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A longstanding open problem in lambda calculus is whetheretlexist continuous models of the
untyped lambda calculus whose theory is exactly the leasbda-theoryA 8 or the least sensible
lambda-theory# (generated by equating all the unsolvable terms). A relgtegstion is whether,
given a class of lambda models, there is a minimal lambdaryhepresented by it. In this paper,
we give a general tool to answer positively to this questimhwe apply it to a wide class of webbed
models: the i-models. The method then applies also to grapdefs, Krivine models, coherent
models and filter models. In particular, we build an i-modélose theory is the set of equations
satisfied in all i-models.

1 Introduction

Lambda-theories are congruences on the sattrms which contair8-conversion, providing (sound)
notions of program equivalence. Models of thecalculus are one of the main tools used to study the
lattice of A -theories. After the first model, found by Scott in 1969 in¢hagegory of complete lattices and
Scott continuous functions, a large number of mathematizalels forA -calculus, arising from syntax-
free constructions, have been introduced in various darntetosed categories (ccc, for short) of domains
and were classified into semantics according to the natutleeaf representable functions, see elgd. [3,
6,[23]. Scott continuous semantics [24] is the class of rieiegpo-models, that are reflexive objects
in the categoryCPO, whose objects are complete partial orders and morphisem$eott continuous
functions. The stable semantics (Betiry [7]) and the stypstdble semantics (Bucciarelli-Ehrhard [8])
are refinements of the continuous semantics, introducedpmaimate the notion of “sequential” Scott
continuous function.

Some models ofA-calculus, called webbed models, are built from lower lestelictures called
“webs” (see Berline[[6] for an extensive survey). The simplelass of webbed models is the class
of graph models, which was isolated in the seventies by Plofkcott and Engelel [16, 283, 27] within
the continuous semantics. The class of graph models centlagnsimplest models of-calculus, is
itself the easiest describable class, and representstineless a continuum of (non-extensional) lambda-
theories. Another example of a class of webbed models, andhtist established one, is the class of
filter models. It was isolated at the beginning of the eighbig Barendregt, Coppo and Dezani [4], after
the introduction of the intersection type discipline by @oand Dezan[[13]. Not all filter models live in
Scott continuous semantics: for example some of them lagelptbperty of representing all continuous
functions, and others were introduced for the stable sdosaftstee Paolini et al!_[22], Bastonero et al.
[5D).

In general, given a clagé of models, a natural completeness problem arises for itilvenehe class
is complete i.e., for any lambda-theory there exists a member & whose equational theory iB.

A related question, raised in|[6] is the following: given as3% of models of theA -calculus, is there
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62 Minimal lambda-theories by ultraproducts

a minimal lambda-theory represented ¥ If this is the case, we say th@t enjoys theminimality
property In [15] it was shown that the above question admits a p@s#nswer for Scott's continuous
semantics, at least if we restrict to extensional reflexi®dnodels. Another result, in the same spirit,
is the construction of a model whose theoryAign, a fortiori minimal, in the w;-semantics (which
is different from Scott semantics). However, the proofsid][use logical relations, and since logical
relations do not allow to distinguish terms with the sameliapfive behavior, the proofs do not carry
over to non-extensional models. Similarly, in [10], it isogn that the class of graph models enjoys the
minimality property.

In this paper, we propose a method to prove that a given cfassdels enjoys the minimality prop-
erty, based on two main ingredients: fiirdte intersection propertyfip) and theultraproduct property
(upp). The fip is satisfied by a clagsof models if for all modeldV 1,M» in ¥ there exists a modél
in ¥ whose equational theory is included (M) N Th(M2). The upp is satisfied i if for every
non-empty family{Mi }ic; of members of¢ and for every proper ultrafiltad of sets on(l) the ul-
traproduct([]ic; Mi)/U can be embedded into a member#@f We show in Theorern 3.1 that if these
conditions are satisfied, th&fi has the minimality property. An important technical devised in the
proof of Theoreni_3]1 is Los Theorem: the ultraproduct ofraifa of models satisfies an (in)equation
betweenA -terms if and only if the set of indexes of the component medatisfying it belongs to the
ultrafilter. Hence, proving the minimality property boilswin to exhibiting an appropriate ultrafilter.

As an application of this general method, we prove that tsscbf i-models introduced in [11]
enjoys the minimality property. First of all, for every paif i-modelsA,B we construct an i-model
C such thafT h(C) C Th(A)NTh(B). This result is obtained via a completion process appliethéo
categorical product oA andB, adapted from[[11]. In order to prove that the class of i-nl@d®ajoys
the upp, we exploit the fact that i-models are webbed modgigen an ultraprodudP of i-models, we
construct the ultraprodu® of the corresponding webs. It turns out tifais a well defined web. Then
we show that there exists an embedding fi@mo the i-model associated wif. We also show how our
proof can be applied to smaller classes of webbed modetsgli&ph models, Krivine models, coherent
models, and filter models.

Although we know that there exists a minimal i-model, its @&ipnal theory has not yet been char-
acterized. Then the results of this paper do not give a solub the longstanding open problem which
asks whether there exist continuous models of the untypatida calculus whose theory is exactly the
leastA-theoryA .

The paper is organized as follows. In Sectidn 2 we providepilediminary notions and results
needed in the rest of the paper, in Seclibn 3 we present tlegajenethod for showing that a given class
of models of theA -calculus has the minimality property, and in Secfibn 4 welaphis method to the
class of i-models.

2 Preliminaries

2.1 Lambda-theories and models of lambda-calculus

With regard to the lambda-calculus we follow the notationd &rminology of [3]. ByA andA°, re-
spectively, we indicate the set af-terms and of closed-terms. We denoter 3-conversion byA 3.

A A-theoryis a congruence on (with respect to the operators of abstraction and apptioativhich
containsA 3. A A-theory isconsistenif it does not equate all -terms,inconsistenbtherwise. The set
of lambda-theories constitutes a complete lattice wmtluision, whose top is the inconsistent lambda-
theory and whose bottom is the theorfs. The lambda-theory generated by a Xeif identities is the
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intersection of all lambda-theories containiXg

It took some time, after Scott gave his model construction,cbnsensus to arise on the general
notion of a model of thé -calculus. There are mainly two descriptions that one cae: dhe category-
theoretical and the algebraic one. Besides the differamguages in which they are formulated, the
two approaches are intimately connected (see Koymans. [T8p categorical notion of model, that of
reflexive object in a Cartesian closed category (ccc), id-sweted for constructing concrete models,
while the algebraic one is rather used to understand glaloglepties of models (constructions of new
models out of existing ones, closure properties, etc.) aonthtain results about the structure of the lattice
of A-theories. The main algebraic description of models of daabalculus is the class af-models
which are axiomatized over combinatory algebras by a fimit@gfirst-order sentences (see Meyeri [21],
Scott [25], Barendregt [3]). In the following we denote bwandsthe so-calleasic combinators

2.2 Ultraproducts

Ultraproducts result from a suitable combination of theedimproduct and quotient constructions. They
were introduced in the 1950's by Los.

Let | be a non-empty set and €A}, be a family of combinatory algebras. Ldtbe a proper
ultrafilter of the boolean algebr&’(l). The relation~y, given bya~y b< {i €1 :a(i) =b(i)} € U,
is a congruence on the combinatory algepra, Aj. The ultraproduct of the family {A;}ic, noted
(Miat Ai)/U, is defined as the quotient of the prody@gi, A; by the congruence-y. If a € i Ai,
then we denote bg/U the equivalence class afwith respect to the congruenee,. If all members of
{Ai}ici areA-models, by a celebrated theorem of LoS we have(ffjat; Ai) /U is aA-model too, because
A-models are axiomatized by first-order sentences. The basibinators of thel-model([i¢ Ai)/U
arek /U ands/U, and application is given by/U -y/U = (x-y)/U, where the applicatior-y is defined
pointwise.

We now recall the famous Los theorem that we will use througlthis paper.

Theorem 2.1(L0S). Let.Z be a first-order language anflA;}ic; be a family ofZ-structures indexed
by a non-empty set | an let U be a proper ultrafilter &f(1). Then for everyZ-formula ¢ (xs,...,X,)
and for every tuplday, ... ,a) € [ic) Ai we have that

(”Ai)/U Fé(a/U,....an/U) = {icl 1A= d(ai),...,an(i))} €U.

2.3 Information systems

Information systems were introduced by Dana Scottl in [26}it@ a handy representation of Scott
domains. Aninformation systens a tuple«” = (A, Cora,ta, Va), WhereAis a set and/a € A, Com C
Z%(A) is a downward closed family containing all singleton subsdtA, and-a C Com x A satisfies
the four axioms listed below:

(11) if a€ Com andatab, thenaUub e Com (whereal-ab d:erB b atkap)
(12) if a € a, thenat-a o

(13) if akFabandbbka y, thenal-a y

(14) OFava

We adopt the following notational conventions: letters3,y,... are used for elements &f (also
called tokens; lettersa,b,c,... are used for elements of Cgnusually calledconsistent setsletters
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X,Y,z,... are used for arbitrary elements 6f(A). We usually drop the subscripts from Goand+a
when there is no danger of confusion.

A subsetx C A is finitely consistenif each of its finite subsets belongs to GonWe denote by
Z:(A) the set of all finitely consistent subsets/Af We define an operatofa: Zc(A) — Z:(A) by
settingx|a= {a € A: JaCs x. ak a}. We may drop the subscript when the underlying information
system is clear from the context. Note thais a monotone map satisfying the following conditions:
X C XJ; x, 1= x| andx]= Uacx al. We call point any subset ofA which is in the image of|. Itis
well-known that the set of points, partially ordered by urgibn, constitutes a Scott domain and any Scott
domain is isomorphic to the set of points of some informatigstem.

An approximable relatiorbetween two information systemsg, % is a relationR C Comp, x B satis-
fying the following properties:

(AR1) ifac ComandaR hthenbe Cons  (wherea R b®'vg c b aRp)
(AR2) ifad Faa,aR b andbtg B/, thena RB’.

Inf is the category which has information systems as objectsappbximable relations as arrows.
The composition of two morphisn®e Inf (o7, #) andSe€ Inf (£,%¥) is (using the meta-notation) their
usual relational compositionSoc R= {(a,y) € Com x C: db € Cons. (a,b) € Rand(b,y) € S}. The
identity morphism of an information system is ka.

The Cartesian closed structurelof is described in[[26], and we recall it here for the sake of-self
containment.

In what follows we use the projection functions fst and snd sét-theoretic Cartesian product over
the first and second component, respectively. The sameiarotat extended to finite subsets of the
Cartesian product. For example,(Bt= {fst(a) : a € a}.

Definition 2.1. The Cartesian product o/ and 4 is given by’ 8% = (AW B,Cont,v) where

AWB= ({va} x B)U(Ax {vg}) vV = (Va,VB)
acCon iff fst(a) € Com andsnda) < Corg
aFa iff fst(a) Fafst(a) andsnda) g snd a)
The terminal object is the information systéimwhose underlying set contains only one token.
Definition 2.2. The exponentiation a¥ to <7 is given by« = % = (A= B,Conl-,v) where

A=B=ComxB v=(0,vg)
{(a1,B1),..-, (&, Bx)} € Con iff VI C[LK. (Uca € Comm= {Bi:icl} e Con)
{(@,B), (@B (cy) iff {Bi:chaa,ic[LK}Fsy

The categonysD of Scott domains and Scott continuous functions is equitatethe categorynf
of information systems, via a pair of mutually inverse Csiga closed functor$)" : Inf — SD and
(-)” : SD— Inf.

In particular for an information systen¥, we have thatez*, the set of points of an information
system, ordered by inclusion, is a Scott domain. Moreoherdbmaing.«”* — "] ando/™ x " are
isomorphic (in the categor$D) to the domaing.«” = %)™ and(«7 & %)™, respectively.

2.4 \Webbed models of lambda-calculus

Let &7, % be information systems and lét: A — B be a function. We define two Scott continuous
functionsf® : &+t — %" andf, : #* — &/ as follows:

P ={f@):aextle; fuly)={a:f(a)ey}ia
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for every pointx of <7 and every poiny of %. In [11] simple conditions are given under whiéhcan
generate a retraction pdif,, f*) from <7 to #* in the categongD, i.e., f,of* =id .

Definition 2.3 ([11]). Let.«/, % be information systems. riAorphismfrom .« to £ is a function f: A—
B satisfying the following property:
(Mo) ac Conyiff f(a) € Corg

Definition 2.4 ([11]). A morphism f. &/ — £ is a b-morphism(resp.f-morphisnj if it satisfies the
following property (bMo) (resp. (fMo))

(bMo) if f(a)tg f(a), thena-aa
(fMo) ifakaa,then fla) g f(a)

The "b” (resp. “f”) in the name of the axiom stands for backd/@resp. forward). We leave to the
reader the easy relativization of the various notions ofphism given in Definitiod_2]4 to the case in
which f is a partial map.

Proposition 2.2. Let f: o7 — 2 be a b-morphism. The(f,, f*) is a retraction pair frome7* into Z™.
Proof. From (bMo) it follows f,o f* =id . O
Definition 2.5. Ani-webis a pairA = (<7, @) where</ is an information system argl: (& = &7 ) — o
is a b-morphism.

The set of tokens o#/ is called thevebof A.

Proposition 2.3. LetA = (<7, @) be an i-web. Thers " is a reflexive object in the catego8D.

Proof. As anticipated, there is a continuous isomorphBn{.«/ = /)" — [«/" — &/*] and by Propo-
sition[2.2 the domaif< = 7)™ can be embedded inte’* via the retraction paifg, ¢°*). Therefore
(6o@,8 1o @) is the desired retraction pair in the categ&B. O

We setA™ = (o7 +,00@,0710¢*) and callA* ani-model Of course, sincA™ is a reflexive object
in SD, thenA™ is also aA-model and closed -terms are interpreted as elements:6f (i.e. as points of
<) as follows:

XI5 = p(x), wherep is any map from Var inte# *
AyM]S" = {ep(@a):ac [[Mﬂﬁ[;;:a“}i/x
[MN]5" = {BeA:JaC[N[5 . (aB)c{(@.B): @@, B)e M5 }lasal

The A-model structure associated to the i-modél is the following. The basic combinators a&® =
[Axyx]A" ands®” = [Axyzxz(y2)]* ", and the application operation is given by

u-z={BeA:Jacsz (ap)c{(@ p): 0@, B)cu}lasn}

for all pointsu, z.
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2.4.1 Well-known instances of i-webs

An extended abstract type structufgATS, for short, [14, Def. 1.1]) is an algebf&, A, —, w), where
“A” and “—” are binary operations andw” is a constant, such thatA, A, w) is a meet-semilattice
with top elementw. In the following < denotes the partial order associated with the meet-seicglat
structure. Recall from_[14, Def. 2.12,Thm. 2.13] that théefilmodels living in Scott semantics are
obtained by taking the set of filters BATSs satisfying the following condition:

(*) If ALi(ai — B) <y— 29, then(/\ie{i:ygai}ﬁi) <9.

Given anEATS (A, A, —, w), the structure = (A, Z:(A),-, w), whereat a iff (Aa) <a,is an
information system.

If the EATS satisfies conditions), then the functiorp : Z:(A) x A— Agiven byg(a,a) = (Aa) —

o is a b-morphism, and hence an i-w@b= (<7, ¢). The corresponding filter model is exactly the
i-model A (see([12] for the details).

In Larsen and Winskel [19] the definition of information st is slightly different: there is no
special tokerv. We remark that the corresponding class of i-models gesgitay the two definitions
is the same. We adopt Scott’s original definition just foihtdcal reasons. With Larsen & Winskel’s
definition we can capture some other known classes of maaelfustrated below.

A preordered set with coherengpc-set, for short) is a tripléA, <, <), whereA is a non-empty set,
< is a preorder orh and=< is a coherence (i.e., a reflexive, symmetric relatioponompatible with the
preorder (se€é [6, Def. 120]). A pc-set “is” an informatiosgm.e’ = (A, Z2£°N(A), ), where ZN(A)
is the set of finite coherent subsetsfondat a iff 38 € a. B > a. A pc-web(see [6, Def. 153]) is
determined by a pc-set together with a napZN(A) x A — A satisfying:

(1) ¢(a,a) = @(b,B) iff (aUb € ZENA) = a <)

(2) if p(a,a) < @(b,B), thena < B and fycb3dd cay<9).
A pc-web is a particular instance of i-web and properties(Z))say exactly thatp is a b-morphism.
Krivine webs [6, Sec. 5.6.2] are pc-webs in which= A x A (so that@f°h(A) = Z%(A)). Total pairs
[6, Sec. 5.5] are Krivine webs in whicH is the equality: in fact in this the requirement @fto be a
b-morphism boils down to injectivity. Therefore a total pai simply defined as a sét together with
an injectionia : Z%(A) x A — A; the underlying information system ig = (A, %%(A),>). Thegraph
modelassociated to the total pair is then the i-modél, obtained by taking the powerset Af(see [[6,
Def. 120]). There is usually some ambiguity in the termiggisince by “graph model” sometimes is
meant the total pair (as inl[9], for example) underlying thedel itself.

3 Minimal models: general results

Given a clas¥ of A-models, a natural question to be asked is whether thers exisembeA of € such

its equational theory, hereafter noted(Rg, is contained in the theories of all other member&ofone

such modeA is calledminimalin €. This point was raised in print by C. Berling [6] who was mginl
referring to the classes of webbed modelsietalculus. If a positive answer is obtained, usually it is
done by purely semantical methods andA&pdoes not need to be characterised in the syntactical sense:
this is the case of Di Giannantonio et &l. [15], in which th¢haus prove that the class all extensional
reflexive CPOs has a minimal model. Of course if one is abl@tbey enough information about &),

then one may be in the position to answer the related conmassequestion for the clags is A3 (or
ABn) atheory induced by a member@f? An example of result of this kind can be found again in [15],
where the authors construct a model with thedfin in the w;-semantics.
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In this section we give general conditions for a cl&sf A-models under which we have the guar-
antee tha® has a minimal model. In the forthcoming Sectidn 4 we apply ¢ig@neral result to the class
of i-models and some of its well-known classes of models.

Definition 3.1. A class% of A-modelshas the finite intersection propertfjp, for short) if for every two
memberd\, B of ¢, there exists a membé€r of ¢ such that EQC) C Eq(A) NEq(B).

For example the class of all-models has the fip, and in general every class closed undsat di
products has the fip. Every subclass which is axiomatized heeA -models by first-order universal
sentences has the fip, but of course these conditions do tirhgeneral for the classes of webbed
models, e.g. for the i-models. We will see that they do hotdlie filter models.

The fip is a property which is weaker than the closure undectjroducts. Of course a class which
is closed under arbitrary (non-empty) direct products has@mal model. The next definition isolates a
property that, together with the fip, can overcome the ladakirefct products and guarantee the existence
of minimal models.

Definition 3.2. A class% of A-modelshas the ultraproduct propertypp, for short) if for every non-
empty family{ A; }ic; of members o& and for every proper ultrafilter U of sets o#(l) the ultraproduct
(Miei Ai)/U can be embedded into a membefsof

For example the class of alkmodels has the upp, and in general every class closed utidgrad-
ucts has the upp. Every subclass which is axiomatized oeer-thodels by first-order sentences has the
upp, but of course these conditions do not hold in generahfmknown classes of webbed models, e.g.
for the i-models.

Theorem 3.1. Let ¢ be a class ofA-models having both the fip and the upp. Tk€rhas a minimal
model.

Proof. Let | be the set of all equationsbetweeen closed combinatory terms for which there exists a
modelA in ¢ such thatA (= e. For everye € |, consider the séfe = {J i | : e J}. SinceKeNKe =
{31 e €3} #0 for all e € € I, then there exists a non-principal ultrafilter on 2% (Z(1))
containing the family(Ke : e € 1). By the finite intersection property of the clags for everyJ Cs |
there exists a modé; in ¢ such thate & Eq(A;) for everye € J. Let {A;}c,1 be the family composed
by these models and consider the ultraprod@et= ([];c,1As)/U. Letec | be a closed equation
and letXe = {J G | 1 Ay £~ e}, ThenXe 2 Ke € U, so thatXe belongs to the ultrafiltet). Since
e is a closed first-order formula, by Los Theoréml 2] |~ e. Sincee was an arbitrary equation in
I, we have thaPy [~ e for everye € |, so that EQPy) C Nacy EA(A). Finally, since the clas®’
has the ultraproduct property, then there exists a m8dil 4 such thatPy embeds intdB. Then
Eq(B) =Eq(Pu) € Nacy EA(A) C Eq(B) and we get the desired conclusion. O

Corollary 3.2. Let% be a class oA -models which has the fip and is closed under ultraprodudt&nT
% has a minimal model.

We conclude the section by giving some other general rethdtscan be proved by just assuming
the fip and the upp for a clags of A-models. In particular we prove a compactness theorem fficodiz-
theories whose equations hold in membergoe also prove that, if there exists an edsterm in%,
then there exists a continuum of different equaticéiatheories. In other words, there are uncountably
many different lambda-theories induced by models of thes#a

Theorem 3.3(Compactness)Let € be a class ofA-models having the upp, and let E be a set of equa-
tions between closedl-terms. If every finite subset of E is satisfied by a membef, dhen E itself is
satisfied by a member &f.
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Proof. For everye C E, let Ko = {d G E: e C d} and letAe € ¥ be a model satisfying. LetU be
a proper ultrafilter o (¢ (E)) containingKe for everye Ct E. Then the ultraprodudffec,e Ae) /U
satisfiesE. Finally by the upp there exists a mod&in % such that{[]ec,e Ae)/U embeds intds, and
thus has the same lambda-theory. We concludeBlsattisfiesE. O

Let% be a class oh-models. A closed -termM is ¢ -easyif for every closed -termN there exists
a membeB of ¢ such thaffM]B = [N]B.

Theorem 3.4. Let% be a class ofA -models having the upp such that there exists-aasyA -term. Then
there exist uncountably marg-theories.

Proof. Let M be a%-easyA-term. Forn > 1, we letr, = AXy... XX, We prove that for everm > 1
the termMrr, is ©-easy.

Let X = (Nn)n>1 be an arbitrary infinite sequence of cloggég-normalA-terms and defin&(X) =
{Mm, =N,:n>1}. LetK = {M7, = Np,,...,M1,, = Ny, } be a finite subset d(X). Without loss of
generality, we may assume that< --- < ng. Lety be a fresh variable and define inductively

Zl:yIIan, Zm+1:Zm II Nnm

n—1 Nmy1—Nm—1

Now setZ = Ay.Zy. SinceM is ¢-easy, then there is a membiof ¢ such thatA =M = Z. Therefore
AEMMm =2Zm =N, foralli=1,... k so thatKk C Eq(A). Since every finite subset &(X) is
satisfied by a member &, then by Theorerh 3L (X) itself is satisfied by a member &f, i.e. there
exists a membeAyx of ¢ such thatE(X) C Eq(Ax). Moreover if X andY are two different infinite
sequences of closg@lh-normalA-terms, then E(Ax) # Eq(Ay). The result then follows from the fact
that there are uncountably many infinite sequences of clBgedormalA-terms. O

4 Applications

In the present section we apply the general results dewlip8ectior B. In particular we prove that
the class of i-models has both the finite intersection ptgpand the ultraproduct property. Then we
comment on how these general results also apply to othesaveln classes of webbed models.

4.1 Finite intersection property for i-models

The goal of the first part of this section is to prove that foergvpair A1, A, of i-webs there exists an
i-web B such that E¢B*) C Eq(A]) NEq(A3). Such result would be trivial if the categorical product
@ &</ could always be endowed with a suitable structure of i-weilb this is not the case. The best
that we can do in general is to makéd &% into a partial i-web. A partial i-web in general is a pair
A= (A, @), wheregn : &7 = of — o/ is a partial b-morphism. In particulah;&A; is a partial i-web

if we set if we can set

(V/-\pv/-\z if ac {(VA1>VA2)} anda = (V/-\pv/-\z)

)
(a.a) = (va, g (snd@),snda)))  if aU{a} Cr {va,} x Az
(gn, (fst(a),fst(a)), va,) if au{a} Cr Ar x {va,}

A partial i-web does not give in general an i-model, but we camplete it to an i-web through a limit
process that involves countably many extension steps.
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We say that# is anextensiorof .7, notation.” < A, if SC B, Cons = CorgN Z%(S), Fs=Fg
N(Cons x S). We say thaB is an extension 0§, notationS < B, if . < % and s is the restriction of
@ to Corgx S

Let us callB the result of the (yet undefined) completion procesé gfA,. Of courseB must be
somehow related to the original i-weBs andA,. In particular, we want that for every closadterm
M if (va,,B) € [M]B" (resp.(a,vp,) € [M]B"), thenB e [M]*: (resp.a € [M]*1) because this will
guarantee that E§") C Eq(A]) NEq(AJ). We will achieve this property by means of the notion of
f-morphismof partial i-webs.

Notation. Let f : A— B be a partial function. We write dé) to indicate the domain of and
do(f) to indicate the complement of ¢ib) in A. We definef : 2(B) — 2%(C) and f : (#(B) x

B) — (2%(C) x C) as follows: f(b) = {f(B) | B € b, B €do(f)} and f(b,B) = (f(b), f(B)). Hence

f: @f(@f(B) X B) — @f(@f(C) X C).

Definition 4.1 ([11])). LetB,C be partial i-webs. Afi-morphism fromB to C is an f-morphismp : 8 —
% satisfying the following additional property:

(iMo) if (a,B) € do(gs), then(y(a), Y(B)) € do(qx) and Y(¢s(a B)) = (P (a), Y(B))

The following proposition explains that, in general, f-ploisms of i-webs “commute” well to the
interpretation ofA -terms.

Proposition 4.1(]11]]). LetB,C be i-webs, letp : B — C be an f-morphism of i-webs, and let M be a
closedA-term. Ifa € [M]B", theny(a) € [M]C".
We remark that the two projection functions fst and snd ameofphisms of partial i-webs from
A1&A; to A1 andA,, respectively.
Our goal now is to construct a series of trip{gs,, Y3, Wﬁ)}nzo such tha, < Syi1 andwri] (S — A
(i = 1,2) is an f-morphism of partial i-webs such th]sg'!;+1 extendsy, (i = 1,2). The idea is that the
input parameter of the whole construction is the trig8g, Y, 2) whereSy == A1&A,, Y} = fst, and
Y& = snd. All subsequent triples are constructed via an algarithat, given(S,, ¢/}, ¢?) as input,
returns(Sny1, Lp,}H, w§+1). The union of all partial i-webs and all f-morphisms of pairirwebs finally
gives an i-wel5,, (calledcompletion and two f-morphismsy;, (i = 1,2) of i-webs that allow to show
that EqS;) € Eq(A7) NEQ(AZ).
The 0-th stage of the completion process, i.e., the tr@ﬁlgtp&,wg) has already been described.
Now assuming we reached stagave show how to carry on with stage+ 1.
Definition 4.2. e S1=S,Udo(¢s,)
e Corg,,, is the smallest family of sets S, Udo(gs,) such that either
(1) there exist & Con, and X € Corg, s, such that XC do(gs,) and x=aU X and gj,(a) U
@ (Wh(X)) € Cory, (i=1,2) or
(2) there exists X Cong, s, such that XxCr (X Ndo(gs,)) U (@5, (XNdo(gxs,))) s,

e atg , aiffeitheran§ g aoraca
® Vs = Vs

¢, (a,a) if (a,a) € do(gs,)
b qénﬂ(a?a) =4 (aa) if (a,a) € %((&n)
undefined ifa, a) € (S11=S+1) — (S =)
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. - 11Ur|1(a) ifa e S’]
o fori=1,2 : = i i
ori ,2we sety,, 4 (a) {QDAi(wrll(b)J/-’r'](B)) ifa=0p)eS1—S

Theorem 4.2. We have that
() “n1=(S+1,Corg,,,,k 5,15 Vs,,,) is an information system such thaf, < .7n, 1,

(i) Shi1= (“ns1,0s,,,) is a partial i-web such tha, < Syy1,
(i) L,UriHl 1S — Aj (= 1,2) is an f-morphism of partial i-webs.

Proof. (i) We show that#},.; is an information system, checking the properties (11)-($&e beginning
of Sectior{ 2.B).

(11) Supposea € Corg,,, andats,, b. If a has been added to Cgn by clause (1), then exists
i € {1,2}, & € Cons, and X € Corg—s, such thatX C do(¢s,) anda=a UX and y(a) U
%(ﬂ(x)) € Cony. Sinceatsg,,, b, thenb=b'UX, for someb’ € Corg, such thatl -5, b'. Now
Y, is a morphism, so thap), (') U @a, (I}l(X)) € Cony,. Thereforebis added to Cog,, by clause
1)

If ahas been added to Cgn by clause (2), then aldois added to Cog,, by the same clause.

(12) If a € a thenatg,,, a by definition oft-g,, ,.

(13) Supposeats,., {a1,...,ax} and{ay,...,ak} Fs,, v. If ye {as,...,ax} then clearlyat-s,,, y.
Otherwise{as,...,ak} NS ks, yand sincen S, ks, {a1,...,ak} NS, we can conclude using the
property (13) of#,.

(14) Immediate.

Finally it is immediate to see that,, < .. 1.

(i) Note that the fact that’y, < .1 automatically implies#, = % =< Zhi1 = Fhe1. NOw we prove
thatgs,,, : h = “n — Fnp1is atotal b-morphism, so that it is automatically a partiahbrphism from
1= S to S

(Mo) We must show thaX € Cors, s, iff (XNdo(gs,)) U (@5, (XNdo(gs,))) € Cong,.,. If X € Cors s,
then(XNdo(gs,)) U (@5, (XNdo(gs,))) is in Cor,,, by clasuse (2).

Let x = (X Ndo(¢s,)) U (@s,(XNdo(gs,))) € Cons,,,. If xis added to Cog,, by clause (1),
then there exist € {1,2}, a€ Con, andY € Cong, s, such thaty C do(¢gs,) andx=auY and

Yih(a) U gy (W(Y)) € Cony,. ThereforeY = (X Ndo(gs,)) anda = (¢, (X Ndo(gs,))). Now we
have

¢ (WH((X N do(gs,)))) U g (Wh((X Ndo(s,))))

O (Uh(X))
Si_ncetp,i](a) U @ (/LLTJ](Y)) is in Cory, by hypothesis, then so i, (I},(X)) and since botfy,, and
Yy, are morphisms of information systems, then so is their caitipa @, o Y, meaning that
X € Corg —s,.
If xis added to Cog,, by clause (2), then evidently € Corg —s,.

Wh@ U@ (Wh(Y) = (g5 (XNdo(gs))) U (h((XNdo(es))))

(bMo) We must show thags,,, (X) Fs,,; ¢,.,(a,a) impliesXts,,,~s,., (8 a). There are two cases to be
dealt with. If (a,a) € do(gs,), thengs,(X) NS, s, ¢s,(a, a) and we deriveps, (X Ndo(gs,)) Fs,
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¢s,(a,a) so that by (bMo) forgs, we have thalX Ndo(¢s,) Fs,—s, (& a) and henceX g s,
(a,a).
If (a,a) ¢ do(¢x,), then(a,a) = ¢s,,,(a,a) € ¢5,,,(X), so that(a,a) € X and thusX Fss,
(a,0).

(iii) Now we prove thatt,uri]+1 (i=1,2) is an f-morphism of i-webs.

(Mo) (=) Supposex € Corg,,,. We consider the clauses (1) and (2) of the definition of£Zon
If xis added by clause (1), i.e=auX for suitableaandX, theny . ;(x) = () U g, (/Lﬂvri](X)) €
Cory,, by clause (1) itself.
If xis added by clause (2), thers (X Ndo(gs,)) U (@5, (XN do(gs,))) s, for someX € Cong s,
Now lety = (XNdo(gs,)) U @, (XNdo(gs,)). We first observe that

Wit (Y) = on (Wh(XNdo(es,)) U (s, (X Ndo(ps, )
= o (Yh(XNdo(gs,) U g (Wh(X Ndo(¢s,)))
= on (W(X))
This proves that, ,(y) € Cony. Now using property (fMo)y, we obtain thatysi, ;(y) Fa
Y, 1(x), and hencay;, ,(x) € Cony,.
(<) By the very definition of Cog, ,, in particular by the clause (1).
(fMo) Supposeat-s,, a. If a € a, then of coursel,, ,(a) Fa Y, 1(a). If anS, ks, a, then

Who1(8) = Yhya(a—SHUYL@NS) Fa Ph(@NS,) Fa Wh(a)

(iMo) Let (a,a) € S, = Sy. Thenyy,,;(¢5,,(a.0)) = @ (Y1 (a), Yn(a)) = @ (W1 (8). Yy (@), by
definition of Y, , and the fact that it extendf,.

O

Thecompletiorof the triple(A1&A,, T8, T8) is the triple(Sy, Y2, Y2), where.7;, = (S, Cors,,, s,
,Vs,) andSy, = (“w, @s,) are given by the following data:

S = Um<wsm COI’ISw = Um<wconsm l_Sw:: Um<w '__Sm _
Vs, = VaA, @5, = Um<w @5n L/J(Io = Um<w L»Urln (i=12)

Lemma 4.3. S, is an i-web andp, : S, — A; (i = 1,2) is an f-morphism of i-webs.

Proof. Indeed.#,, is an information system as a consequence of Theprem 4&gieover the mayps,
is total and it is easy to prove that it is a b-morphism froffy = .7, using the fact that for evenythe
mapgx,,, is a partial b-morphism (Theorem 4.2(ii)). Similarly onengarove thaty!, is an f-morphism
of i-webs fromS,, to A; (i = 1,2) simply using the fact that for everythe mapy!, is an f-morphism
from the partial i-wels, to the i-websA; (i = 1,2) (Theoreni 4.12(iii)). O

Theorem 4.4. Eq(S];) € Eq(A])NEq(A3).

Proof. SupposéM =N ¢ Eq(A]) NEq(AJ ). Suppose, w.l.o.g., th =N € Eq(A]). Then there exists
a € A; such thata € [M]A1 — [N]Az. It is not difficult to check thatr € [M]A1 implies (a,va,) €
[M]S%, sinceS,, extendsA;&A,. Now suppose, by way of contradiction, tHat, va,) € [N]%. Since
wh(a,va,) = a, by Propositiofi 4]l we have thate [N]A1, which is a contradiction. This proves that
(a,va,) € [M]% — [N]S, so thatM = N ¢ Eq(Sg,). O
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In Sectiori 2.4.11 we indicate how some of the most known ctasbeebbed models are recovered as
particular instances of i-models (more details for Filtevdéls are in[[12]). Along these lines the notion
of partial i-web generalizes those pértial pair [6] (related to graph models) as well as the notions of
partial webs of the other types.

The idea of partial pair and of a completion for obtaining apdr model generalizes the construction
of the Engeler model and the of the Plotkin—Scétt, model. It was initiated by Longo in [20] and
further developed and applied by Kerth [17]. Definitlon]42he core of a completion of i-webs that
further generalizes Longo and Kerth's work. As such, it caradapted case by case so that the entire
completion adapts to the various instances of i-webs in¢heesthat if we start with partial pair, at the
end we obtain a total pair, if we start with a partial pcs-wa&b,end up in a total pcs-web etc.

Of course Theorern 4.4 proves the finite intersection prgdertthe class of i-models, but in view
of the above discussion it can also give proofs of the finitergection property for the subclasses of
models mentioned in sectign 2.4.1.

For the particular case of graph models the fip was proved ciBrelli&Salibra [10, 9], via a
construction that they caWeak productwhich has the same spirit of our completion method. For the
other classes of models the fip was not known to hold. For thécpkar case of filter models one may
prove the fip as a simple consequence of the closure of filtatelaaunder the contruction of direct
products, a result that does not appear in the literaturenendio not sketch here.

4.2 Ultraproduct property for i-models

In this subsection we deal with the ultraproduct propertytti@ class of i-models: for every non-empty
family {A; }ic| of i-webs and every ultrafiltdd on 22(1) the ultraproduct[Jic; A;") /U can be embedded
into an i-model.

Let J be a non-empty set and |ét7] }jc; be a family of information systems and létbe a proper
ultrafilter on 22(J). Define a binary relatiot, on [];c5A; by setting(a,B) c & < {j €J:a(j) =
B(j)} €U. Note that, is an equivalence relation qf;c;Aj; we write ([ A;)/U for the quotient of
MjcaAj by 8. As a matter of notation, for every € [ Aj we leta /U = {B € [Njc0Aj: (a,B) € &}
and for every finite subset Ct [;c5Aj, we leta/U = {a /U : a € a}, i.e.,a/U is the finite subset of
(MjesAj)/U constituted by thé}, -equivalence classes of the tokensaoBince each element c ais a
J-indexed sequence, we denotedyj) the j-th projection ofa and we leta(j) = {a(j) : a € a}.

Definition 4.3. We define an information systesd, = (Ry, Cony,Fy,w) as follows:

R :(HjeJAi)/U

VU :(Aj.VAj)/U

a/UecCony iff {jeJd:a(j)cCom}ecU
a/Utya/u iff {jed:a(j)ka a(j)}eU

We also define an i-wely = (Zy, @i, ) by settinggy, (a/U,a/U) = (Aj.gu (a(j),a(j)))/U.

We leave to the reader the easy verification of the fact fAgtandPy indeed are an information
system and an i-web, respectively.

We conclude the second main theorem of the section, the anel¢lals with the ultraproduct prop-
erty. Let{A;}jc; be a family of i-webs, leU be an ultrafilter over?(J) and letPy be the i-web of
Definition[4.3. SincePy is an i-web, therPfJr is a reflexive Scott domain and hencel anodel. On
the other hand each i-web; gives rise to a reflexive Scott domai, which is aA-model. Then

(Njes Aj+)/U is an ultraproduct oA -models, and thus againkamodel.
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Theorem 4.5. There exists an embedding of combinatory algebras from theodel([] ., AJ*)/U into
the A-modelP(;.

Proof. The proof is rather technical and cumbersome. For this rea@state and prove a particular
case that only deals with graph models.

We letx,y, ... range over elements ¢f;c;A [, so thax(j) € A{ is a point of the graph modé;.
We write x/U for the equivalence class &fw.r.t. the congruence ofc; AJ-+ given byx ~y y < {j €
J:x(j) =y(j)} €V, ie,x/U ={y€MjasA] 1 x~u Yy}

Recall that~y is the relation orf];c; Aj given bya ~y B < {j € J:a(j)=B(j)} € U. We define
amapf : ([je;A7)/U — Py as follows:

f(x/U)={a/U:acec r!]Aj, vied a(j)ex(i)}
I

It is easy to show that the definition &fis independent of the choice of the representatives pf
equivalence classes as, forylt x/U, we have{j € J:y(j) =x(j)} €U.

We prove thatf is injective. Suppose/U #y/U and letZ={j € J:x(j) =y(j)}. DefineX =
{keJ:x(k) Cyk)} andY = {ke J:y(k) Cx(k)}. ThenXNY =Z ¢ U. This means that it is not
possible that botlX andY belong to the ultrafiltet). Assume thaX ¢ U. Then for evenk € J— X we
havex(k) € y(k), so that for eaclk € J — X there exists an elememt € A¢ such thaty, € x(k) — y(k).
Let d € [jesAj be an arbitrary sequence and Bt [;c;Aj be defined by3(i) = y fori € J— X and
B(i) = o(i) for i ¢ J—X. By definition of f we haveB/U < f(x/U), while B/U ¢ f(y/U), so that
f(x/U) # f(y/U).

Now we prove thatf is homomorphism of combinatory algebras. We start provivag t preserves
application. We have

f(x/U)-f(y/U) = {a/U:3Ja/U s f(y/U). gy, (a/U,a/U) e f(x/U)}

= {a/U:3aCiMjesAjVycavjed y(j) €y(j) and

Vied gn(ai),a(i)) ex@)}

= {a/U:Vjeld3acry(j). g, (aa(j)) ex(j)}
{a/U:vjed a(j)e{BeA Facy(j). g (aB)ex(j)}}
{a/uvjed a(j)ex(j)-y(i)}
f((x-y)/U)
= f(x/U-y/U)

We now regard the basic combinators. Recall that by definfboeachj € Jwe havek” = [A xy,x]}’*j+ =
{q)Aj (a> (ij (byﬁ)) . B € a}. Then

f(k(l'ljeJA,*)/U) — f((kl'ljeJAT)/U)

= {a/U:aeuA), Vied a(j)ekh}
{@m, (a/6y, @1, (b/U,B/U)) : B/U €a/U}
[Axyx]Ps
kPU

Similarly f(sMi=ANNY = &, O
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We remark that in the general case in which all#e(j € J) andPy are i-webs the map
f:(MjesA])/U — P is defined ad (x/U) = {a /U : a € [1jc3A}, Vi€ d. a(j) e x(j)}In,-

We remarked at the end of Sect[on]4.2 that the fip can be ddiovatibclasses by suitably modifying
the general construction detailed for i-models. Also the liplds for the various classes of models. Here
we proved it for graph models, because it looks it looks vdearcfor this case, but the proof can be
adapted (adding details and complication) to the otherscase

Summing up, graph models, pcs-models, Krivine modelsr fiftedels and in general i-models have
both the fip and the upp. For this reason Thedrem 3.1 appliab tikese classes, producing a minimal
model in each case. It is known that there exist filter-eagyd€/1] as well as graph-easy terms [2]
(for example(Ax.xx)(Ax.xx)), and every graph-easy term is also pcs-easy and Kriviag-aince the
latter classes contain the graph models. Therefore Thedrémnd Theorem 3.4 both hold for all these
classes, saying that each one of them induces a continuuambfla-theories.

5 Conclusions

We have presented a method for proving that a given class delmof theA-calculus has a minimal
element, i.e., an element whogetheory is the intersection of all th&-theories represented in the
class. We have applied this method to the class of i-modedahelass of Scott models defined(inl[11],
containing several well-known instances of “webbed” medi&ke the graph-models and the filter models
living in the category of Scott domains.

Various extensions of this work can be explored, both tovilaedproof that the whole class of Scott
models has the minimality property, and more generally tdviae application of the method to other
classes of models of the-calculus.

Concerning the former extension, a preliminary result \dd the finite intersection property for the
whole class of Scott models, the completion method destiib&ectiori 4 being adapted to i-models.

More generally, it is interesting to notice that webs, evendnd i-webs, are first-order axioma-
tisable, hence closed by ultraproducts (by the way, thiemasion is an alternative way of showing
that Definition[4.8 is sound). By providing a first-order axiatisation of sentences like™ F M # N,
for given termsM, M and webA, we could invoke Lo$ theorem for showing tH@jc;Aj)/U)" and
(MNjes AJ*)/U have the same theory, and hence for deriving a strong forrheotiltraproduct property
for the class of models corresponding to the considered .webs

We conclude this section by providing an outline of a firstesraxiomatisation of reflexive informa-
tion systems. Lets = (A,Com,ka,Va) be an information systeme/ can be defined as a first-order
structure as follows: for eveny > 1, letC,, be ann-ary predicate an&,1 be an(n+ 1)-ary predicate
whose intended meanings are:

Cn(ai,...,0n) <> {01,...,0n} € Con,.
and
Rai1(01,...,an,B) <> {a1,...,0n} Fo B.
Then, it is very easy to axiomatise information systems ageusal Horn formulas:
1. Va.Ci(a);
2. Vai...an.Co(ay,...,an) = C(aiy,...,a;) if k<nand 1<i; <n;

3. Voy...anB.Rypi(0,...,an, B) = Chpa(0a,...,0n,B);
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4. Vay...onB.Ry1(0y,...,0n, B) = Rara(Qg(1)s - - -, Ag(n), B), for every permutatiow;
5.Var...anBr... BeY-(Ar<ickRas1(a1,...,an, B)) ARcr1 (B, -, Be, ¥) = Raga(a, ..., 00, Y);
6. Vai...an.Ch(a1,...,0n) = Rypa(a1,...,0n, o));

7. Ry(v), for a constanv.

In a similar but more complicated way it is possible to find stforder axiomatisation of what is an ex-
ponent and a reflexive object in the categbry. Thus, an untraproduct of reflexive information systems
is again a reflexive information system. It deserves to bdistiuhow first-order closure properties of
information systems can be transferred to the cate§@rgf Scott domains.
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