
and Yao[[20], which abstracts from algorithmic details aratels an attacker by a deduction system, has
successfully shown the existence of flaws in well-known grots. A deduction system under Dolev-
Yao’s approach specifies how the attacker can obtain newnnaftoon from previous knowledge obtained
either by eavesdropping the communication between honestqol participants (in the case of a passive
attacker), or by eavesdropping and fraudulently emittimgsages (in the case of an active attacker). The
intruder deduction probleriDP) is the question of whether a passive eavesdroppermama certain
information from messages observed on the network.

Abadi and Cortier's approachl![1] proposes conditions falgsing message deducibility and indis-
tinguishability relations for security protocols modelle the applied pi-calculus [2]. In particulat,] [1]
shows that IDP is decidable féocally stabletheories. However, to ensure the soundness of this ap-
proach, the definition of locally stable theories givenihj&eds to be modified (as confirmed via per-
sonal communication with the second author of [1]). In thegky we made the necessary modifications
and propose a new approach to solve IDP in the context ofljostble theories.
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Our notion of locally stable theory is based on the existari@finite and computable saturated set,
but, unlike [1], our saturated sets include normal f(ﬂnﬁ\e new approach we propose in order to prove
the decidability of IDP is based on an algorithm to solve drieed case of higher-order associative-
commutative matching (AC-matching). To design this altdponi we use well-known results for solving
systems of linear Diophantine equations (SLOE) [12, 15222, which we combine with a polynomial
algorithm to solve the DO-ACM problem (Distinct Occurresad AC-Matching) [8].

In the case where the signature of the equational theonairmtfor each AC function symbet,
its corresponding inverde, we obtain a decidability result which is polynomial withaton to the size
of the saturated set (built from the initial knowledge of thiguder). Thanks to the use of the algorithm
for solving SLDE overZ, we avoid an exponential time search over the solution sjpatiee case of
AC symbols (improving over 1], where an exponential numbgpossible combinations have to be
considered). For more details we refer the reader to theé&tbversion of this paper![5].

After introducing the class of locally stable theories amdvpng the decidability of the IDP for
protocols in this class, we show that the Elementary Dednd®roblem (EDP) introduced in [29] is also
decidable in polynomial time with relation to the size of tusated set of terms. EDP is stated as follows:
given a sef” of messages and a messadeis there arE-contextC|...] and messaged,...,Mx e
such thatC[My,...,Mi] ~g M? Here,E is the equational theory modelling the protocol. We use this
approach to model theories with blind signatures. As aniegipdn, using a previous result that links the
decidability of the EDP to the decidability of the IDP where ttheoryE satisfies certain conditions, we
obtain decidability of IDP for a subclass of locally staliedries combined with the theoByof blind
signatures. In this way, we generalise a result from [1] (8e&.2.4): it is not necessary to prove that
the combination of the theoridgsandB is locally stable.

Related Work. The analysis of cryptographic protocols has attracted afletttention in the last
years and several tools are available to try to identify ipbsattacks, see Maude-NPA [21], ProVerif[10],
CryptoVerif [11], Avispal4], Yapal[7].

Sequent calculus formulations of Dolev Yao intrudérs [28}dnbeen used in a formulation of open
bisimulation for the spi-calculus. In [29], deductive ta@ues for dealing with a protocol with blind
signatures in mutually disjoint AC-convergent equatiadhabries, containing a unique AC operator each,
are considered. As an alternative approach, the intrudieckiction capability is modelled inside a
sequent calculus modulo a rewriting system, following thpraach of([9]. Then, the IDP is reduced in
polynomial time to EDP.

By combining the techniques in [29] arid [13], the IDP forntigla for an Electronic Purse Protocol
with blind signatures was proved to reduce in polynomialetim EDP for an AC-convergent theory
containing three differerAC operators and rules for exponentiation![26], extendingptie®ious results.
However, no algorithm was provided to decide EDP. More grdgj assuming that EDP is solved in time
O(f(n)), it was proved that IDP reduces polynomially to EDP with ctemjty O(nk x f(n)), for some
constank. Thus, whenever the former problem is polynomial, the ID&s® polynomial.

Contributions. We present a technique to decide EDP or IDP in AC-converggmtonal theories.
Our approach is based on a “local stability” property insgiby [1], instead of proving that the deduction
rules are “local” in the sense df [25] as done in many previeoeks [13[16, 19, 24]. More precisely, the

Iwith this simple modification, the correctness proof(ih [ahalso be carried out, fixing a gap in Lemma 11.
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main contributions of this paper are:

» We adapt and refine the technique proposedlin [1], whereaitgitity and indistinguishability rela-
tions are claimed to be decidable in polynomial time for llycstable theories. First, we changed
the definition of locally stable theories, adding normahisr which are needed to carry out the
decidability proofs. Second, we designed a new algorithmeiwide IDP in locally stable theo-
ries. The algorithm provided in[1] is polynomial for the staof subterm theories (Proposition
10 in [1]), but the proof does not extend directly to localtgtse theories (despite the statement
in Proposition 16). Our algorithm relies on solving a resed case of higher-order AC-matching
problem that is used to decide the deduction relation. ltésrabination of two standard algo-
rithms: one for solving the DO-ACM problem[8] which has aywmial bound in our case;
and one for solving systems of Linear Diophantine Equa®bBE), which is polynomial in
7 [12,15[22] 277]. Using this algorithm we prove that IDP isidable in polynomial time with
respect to the saturated set of terms, for locally stablertb® with inverses.

A decidability result for the EDP for locally stable thessi which extends the work of Tiu and
Goré [29]. As an application, we present a strategy to @etidP for locally stable theories
combined with blind signatures. Here, the combination ebties does not need to be locally
stable.

In order to get the polynomial decidability result claimed[1] for locally stable theories, we had
to restrict to theories that contain, for eas@t symbol in the signature, the corresponding inverse. The
inverses are necessary when we interpret our term algebigeithe integer. to solve SLDE (terms
headed by the inverse function will be seen as negativeaers@glf the theory does not contain inverses,
we would have to solve the SLDE fof which is a well known NP-complete problem.

1 Preliminaries

Standard rewriting notation and notions are used (elg. |8p assume the following sets: a countably

infinite setN of names(we usea, b,c,m to denote names); a countably infinite ¥ebf variables(we

usex,y, z to denote variables); and a fing@natureZ, consisting of function names and their arities. We

write arity(f) for the arity of a functionf, and letar(X) be the maximal arity of a function symbol i
The set oftermsis generated by the following grammar:

M,N:=a|x|f(Mg,...,Mp)

where f ranges over the function symbols Bfand n matches the arity of, a denotes a name iN
(representing principal names, nonces, keys, constarglv@d in the protocol, etc) anda variable. We
denote by/ (M) the set of variables occurring M. A messageM is groundif V(M) = 0. Thesize|M|
of atermM is defined byju| = 1, if uis a name or a variable; anfi(M1,...,Mp)| = 1+ 3L [M;].

The set ofpositionsof a termM, denoted by??ogM), is defined byZogM) := {¢}, if M is a name
or a variable; andZosM) := {e} UL 1{ip| p € LoM;)}, if M = f(My,...,M,) wheref € . The
positione is called theroot position. The size ofM| coincides with the cardinality of?osM). The set
of subtermsof M is defined ast(M) = {M|p| p € Z0osM)}, whereM|, denotes the subterm ™ at
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position p. For a sef” of terms, the notion of subterm can be extended as ust(@l) := Uy St(M).
For p € ZogM), we denote byM[t], the term that is obtained froml by replacing the subterm at
positionp by t.

A term rewriting system (TRS) is a sét of oriented equations over terms in a given signature. For
termssandt, s— 4 t denotes thag rewrites tat using an instance of a rewriting rule . The transitive,
reflexive-transitive and equivalence closuresojf are denoted bytm, % and<s,, respectively. The
equivalence closure of the rewriting relatich,;, is denoted bys .

Given a TRSZ in which some function symbols are assumed to be AC, and twoste andt,
s —guac t if there existsw such thats =pc w andw —4 t, where=ac denotes equality modulo AC
(according to the AC assumption on function symbols). Fergverms, the set of normal forms |4
(closed modulo AC) o§is the set of term$ such thats —» 4 ac t andt is irreducible for— 4 ac. Z is
said to be AC-convergent whenever it is AC-terminating aadonfluent.

We equip the signaturE with an equational theoryzg induced by a set of-equationskE, that is,
~ is the smallest equivalence relation that cont&irend is closed under substitutions and compatible
with Z-contexts. An equational theoryg is said to be equivalent to a TR8 wheneverx, = ~g.
An equational theoryzg is AC-convergent when it has an equivalent rewrite systémvhich is AC-
convergent. In the next sections, given an AC-convergenataapal theory~g, normal forms of terms
are computed with respect to the TRB associated teeg, unless otherwise specified. To simplify
the notation we will denote bl the equational theory induced by the seteéquationsE. We will
denote by>g the signature used in the set of equati@nsrhesize ¢ of an equational theorl with an
associated TR consisting of rule$ J_; {I; — r;} is defined asg = max<i<{|li|,|ri|,ar(Z)+1}. For
Z# =0, definecg = ar(Z) + 1.

Let O be a new symbol which does not yet occursiu X. A Z-contextis a termt € T(Z, XU
{O}) and can be seen as a term with “holes”, represented,by it. Contexts are denoted ly. If
{p1,.--,pn} = {p € Z09C)|C|p, = 0O}, wherep; is to the left ofpi,1 in the tree representation Gf
thenC[Ty...,Ty) :=C[T1]p, ... [Tn]p,- In what follows a context formed using only function symboi
2e will be called anE-contextto emphasize the equational thed&y

AtermM is said to be afE-alienif M is headed by a symbdl ¢ Z¢ or a private name/constant. We
write M == N to denote syntactic equality of ground terms.

In the rest of the paper, we use signatures, terms and eqaktfeories to model protocolddes-
sagesxchanged between participants of a protocol during itswi@n are represented by terms. Equa-
tional theories and rewriting systems are used to modelrypgagraphic primitives in the protocol and
the algebraic capabilities of an intruder.

2 Deduction Problem

Given a setl” that represents the information available to an attacker,nvay ask whether a given
ground termM may be deduced frorh using equational reasoning. This relation is writteh M and
axiomatised in a natural deduction like system of inferamdes.
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Table 1: System/: a natural deduction system for intruder equational deduct

=N

Mer . FEMy ... [FM,
(id) M

r-M CF f(Mg,...,Mp)

(*)M ~e N

(f|)f EZE

2.1 Locally Stable Theories

Let @ be an arbitrary function symbol iBg for an equational theorfz. We write o -, M for the term
M@...®&M, a times @ € N). Given a seof terms, we writesum, (S) for the set of arbitrary sums of
terms inS, closed moduld@C;

sum;(S) ={(01:4T1) ®...®(an-g Tn)|a; > 0,T; € S}

Definesum(S) = UX_; sum,, (S), wheredy, ..., @y are the AC-symbols of the theory.
For arulel — r € #Z and a substitutio such that

 either there exists a tersj such tha=pc $1, St =ac 10 andt =r6;

* or there exist terms; ands, such thas=ac S1 P S, S1 =ac |0 andt =pcr0 & s,.
we writes 5 t and say that the reduction occurs in the head.

As in [1] we associate with each debf messages, a set of subterm§ ithat may be deduced from
I by applying only “small” contexts. The concept of small ibitnary — in the definition below, we
have bound the size of @contextC by cg and the size of’ by ¢, but other bounds may be suitable.
Notice that limiting the size of ai-context bycg makes the context big enough to be an instance of any
of the rules in the TR$? associated té&.
Definition 1 (Locally Stable) An AC-convergent equational theory Elagally stableif, for every finite
setl’ = {My,...,M,}, where the terms Mare ground and in normal form, there exists a finite and
computable set séft ), closed modulo AC, such that

1. My,...,M,esatl);
2. if My,...,Mg e sat(l") and f(My,...,Mk) € st(sat(l")) then f(My,...,My) € sat(l), for f € Zg;

3. ifC[S,...,S] " M, where C is an E-context such th& <cg,and g,...,S € sum,(sat(l)),
for some AC symbab, then there exist an E-context,Ca term M, and terms §...,S, €
sum, (sat(I")), such thatC'| < ¢, and M=z ac M’ =acC'[S,, ..., S;

4. if M € sat(l") then M| € sat(I").

. ifM e sat(l") thenl - M.

Notice that the setat(I") may not be unique. Any seat(I") satisfying the five conditions is adequate
for the results.
Remark 1. The addition of rule 4 in the Definitidd 1 is necessary to prease 1b of Lemnid 1, where the
rewriting reduction occurs in a term M sat(I") in a position different from the “head”. Normal forms
are strictly necessary in the set $B3, they are essential to lift the applications of rewritindes in the
head of “small” contexts to applications of rewriting rules arbitrary positions of “small” contexts.
With this additional condition, Lemma 11 in/[1] can also beyed. This fact was confirmed via personal
communication with the second author [of [1].
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The lemma and the corollary below, adapted froin [1], are ursélae proof of Theorern]2.
Lemma 1. Let E be alocally stable theory afd= {M;,...,Mu} a set of ground terms in normal form.
For every E-context C for every M € sat(I"), for every term T such thaty@M3,...,My] —4uac T, there
exist an E-context £ and terms Ve sat("), such that T 2uAc Co[My,...,M/].

Proof. Suppose that;[Ms,...,My| —ac T, for anE-contextC; andM; € sat(I"). The proof is divided
in two cases:
1. The reduction happens inside one of the tekns

(@) if M n M/ then by definition okat(I") (sinceE is locally stable), there exist dcontextC
such thatC| < ¢ andM/ > C[S,...,S] whereS; € sum; (sat(I")).
EachS; € sum; (sat(I")) is of the formS; = (a1-¢ Mj,) ®...& (an-o Mj,), for M;, € sat(I").
Thatis,Sj = Cj[M;j,,...,M;,], for 1L < j <I. Therefore,
h %
Cl[Ml,...,Mi,...,Mk] —>C1[M1,...,Mi/,...,|\/|k] —>/_\CC1[|V|1,...,C[S_L,...,S],...,Mk] (l)
=acCo[My, ..., M),
whereM, € sat(l), for1<t<s.
(b) if Mj —ac M/ in a position different from “head”, then

CiMy,...,Mi,...,M] = C1[Mq,....M/,... . M| SacCi[M1,...,M; |,....M].
By case 4 in Definitiof]1\M; | sat(I").

2. The case where the reduction does not occur inside the tdrnthis case if very technical and
will be omitted here. The complete proof can be found in themed version of this paper.
O

As a consequence we obtain the following Corollary:
Corollary 1 ( [d]). Let E be a locally stable theory. L& = {M;,...,Mp} be a set of ground terms
in normal form. For every E-contextiCfor every M € sat(I"), for every T in normal form such
that G[M],...,M{] " 4uac T, there exist an E-context,Gnd terms M’ € sat(I") such that T=ac

"

CoMy,...,M/].
Proof. The proof is the same as in [1]. O

In the following we show that any terfdl deducible froml" is equal modulo AC to al-context
over terms irsat(I").
Lemma 2([1]). Let E be alocally stable theory. LEt= {M;,...,Mp} be a finite set of ground terms in
normal form, and M be a ground term in normal form. THen M if and only if there exist an E-context

C and terms NJ,...., M/ € sat(I") such that M=ac C[My, ..., Mj].

Proof. The proof is the same as in [1]. O

As a consequence of the previous results decidability offtibRocally stable theories is obtained:
Theorem 1. The Intruder Deduction Problem is decidable for locallyldtatheories.

In the next section we will provide a complexity bound for tlexidability of the intruder deduction
problem for a restricted case of locally stable theories.
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3 Locally Stable Theories with Inverses

In order to obtain the polynomial complexity bound of ouridebility algorithm we will need to con-
sider the existence of inverses for ea®@ symbol in the signature of our equational theory. Our al-
gorithm will rely on solving systems of linear Diophantinguations ovelZ and the inverses will be
interpreted asegative integers

(*) In the following results, let E be a locally stable theory whaignatureg contains, for each
AC function symbak, its correspondingnversei,.

That is, the following results are related to equationabthessE containing the following equation:

XD g (X) =€ )

for each AC-symbolp in Zg, wherei, is the unary function symbol representing the inverse>@nd
e is the corresponding neutral element.

Definition 2 (Locally Stable with Inverses)An AC-convergent equational theory E satisfying (*) is
locally stableif, for every finite sel’ = {M,...,M,}, where the terms Mare ground and in normal
form, there exists a finite and computable sefSatclosed modulo AC, such that

1. My,...,Myesatlh), e; €sat(ln) for eachd € 2g;
2. if My,...,Mg e sat(l") and f(My,...,Mk) € st(sat(I")) then f(My,...,My) € sat(l), for f € Zg;

3. ifC[S,...,S] " M, where C is an E-context such th&l <cg, and g,...,S € sumy(sat(l)),
for some AC symbob, then there exist an E-context,Ga term M, and terms §...,S €
sum; (sat(I")), such thatC'| < ¢, and M5 4 ac M =acC'[S,, - .., SJ;

4. if M € sat(l") then M€ sat(I").
5. if M e sat(l") then i, (M) | sat(I") for each AC symbab in E.
6. if M € sat(l") thenl" - M.

Based on a well-founded ordering over the symbols in theuagg, we prove that a restricted
case of higher-order AC-matching (“is there BrcontextC such thatM =ac C[My,...,My] for some
Ms,...,M € sat(I")?") can be solved in polynomial time isat(l")| and|M|. This AC-matching prob-
lem is solved using the DO-ACM (Distinct-Occurrences of Atatching) [8], where every variable in
the term being matched occurs only once. In addition, we at®a standard and polynomial time
algorithm for solving SLDE ove¥. [12/[15[22]27].

To facilitate the description of the algorithm below we haansidered only one AC-symbab
whose corresponding inverse will be denoted.bihe proof can be extended similarly for theories with
multiple AC-symbols each one with its corresponding ingers

Lemma 3. Let E be a locally stable theory satisfying (f),= {Ms,...,M,} a finite set of ground mes-
sages in normal form and M a ground term in normal form. Thendhestion of whether there exists an
E-contextC and ..., Ty € sat(I") such that M=ac C[Ti,..., Ty is decidable in polynomial time ifM|
and|sat(I")|.
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Proof. GivenT, we construct the sefat(l') = {Ty,...,Ts}, which is computable and finite by Defini-
tion[d. We can then check whethit :ZC C[Ty,...,Ty] for someE-contextC and termsTy,..., Tk €
sat(I") using the following algorithm which is divided in its mainraponent A), and procedures B) and
C) for reducing linear Diophantine equations and selecijisgfrom sat(I"), respectively.

A) Algorithm 1.

1. For all positionsp in M headed byp starting from the longest positions in decreasing order (po
sitions seen as sequences) solvesywtem of linear Diophantine equatiofsee part B below) for
M|, with sat(l") US, whereSis built incrementally fronsat(I"), starting withS = 0, including all
M|, that have solutions. In other words:

Let ' = {p1,..., ot} be the set of positions dfl such thatM|, is headed withe, organised in
decreasing order. For eagh € &' let M|, be the subterm dfl such that

M|pj =Nj; D... 0Ny, (j=1,....1)

Recursively find, but suppressing step 1 in this recursilteszdutions for the arguments, ,...,n;j,
of M{p; with nj,, € {nj,,..., nj, } with respectiveE-contextsC; ,...,C;j, such that

njim = Cjim [Tl, o >T3m]

whereTqesat(l)US_1,9=1,...,s,,.
Then one checks satisfiability of the SLDE generated fidfg) andsat(") US;_1U{n;j,....nj }
(see steps B and C).
If there is a solution the®; := S_1U{n;j ,...,nj, }U{M|p}
2. LetS:=§. Classify the terms isat(I") U Sby size.

3. For each tern; € sat(l") U S (from terms of maximal size to terms of minimal size) check:

« For each positiom € 20§M) such thafl; =ac M|q do
Check whether the path betwe&rand the root oM contains ab:
— if NOT, then deletéM | from M and move tdT; 1.
— if YES (there is ab) thenM has a subterr such thaN = @& ...&nj[Ti] &... dng
andN cannot be constructed frosat(') US. Therefore,M cannot be written as an
E-context with terms fronsat(I").

4. Check whether the remaining part Mf still containsE-aliens. If it is not the case, we have
found anE-contextC and termdMy, ..., My € sat(l") andM =ac C[My, ..., My]; otherwise such an
E-context does not exist.

B) Reduction to linear Diophantine equations.
First, notice that, for each positignsuch thatM|, is headed withe we have

Mlp=aim®...oam,a;eN 3

wherem; is not headed witkb andajm; counts form; ... & m;.
———

aj—times
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We want to prove that there afg, ..., By € N such that
BlTl@...@BqTq:ACM\p:alml@...EBarm( (4)

This AC-equality is only possible wheélh = y;im @ ... © yim for eachi, 1 <i <q<sandy; € N.
Thatis,BiT1 @ ... D ByTg =ac 1M & ... ® aymy if and only if

Bl(yllml69 ... D Vrlrn’) 69[32(‘/12m1€‘9"-69 Vrsz) D...

(5)
...@Bq(quml@...@yrqmr) =a1mMm&...eam

if and only if

(Vi BLD V1,82 - - © Vi Bq) M @ (Yo, BL D Vo, B2 .- © Vo, Bg) M2 & . ..

(6)
(W BL@ VB2 - © Ve By) My = 1My © ... D oMy

if and only if

YiuBi@ yi,Be. . © Yi,Bq = 01

Vo BL® Vo, B2 .. © Yo By = 2
S= . (7

yrlﬁl@ yrzBZ - yrqu =0ar
whereSis a system of linear Diophantine equations dZavhich can be solved in polynomial time [12,

[15/22127].

Remark 2. We will interpret the equatiorls 3 and 4 inside integer aridtin. If there exists an index j
such that m=i(mj) and nj is not headed with i thea;m; = a;(i(m})) and we will take it ag—orj)m;.
Therefore, we can take; < Z, for all j. We can use the same reasoning to conclude fhat Z, for all
1<j<gandy, €Z foralliand j.

C) Selecting theT/sfrom sat(I").

For eachl; e sat(l"), 1 <i < swe want to check iy =y, & ... & y,m;.

Algorithm 2:

For eachT; € sat(l"'), 1 <i < s, solve the equatiofl; & X =ac 01mMy @ ... & aymy wherex; is a fresh
variable.

Since theT’s andM are ground terms, this equation can be seen as an instanbe BiQ-ACM
matching problem which can be solved in tieié|T; & x|.|[M|p|) [8]-

If there existsT; € sat(I") such thafl; = Y M@ ... @ y;m @ U, whereu is not empty,VlJf € N and the
Algorithm 2 can no longer be applied th@nwill not be selected.

Notice that each step of the algorithm can be done in polyabtinie in|M| and|sat(")|. Therefore,
the whole procedure is polynomial jM| andsat(I"). O

Remark 3. For the proof we can adopt an ordering in which, for instancatiables are smaller than
constants, constants smaller than function symbols, anctitn symbols are also ordered, but other
suitable order can be used. Terms are compared by the assddexicographical ordering built from
this ordering on symbols.
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Example 1 (Finite Abelian Groups)We consider the theory of Abelian Groups where the signasure
>ac = {+,0,i} for i the inverse function and the AC group operator. The equational theonydHs:

X+(y+2z) = (X+y)+z
Eac= X+y y+X
i(x+y) = i(y)+i(X)

x+0 = X ii(x) = x
X+i(x) = 0 i0) = 0

We defineZag by orienting the equations from left to right (excluding #guations for associativity
and commutativity).%ac is AC-convergent. The size,¢ of the theory is at least 5. In the following
prove that g is locally stable with inverses for finite models, i.e., wérdea set sdi”) satisfying the
properties in the Definitionl1. For a given det= {Mg, ..., Mg} of ground terms in normal form, sdt)

is the smallest set such that:

1. My,....Mgesatlh);

2. My,...,Mesat(l) and f(Mg,...,Mg) € st(sat(l")) then f(My,...,My) € sal(l), f € Zag;
3. if Mj,M; € sat(l") and M + M; " M via rule x+ i(X) — Othen M€ sat(l");

4. if Mj € sat(I") then (M;) |e sat(l);

5. if Mj =ac Mj and M € sat(I") then M € sat(I").

The set sdf") defined for Finite Abelian Groups is finite.

Although it was said in[[1] that the theory of Abelian Groupdacally stable, no proof of such fact
was found in the literature. With the proviso that the Abelfaroup under consideration is finite, we
have demonstrated thgat(I")| is exponential in the size ofF|.

These results give rise to the decidability of deductionldoally stable theories. Naotice that poly-
nomiality on|sat(I")| relies on the use of the AC-matching algorithm proposed imioe[3. Unlike[[1],
we do not need to compute of the congruence class modulo AC(@fhich may be exponential). This
gives us a slightly different version of the decidabilitytiem:

Theorem 2. Let E be a locally stable theory satisfying (*).Nf= {Mi,...,M,} is a finite set of ground
terms in normal form and M is a ground term in normal form, ther M is decidable in polynomial
time in|M| and |sat(I")|.

Proof. The result follows directly from Lemmas 3 abd 2. O

In the following example we consider tiure AC-theorywhich can be proven to be locally stable
but does not contain the inverse of the AC-symisol

Example 2(PureAC Theory) Zac contains only constant symbols, the AC-symbahnd the equational
theory contains only the AC equations for

ac={ xay=yox Xe (yo2) = (xey) &7 }

In this case, E= AC andZ = 0 is the AC-convergent TRS associated to E.[Let{Mj,..., My} be a
finite set of ground terms in normal form. Let us definélsafor the pure AC theory as the smallest set
such that
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1. My,....Mesatlh);
2. it Mj,M; € sat(l") and M & M; € st(sat(I")) then M® M; € sat(I").
3. if M =ac Mj and M € sat(I") then M € sat(I").

The set sdf") is finite since we add only terms whose size is smaller or eyaal the maximal size of
the terms irT. It is easy to see that the set fa} satisfies the rulds[,P] 4 aftl 5. Singe= 0 it follows
that[3 is also satisfied. Therefore, AC is locally stable.

The size ofsat(I"):

« Steps 1 and 2: only subterms in daf are added.

* Step 3: for each Me sat(l") add M; =ac M; € sat(I"). Notice that the number of terms added in
sat(I"), in this case, depends on the number of occurrencesinfM;. Suppose that Mcontains n
occurrences ofp:

M; = Mil@"'®Min+l‘

There are(n+ 1)! terms M such that M =ac M;.

n+1
Suppose that each;h I contains noccurrences of. Then,|M;| = Z [M;; |+ ni. Let n=max <j<k{n; }-
=1

k
There exists an index r such that, lontains R = n occurrences ofb. Since|l'| = 21|Mi| it follows
i=

n+1 k
that n< |M,| — Z IMy;| < |T'|. Then the number of terms added in step Jigni +1)! < (n+1)!-k <
=1 i

(IF1+21)! -k

Remark 4. In this case one can adapt Lemfda 3 such that the algorithmdwely on solving systems
of linear Diophantine equations ov&fwhich is NP-complete [27]. Therefore, the complexity of 0P
pure AC would be exponential, agreeing with previous regiig].

4 Elementary Deduction Problem for Locally Stable Theories

To establish necessary concepts for the next results, \a# tiee well-known translation between natural
deduction and sequent calculus systems to model the IDP @amagearch in sequent calculus, whose
properties (such as cut or subformula) facilitate the stwidgecidability of deductive systems. For an
AC-convergent equational theory E, the Systemin Table[1 is equivalent to th@d )-rule of the sequent
calculus (Tabl€]2) introduced in[29]:

M%EC[M]. ..... Mk]
C[]an E-context, andl4,... My el

FEM (i)
Consequently, IDP for Systemt” is equivalent to th&lementary Deduction Problem

Definition 3. Given an AC-convergent equational theory E and a seqiénM ground and in normal
form, theelementary deduction problef@DP) for E, writtenl” I-g M, is the problem of deciding whether
the (id)-rule is applicable i - M.
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The theorem below decides EDP for locally stable theories :

Theorem 3. Let E be a locally stable equational theory satisfying (*¢tC - M be a ground sequent in
normal form. Theelementary deduction problefar the theory E [ IFg M) is decidable in polynomial
time in|sat(l")| and|M|.

Proof. By Lemmd 38, the problem whethkt =5cC[Mg, ..., My] for anE-contexiC and termdVy, ..., My €
sat(l") is decidable in polynomial time ifsat(l")| and|M|. If M =ac C[Mg,...,My] for an E-contextC
and termsMj,..., Mg € sat(l") then there exist atE-contextC' and termsMj,...,M;, € ' such that
C[M},...,M}] 5 4uac M. Itis enough to observe that for dll € sat(T"), T can be constructed from the
terms inl.

If there is noE-contextC and termsaMy, ..., My € sat(I") such thatM =ac C[My,...,M] then, by
Corollary[d, there are n&-context and term#l}, ..., M/ € sat(I") such thatC[M,...,M{] = zuac M.
Therefore, there is n&-contextC” and termsM/,..., M/ € I such thatC"[M/,...,M/"] = zuac M.
Thus, the EDP foE is decidable in polynomial time ifsat(l")| and|M|. O

4.1 Extension with Blind Signatures

Blind signature is a basic cryptographic primitive in ettasrhis concept was introduced by David
Chaum in [14] to allow a bank (or anyone) sign messages witheeing them. David Chaum'’s idea
was to use this homomorphic property in such a way that Alaemultiply the original message with
a random (encrypted) factor that will make the resultinggmaneaningless to the Bank. If the Bank
agrees to sign this random-looking data and return it toéAlhe is able to divide out the blinding factor
such that the Bank’s signature in the original message wikar.
Given a locally stable equational theoEy we extend the signatur®: with 3¢, a set containing

function symbols for “constructors” for blind signatures,order to obtain decidability results for the
extension of the IDP for System¥” taking into account some rules for blind signatures.

Extended Syntax

The signature consists of function symbols and is defined by the union ofgets:> = >c U 2g (\with
2eNZc = 0), where
ZC = {pUb(—)>Sign(— 7—)7 blmd(— 7—)7 {—}_ ) <_ ) — >}

represents theonstructors whose interpretations arg@ub(M) gives the public key generated from a
private keyM; blind(M,N) givesM encrypted withN using blinding encryptionsign(M,N) givesM
signed with a private ke; {M}, givesM encrypted with the keyN using Dolev-Yao symmetric
encryption;(M,N) constructs a pair of terms fro andN. Then the extended grammar of the set of
termsor messages is given as

M,N :=a|x|f(My,...,Mn)|pub(M)|sign(M, N)|blind(M,N)| {M}, |(M,N)

Notice that, with the extension df-alien termM is a term headed witli € ¢ or M is a private
name/constant. Ag-alien subternmM of N is said to be arE-factor of N if there is another subteria
of N such thatM is an immediate subterm & andF is headed by a symbdl € Z¢. This notion can
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be extended to sets in the obvious way: a tdins anE-factor of I if it is an E-factor of a term inT".
These notions were introduced in [29].

The operational meaning of each constructor will be definethbir corresponding inference rules
in the sequent calculus to be described.

Extending the EDP to Model Blind Signatures

Following the approach proposed in [29], we extend EDP wlititksignatures using the sequent calculus
. described in TablEl2. In this way, we can model intruder deédrdor the combination of a locally
stable theoryE with blind signatures in a modular way: the thedgyis used in thed rule, while
blind signatures are modelled with additional deductiolesu As shown below, this approach has the
advantage that we can derive decidability results for thider deduction problem without needing to
prove that the combined theory is locally stable (in conitvéith the results in the previous section and

in [A]).

Table 2: Systen” : Sequent Calculus for the Intruder

M~gC[Mq....,M]

C[]an E-contexMy,...,Mcel r-m LMET (cut)
M (id) FET
M (M,N),M,NFT Y rEN
R
rNy TP ey R
[EM K (o MMl FK T {M},M,KEN

M- {M}y M {M}c N @)

r-™m r-K r=™m r-K

i blind
[ sign(M,K) (signe) FFbind(M Ky (0indR)
[ sign(M,K), pub(L),M N
g' ( ), pub(L) (sign )K =ack
Isign(M,K), pub(L) N
: - : -
[ blind(M,K)FK T ,blind(M,K),M,K N (oind,)

I,blind(M,K) =N

I,sign(blind(M,R),K) =R I',sign(blind(M,R),K),sign(M,K),RF N
I,sign(blind(M,R),K) =N

(blindy,)

Mr=A NAEM
r-m

(acut), Ais anE-factor of U{M}

Analysing the systent” one can make the following observations:

1. Theruleg, e sign;,blind, 1, blind 2 andacutare calledeft ruleswith (M,N), {M }k, sign(M,K),
blind(M,K), sign(blind((M,R),K) andA asprincipal term respectively. The rulepg, er,signg
andblindg are calledright rules
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2. The rule(acut), calledanalytic cutis necessary to prove cut ruelmissibility A complete proof
can be found in[26.29].

Remark 5. Considerations about locally stable theories with blingrsitures:

1. All the results proved on Sectibh 2 are valid under thigmsion with blind signatures since the
results depend only on the equational theory E and on the slgmi>. Unlike example 5.2.471],
the theory of Blind Signatures is not considered as part efd@quational theory, the functions
are abstracted in the set of constructors with the operationeaning represented in the sequent
calculus.

2. In [29] it is shown that the intruder deduction problem fof is polynomially reducibleto the
EDP for E: if the EDP problem irE has complexityf (m) then the deduction problemt M in
. has complexityO(n¥. f (n)) for some constari3. This result was proved for an AC-convergent
equational theory E containing only one AC symbol and exddnd finite a combination of disjoint
AC-convergent equational theories each one containing oné AC-symbol.

3. In [26], it was proved that deduction ¥’ reduces polynomially to EDP in the case of the AC-
convergent equational theoryP, which contains three different AC-symbols and rules fqoex
nentiation and cannot be split into disjoint parts.

As a consequence of the results mentioned in the above remartan state the following result:
Corollary 2. Let E be alocally stable theory satisfying (*) containingyoane AC-symbol or formed by
a finite and disjoint combination of AC-symbols. LCea finite set of ground terms in normal form and
M a ground term in normal form. The IDP for the theory E combiméth blind signaturesi{+ M) is
decidable in polynomial time ifsat(l")| and|M]|.

5 Conclusion

We have shown that the IDP is decidable for locally stableties. In order to obtain the polynomiality
result, a restriction on the equational theory is necesdg theory must contain inverses of all AC-
symbols. We have proposed an algorithm to solve a restroase of higher-order AC-matching by using
the DO-ACM matching algorithm combined with an algorithnsadve linear Diophantine equations over
7. Based on this algorithm, we obtain a polynomial decidghiksult for IDP for a class of locally stable
theories with inverses. Our algorithm does not need to coenihe set of normal forms modulo AC of
a given term (which may be exponential). Therefore, we carclode that the deducibility relation is
decidable in polynomial time for a very restricted class qii@ional theories, it does not work for all
locally stable theories asl[1] has claimed. It also decidedDP for the combination of locally stable
theories with the theory of blind signatures, using a traimh between natural deduction and sequent
calculus.
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