Symmetry constraints on temporal order in
measurement-based quantum computation

R. Raussendorfl, P. Sarvepalliz, T.-C. Wei3, P. Haghnegahdar1

1: University of British Columbia, Department of Physics and Astronomy, Vancouver, BC, Canada,
2: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA,
3: C.N. Yang Institute for Theoretical Physics, State University of New York, Stony Brook, New York, USA

We discuss the interdependence of resource state, measurement setting and temporal order in mea-
surement-based quantum computation. The possible temporal orders of measurement events are
constrained by the principle that the randomness inherent in quantum measurement should not affect
the outcome of the computation. We provide a classification for all temporal relations among mea-
surement events compatible with a given initial stabilizer state and measurement setting, in terms of a
matroid. Conversely, we show that classical processing relations necessary for turning the local mea-
surement outcomes into computational output determine the resource state and measurement setting
up to local equivalence. Further, we find a symmetry transformation related to local complementation
that leaves the temporal relations invariant.

1 Introduction

Quantum states can change over time in two fundamentally different ways, unitary evolution and mea-
surement. The former is deterministic and reversible whereas the latter is probabilistic and irreversible.
Quantum computation [[1] can be built on either. Employing unitary evolution leads to the quantum
circuit model [2} 3]] (the standard model of quantum computation), and is also present in adiabatic quan-
tum computation [4]]. Using measurement as the central tool to drive the computation leads to various
measurement and teleportation-based schemes [J3. 16} [7]].

Here we consider the one-way quantum computer (MBQC) [6]], a measurement based scheme of
universal quantum computation. Therein, the process of computation is driven by local measurements
on an entangled state of many qubits. Since the entanglement monotonically decreases over the course of
computation, the initial state can be viewed as an entanglement resource. Known examples of universal
resources include certain graph states [8] and ground states of two-body Hamiltonians [9], among them
two-dimensional AKLT states of spin 3/2 [10, [11]. A classification of universal resource states is to
date not available, but it is known that only a tiny fraction of quantum states can possibly be universal
(12 [13]].

The object of study in this paper is the temporal ordering of measurements in MBQC, and what de-
termines it. We point out explicitly that here we do not consider a scenario where a specific quantum
algorithm is given in the circuit model and translated into MBQC. In that case, the temporal order of
measurements can be straightforwardly obtained from the quantum circuit by a known mapping. Rather,
we look at the initial quantum state and the planes of the Bloch sphere in which the locally measured ob-
servables reside, with no further information provided. We ask which temporal orders of measurements
are compatible with this information. It may at first sight appear surprising that there is any constraint at
all. However, the resource state and temporal order in MBQC become interrelated through the principle

Bart Jacobs, Peter Selinger, and Bas Spitters (Eds.):
8th International Workshop on Quantum Physics and Logic (QPL 2011)
EPTCS 95, 2012, pp. 219250} doi:10.4204/EPTCS.95.16


http://dx.doi.org/10.4204/EPTCS.95.16

220 Symmetry constraints on temporal order in measurement-based quantum computation

that randomness of measurement outcomes must be prevented from affecting the logical processing. 1f the
resource is a stabilizer state then all constraints on temporal order follow from the symmetries inferred
by its stabilizer group. The purpose of this paper is to work out the consequences of this connection.

In addition to the theory of MBQC itself, we may investigate MBQC temporal order towards a
different goal: toy models for generating temporal order from none. Consider the case where the resource
is a graph state |G). How much of the temporal order follows from the interaction graph G? The graph G
is an undirected object whereas the partial order is directed. Thus, if G constrained the temporal orders
severely, MBQC would provide a mechanism for generating temporal order. A quantum theory of gravity
must achieve this in a far more complicated setting.

Previous work on MBQC temporal order has shown that for resource graph states |G) the temporal
order of measurements is fully specified if the sets 7 and O of first- and last-measurable qubits are known
[[14]], [15]. But not every pair I, O leads to a possible temporal order. A condition on admissible pairs /,
O in terms of the adjacency matrix of G has been given [16].

In this paper, we present the following results. (i) We show that all transitive temporal relations which
prevent measurement randomness from affecting the logical processing correspond to bases of a matroid
derived from a resource stabilizer state and the local measurement bases. (ii) It is known that the adaption
of measurement bases according to previously obtained measurement outcomes and the extraction of the
computational result are governed by linear processing relations. Further, in all known schemes, the
Bloch vectors specifying the measured local observables lie in the (X,Y), (Y,Z) or (Z,X) equators of the
Bloch sphere which are called “measurement planes”. Here we show that the linear processing relations
determine the resource stabilizer state and the measurement planes up to equivalence. For this result to
hold we need to slightly extend the previously known processing relations by introducing gauge variable
that affect the processing but not the probability distribution of the computational output (See Section[3).
(ii1) We identify a transformation that leaves the temporal order of an MBQC unchanged and which is
a slight generalization of local complementation. Local complementation has previously been found
useful for the discussion of local equivalence among graph states [[17]]-[19]].

The remainder of this paper is organized as follows. In Section [2] we provide the necessary back-
ground and notation, and briefly review prior work on temporal order in MBQC. In Section [3| we in-
troduce the aforementioned gauge degrees of freedom and a resulting normal form of the resource state
stabilizer. Based on this normal form, in Sectiond] we derive our two main results on the interdependence
of resource state and temporal order, (i) and (ii). In Section [5| we introduce a symmetry transformation
that leaves the temporal relation in any given MBQC invariant and which is related to local complemen-
tation. In Section E] we show that MBQC mimics certain aspects of General Relativity [20, 21]. We
present an MBQC analogue of Malament’s theorem [22] and discuss the emergence of an event horizon.
In Section[/|we conclude and point out open questions.

2 Background

In this section we review some basic facts about measurement-based quantum computation, essential
definitions for the discussion of MBQC temporal order, as well as previous work in this area. The
scheme of MBQC itself, with a proof of its computational universality, is not reviewed here since various
articles on this subject exist in the literature [6]], [23] - [27] Also, we require familiarity with the stabilizer
formalism [28]].
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2.1 MBQC and cluster states

In MBQC, the process of computation is driven by local (=1-qubit) measurements on an initial highly
entangled state, generally taken to be a so-called cluster state. The local measurements can only reduce
entanglement, and therefore all entanglement needed for the computation must come from the initial
state. For this reason, the initial state is often called the ‘resource state’[ﬂ

The computational power of a given MBQC strongly depends on the choice of the initial resource
state. For example, a local resource state has obviously no computational power. Other states may be
used for a restricted class of computations. Two-or-higher dimensional cluster states of unbounded size
have the property that they enable universal quantum computation. That is, any quantum computation
can be realized on such a state, by suitable choice of the local measurement bases.

We now define graph states, to be used later on, and cluster states as a subclass thereof.

Definition 1 (Graph states and cluster states.). Be G a graph with vertex set V(G) and edge set E(G),
such that there is one qubit for each vertex a € V(G). Then, the graph state |G) is the unique (up to
global phase) joint eigenstate, |G) = K, |G), for all a € V(G), of the operators

K=0" & o (1)
b|(a,b)E(G)

The cluster state |® o) is a graph state where the corresponding graph is a d-dimensional lattice £ .

In the standard scheme [6], the measured observables are of the form

(@)

04[] = cos @, Oy (@)

+(—=1)%sin@, 0y, )
with a the qubit to which the measurement is applied, and g, € Z, depending on outcomes of (earlier)
measurements on other qubit locations.

2.2 Temporal order in MBQC

As noted above, the temporal order of measurement in MBQC is a consequence of the randomness of
measurement outcomes. By adjusting measurement bases according to measurement outcomes obtained
on other qubits, this randomness inherent in quantum mechanical measurement can be kept from creep-
ing into the logical processing [6]]. If the measurement outcome of qubit a influences the choice of
measurement basis for qubit b, clearly, qubit @ must be measured before qubit b can. This is how a
temporal order among the measurement events arises.

We now generalize the above scenario of measuring observables of form Eq. on cluster states.
Namely, we now consider general stabilizer states |¥) as resources, with supp(|¥)) = Q and stabilizer
group . (|¥)). Furthermore, we generalize the local observables whose measurement drives the com-
putation from Eq. (2) to

0,lq4) = cos @, qua) + (—1)%sing, Gs(g), Va € Q, 3)

with 6,059 # 0 € {X,Y,Z}. Therein, the measurement angles ¢, are in the range —7/2 < ¢, < 7/2,
and g, € Z, may depend on measurement outcomes from several (other) qubits in Q.

ILarge entanglement is a necessary [29}30] but not sufficient condition for the usefulness of a quantum state as resource in
MBQC. Somewhat paradoxically, quantum states exist that are too entangled to be useful [12].
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Definition 2 (Measurement plane). For every qubit a € supp(|¥)), the measurement plane at a is the

ordered pair [G(a), qf?].

We define a third Pauli operator, 0; = iGyy0y. As we will see shortly, the Pauli operators 65 and o
are useful because of the relations

640lglo) = Olg@1], 6,0[g]o] = —0[q]. 4)

The basic mechanism of accounting for an “undesired” measurement outcome is the following. Sup-
pose on some qubit a € Q, instead of the “desired” post-measurement state |¢,), the “undesired” post-
measurement state |@;-), has been obtained. The goal is to get the computation back on track by only
adjusting the subsequent measurements. To do that, we require a stabilizer operator K(a) € .7 (|'¥))
with the following properties [14]: (1) K(a) has support only on a and the yet unmeasured qubits, and

) K(a)|. = 6(”. Recall that 05| 0.) = |@7) for the eigenstates |@,(qq,s4)) of the local measured ob-
servable O|q,|, c.f. Eq. (). Denote by Z(a) and .Z (a) the past and future of a, respectively. Then,

(f//_’(a)<(ploc| ® a<(Pgﬂ) “P> = (F)(a)<(p100‘ ® a<(Pzﬂ) k(a)’T>

- 5
= (0 Pocl @ alul) K (@) | 50) 19) ©)

Therein, the first equality follows from K(a) € .%(|¥)), and the second from the above properties (1)
and (2).

Since the overlaps between local states (representing the local measurements) with the resource
state |¥) contain all information about the computation, we thus find that we can correct for “unde-
sired” outcomes by (a) adjusting measurement bases of future measurements (caused by tensor factors
Op in K(a) #(a)) and (b) re-interpretation of measurement outcomes (caused by tensor factors oy in
K(a)| 7(a)-

Example: Consider MBQC on a cluster state |®3) of three qubits on a line, each measured in the
[0y, 0y]-plane. That is, for all three qubits 6, = Z and 0y = X. (Here and from now on, we use the
shorthand X = oy, Y = 0, and Z = 0;.) The stabilizer generators of |®3) are

Ki = Xi®ZLeh = Gél)®dv(2)®1(3)7
K = 20X%07% = oec)eac”, (6)
K = henexs = Mea e

When the three cluster qubits are measured in the order 1 < 2 < 3, the corresponding quantum circuit is

[24)
B> | X (7

Using Eq. @), here we show that if qubits 1, 2, 3 are measured in the order 1 < 2 < 3, then the randomness
of the measurement outcomes on qubits 1 and 2 can be corrected for. First we consider the stabilizer
operator Ky = Gs(l) Y Gd(,z) ® Gs(3) =: K(1). If inserted in the state overlap of Eq. , the measurement
outcome of qubits 1 and 3 is flipped, as well as the measurement basis at qubit 2. Since qubits 2 and 3
are yet unmeasured when qubit 1 is measured, this is a valid correction operation for qubit 1; hence the
notation K(1). Similarly, K3 = I oY ® Gf) =: K(2) can be used as correction operation for qubit
2. K(2) flips the measurement outcome of qubit 2 and the measurement basis of qubit 3. Since qubit 3 is
yet unmeasured when qubit 2 is measured, this corresponds to a valid correction operation.
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The above argument also works in reverse. If the correction operations K (1) and K(2) are used, then
1 <2 <3 follows. K(1) implies that the measurement basis of qubit 2 depends on the measurement out-
come at qubit 1, hence 1 < 2. Note that 1 < 3 does not yet follow! K(1) does not affect the measurement
basis at qubit 3. Only the meaning of the eigenstates is interchanged, which by itself does not require
qubit 3 to be measured after qubit 1. The interpretation of the measurement outcome may take place long
after the measurement itself has taken place.

K3 = K(2) implies that the measurement basis of qubit 3 depends on the measurement outcome of
qubit 2, and hence 2 < 3. Both relations taken together yield 1 <2 < 3.

From the equivalence with the circuit of Eq. (7)) one would expect one bit of classical output. Indeed,
if no correction operations need to be used, the eigenvalue measured at the output of the circuit corre-
sponds to the eigenvalue A3 measured on qubit 3 of the cluster. Now recall that K (1), applied conditioned
upon A; = —1, flips A3. Therefore, with or without corrections, the eigenvalue measured in the circuit
Eq. (7) equals ;3. Or, in binary notation A; = (—1)%1, A3 = (—1)%, the single bit of classical output
takes the value s; +s3 mod 2.

Note that we have not made any use of K} = 0'(](,1) ® 65(2)
to play, as we discuss in Section

in the above argument. Still, K; has a role

2.3 Influence matrix, forward and backward cones

To counteract the randomness of measurement outcomes, two measurement settings (i.e., bases) per qubit
suffice, which may be labeled by g, = 0 and g, = 1, respectively, for each qubit a. The measurement
settings may collectively be described by a binary vector q, [q], = ¢, for all a € Q, and the measurement
outcomes by a binary vector s, [s|, = s,, forall a € Q. It turns out that the relation between measurement
bases q and measurement outcomes s is linear [31]],

q=Ts mod?2, 3)

with T a binary matrix. We call T the influence matrix.

The set of all qubits » whose measurement basis must be adjusted according to the measurement
outcome on a is denoted as the forward cone of a qubit a. Similarly, the backward cone of a qubit b is
the set of all those qubits a whose measurement outcome influence the measurement basis at b. More
formally, with Eq. (8),

Definition 3 (Forward and backward cones). For any a € Q the forward cone fc(a) is given by

fola) 1= {b e @|9gy/3s, = 1}. ©)
For any b € Q the backward cone bc(b) is given by

be(b) :={ae€Q|dqy/dsa=1}. (10)

We denote the characteristic vectors of fc(a) and be(b) by fe(a) and be(b), respectively. Then, the
influence matrix 7 takes the form

( be(l) )
( be(2) )
T = . = fe(1) | | fe(2) | .. | fe(n) . (11)

( be(n) )
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The influence matrix T generates a temporal relation among the measurement events under transitivity.
We say a < b (a precedes b) if b € fc(a). A priori, it is not forbidden that for two qubits a,b € Q,a < b
and b < a. However, such a computation could not be run deterministically in a world like ours where
time progresses linearly. An MBQC is deterministically runnable if the temporal relation “<” between
the measurement events is a strict partial order.

Definition 4 (Strict partial order). A strict partial order is a relation among the elements a € Q with the
following properties

a#a, Va € Q, (irreflexivity)
a<b=—=D>bH4a, Va,b e Q (antisymmetry ) (12)
a<bb<c=a<c, Va,b,ceQ. (transitivity)

Definition 5 (Input and output sets.). For a given MBQC, the input set I C Q is the set of qubits whose
backward cones are empty, I = {a € Q|bc(a) = 0}. The output set O C Q is the set of qubits whose
forward cones are empty, O = {b € Q, fc(b) = 0}.

That is, with respect to a given temporal relation among the measurement events, / is the maximal
set of qubits which can be measured first, and O is the maximal set of qubits which can be measured last.

Regarding the computational output, for the purpose of this paper we are exclusively interested in
MBQC:s for which the computational result is a classical bit string. That is, every qubit in Q is measured.
Then, as a consequence of the randomness of individual measurement outcomes, the classical output o of
an MBQC is given by correlations among measurement outcomes. Again, the relation between classical
output and measurement outcomes is linear,

0=27s mod2, (13)

for a suitable binary matrix Z.

Example: To illustrate the above notions, we briefly return to the three-qubit cluster state example of
Section[2.2] From the previous discussion we find that

q1 0 0 0 51
e |=[1 00 s> mod 2. (14)
q3 01 0 853

Therefore, fc(1) = {2}, fc(2) = {3}, fc(3) =0 and bc(1) =0, be(2) = {1}, bc(3) = {2}. Hence,
I={1} and O = {3}. Also, 1 <2 and 2 < 3. The latter two relations generate a third under transitivity,
namely 1 < 3. Asymmetry and irreflexivity are obeyed in this example. Regarding the single bit of
output in this computation, the matrix Z of Eq. isZ=(101).

2.4 Brief review of prior work on MBQC temporal order

MBQC temporal order as an (almost) emergent phenomenon. In [14]] the following question is asked:
“Given graph G and the set ¥ of measurement planes for all vertices, can the temporal order of measure-
ments in MBQC with a graph state |G) be uniquely reconstructed from this information?” The graph G
and the measurement planes ¥ are undirected objects. Thus, if the answer to this question was yes, then
temporal order in MBQC were truly emergent.

However, it turns out that the pair G,X does not specify the temporal order of measurements in
MBQC uniquely; there are in general a number of consistent temporal orders respecting the requirement
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that the randomness of measurement outcomes should not affect the logical processing. One may then
ask how constraining on temporal order this requirement actually is. To this question, the following
answer is provided by [14]]: If in addition to G and X the set [ of first-measurable and the set O of last-
measurable qubits is known, then the complete temporal order (if existing) can be uniquely reconstructed
from this information. Thus, MBQC temporal order is not emergent in the strict sense; a seed /, O must
be provided in addition to G and X, and the complete temporal order then follows.

But not every pair /, O will lead to a consistent temporal order. The question that now arises is which
pairs I, O do. For the case where the stabilizer resource state is a graph state and all qubits are measured
in the [X,Y ]—plan then the answer to this question is given in [[L6]. Denote by A the adjacency matrix
of the graph G describing the resource state |G), and by Ag|oex - the submatrix of Ag where the rows are
restricted to O° := Q\ O and the columns are restricted to /. Then, the pair I, O leads to a partial order
of measurement events in MBQC iff there exists a matrix T such that Ag|pexcT =1, and T is free of
cycles (that is T, = 0,Va, T, Ty, = 0,Va, b, T,p Ty T = 0,Va, b, c, etc). The resulting temporal order is
generated by 7 under transitivity.

a) b)

forward cone
of qubit/bﬁ/ B

<ﬂ()0 ‘

A B e Y 4
| U |[c o 3 U | c

forward cone
of qubit a

Figure 1: Closed time-like curves in MBQC. a) Bennett, Schumacher and Svetlichny’s post-selection
model [33,134] of CTCs (left: circuit with wires ‘going backwards in time’, right: implementation thereof
using teleportation and post-selection). b) Nested forward cones in the MBQC equivalent of the telepor-
tation circuit in (a).

MBQC and closed time-like curves. In [32] it is shown that MBQC encompasses the post-selection
model of closed time-like curves (CTC’s) proposed by Bennett, Schumacher [33]] and Svetlichny [34].
The CTCs arise from circuits such as the one displayed in Fig. [Th, translated into MBQC. The result
are forward cones with the property b € fc(a) Aa € fc(b), for two suitably chosen qubits a,b € Q; see
Fig.[Ip. Such nested forward cones are an obstruction to deterministic runnability of MBQC, but mimic
closed time-like curves of General Relativity in the MBQC setting.

3 Gauge degrees of freedom

Here we introduce the notion of “gauge transformations” acting on a given quantum computation. These
transformations exist for both the circuit model and MBQC.
3.1 Gauge transformations in the circuit model

To obtain an intuition for the gauge transformations introduced here, it is instructive to first inspect them
in the circuit model. Specifically, we consider a quantum circuit which consists of (1) the preparation of

2The former condition alone is not a restriction, since all stabilizer states are local Clifford equivalent to graph states [33],
but both conditions jointly are.
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a) b)
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Figure 2: Two symmetry transformations. a) Gauge transformation in the circuit model. For any logical
qubit /, an identity I = 0')51)0351) is inserted into the circuit next to the input. The left o, is propagated
backwards in time, and absorbed by the input state |[+). The right o, is propagated forward in time,
flipping rotation angles and, potentially, measurement outcomes in the passing. b) Flipping a measure-

ment plane in MBQC. In the measurement plane [0y, G4 ], the Pauli operator o is distinguished over

Oy because the rule for adjusting a local observable O for measurement is O[g = 1] = 640[q = 0] G;.

If, for a qubit a, T, = 0 (with T the influence matrix) then the exchange Gd(,a) — Gs(g) is a symmetry

transformation for the given MBQC.

the quantum register in the initial state @/, |+);, (2) unitary evolution composed of, say, CNOT gates
and one-qubit rotations about the X- and Z-axes, and (3) local measurements for readout. Such a circuit
is displayed in Fig. 2] above. Then, into every qubit line individually, we may insert an identity / = 6,0y
next to the input; See Fig. 2| The left o, is propagated backwards in time until absorbed by the input
state |+). The right oy is propagated forward in time, flipping rotation angles and readout-measurement
outcomes in the passing.

This transformation is an equivalence transformation, since it is caused by the insertion of an identity
gate into the circuit of Fig.[2] It changes the sign for certain rotation angles, i.e. when angles are counted
positive or negative. Specifically, for the z-rotation gates next to each input qubit we can individually
choose our convention for which rotation angles are called positive or negative, respectively. Once those
signs are fixed on the input side, they are fixed throughout the circuit. Changing this reference affects the
procedure of computation, but leaves the distribution of computational results unchanged. We therefore
call it a gauge transformation.

3.2 The gauge transformations in the measurement-based model

Translating the above discussed gauge transformations from the circuit model into MBQC it is easily
seen that the above relations Eq. (8) and (13) are incomplete. We find the more general relations

q=Ts+Hg mod?2, (15a)
0=7s+Rg mod2, (15b)

with g a choice of gauge.

Under a change of g, the measurement bases in a particular MBQC change, but the probability
distribution for the classical output values remains unchanged. Of course, knowledge of the g-dependent
extra parts in Eq. (T5al[I5D)) is not necessary to run any given MBQC, since g = 0 is always a valid choice.
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However, the presence of the extra terms in the processing relations strengthens their interdependence
with the resource state, which is the reason why we discuss them here.

We may now want to derive the generalized processing relations Eq. directly in MBQC,
without reference to the circuit model. Before discussing the general case, we return to the specific
example of the three-qubit cluster state in Section

Example: Consider the product K| K3 = Gd(,l) & Gd?) of Ki, K3 in Eq. (@) When used in Eq. , the
effect of this stabilizer element is to flip the measurement bases of qubits 1 and 3. Hence, the relation
Eq. (14) generalizes to

q1 0 0 0 S1 1
q2 = 1 00 s |+ O Jgr mod2. (16)
q3 010 $3 1

This is precisely what one would expect from the insertion of 0,0, next to the input of the equivalent
quantum circuit in Eq. (7).

We now turn to the general case. Via Eq. , the stabilizer group . (|¥)) acts on s and q. Denote the
post-measurement state of qubit a € Q by |s,,¢4)4, With s, the measurement outcome and ¢, specifying
the measurement basis. Then, as in Eq. @),

<®a<5aaQa|> |lP> = <®a<saaQa’> K|lP> = <®a<sa7Qa|K> |lP>a VK € jﬂ(|l}1>) (17)

acQ acQ acQ

Since oy|s,q) = |s@® 1,q) and oy|s,q) = |s,qD 1), for a stabilizer element K = ®aeg(a§a))va(cé”))wa the
action of Gk on s, q is
s — s+v mod2,

Gk : q — q+w mod?2.

(18)

Again, nothing changes by the insertion of a stabilizer (identity) operator into the state overlap of Eq. (5),
and transformations Gg are therefore equivalence transformations. They can be used to constrain the
possible temporal orders in MBQC, as we discuss explicitly in Appendix

3.3 Closed time-like curves — good or bad?

Partial temporal orders for an MBQC with a given resource stabilizer state and fixed measurement planes
are the solution to two constraints, namely

1. Every qubit in the resource state must have a forward coneﬂ
2. The forward cones generate an irreflexive and antisymmetric relation under transitivity.

In this paper we allow closed time like curves (CTC) in the computation; we are interested in classifying
all transitive temporal relations consistent with a given resource stabilizer state and set of measurement
planes. We do not restrict to partial orders per se, and therefore drop the above Condition The
remaining Condition [I| may, at first sight, hardly seem to pose any constraints at all. However, it does.
It imposes a self-consistency condition on each forward cone. As we make explicit in Section this
self-consistency condition in certain cases takes the form of a wave equation.

A temporal relation among measurements which is not a partial order contains closed time-like
curves, and can be implemented in familiar linear time only by employing postselection. On the other

3Forward cones are allowed to be empty.
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hand, temporal relations which contain closed time-like curves have recently been found of indepen-
dent interest [32]. They are the translation of quantum circuits with post-selection CTCs [33], [34] into
MBQC. We may compare with the theory of General Relativity, where certain solutions of the Einstein
equations contain closed time-like curves. Such solutions give rise to a host of paradoxes, and whether
they are physical is under debate [36]]. But Einstein’s field equations are not abandoned because they
allow for CTCs.

3.4 Correction and gauge operations in the stabilizer formalism

To state and prove our results on MBQC temporal order, we need to make a few more definitions. It turns
out that the possible temporal relations, and indeed the classical processing relations Eq. (I5a)), (I5b),
can be parametrized by two subsets of £, namely the computational output set O¢omp and the gauge input
set Igauge. We define these sets next.

We say that the measurement outcome s, of qubit a is corrected in a given MBQC, if by insertion
of a suitable stabilizer operator K in Eq. equivalence of s, = 1 with the reference outcome s, = 0
is established, at the cost of adjustment of measurement bases and/or re-interpretation of measurement
outcomes on other qubits.

We observe that if for a given MBQC all measurement outcomes s,, a € €, can be corrected then
these measurement outcomes contain no information and no linear combination of them is worth out-
putting. Thus, in general there will be a set of qubits whose measurement outcomes are not corrected.

Definition 6 (Computational output set). For a given MBQC, the computational output set Ocopp C L is
the set of qubits whose measurement outcomes are not corrected.

The correction operations for the qubits in a@ € (Ocomp)€, c.f. Eq. , are each implemented by
correction operators K(a) € .Z(|¥)). For each a € (Ocomp), K(a) has the property that it flips the
measurement outcome s, at qubit a, but does not flip the measurement outcome on any other qubit in
(Ocomp)©. In this way, it is ensured that the correction operation is for qubit a individually.

Definition 7 (Correction operator). For an MBQC with a given stabilizer resource state |¥), fixed set
¥ of measurement planes and computational output set Ocomp, for each a € (Ocomp )€ the corresponding
correction operator K (a) € .7 (|W¥)) is a Pauli operator satisfying the conditions

K@), € {a“,c"y,

N

(19)
K@l € {6}, Vb€ (Ocomp)\a.

The correction operator K (a) can be used to correct an “undesired” measurement outcome at qubit a,
c.f. Eq. li If, for a given operator K (a), K(a)| € {Gdgb), Gs(g)} then, by Eq. H the measurement basis
at qubit b depends on the measurement outcome for qubit a. In terms of the influence matrix 7,

K@y € {0y .65} < [Tla=1, Vae (Ocomp)’, b€ Q. (20)

Note that in the first line of Eq. lb we allow K(a)|, = Gs(g) only because we are admitting closed
(@)

time-like curves in the present discussion. K(a)|, = GSZ means that the measurement basis for qubit a
depends on the outcome s, of the measurement of qubit a. This amounts to a closed time-like curve only
involving qubit a (self-loop) and is an obstacle to deterministic runnability.

Because the qubits a € O¢omp have no correction operations, 7, = 0 for all b € Q, and thus

Ocomp € O. 2D
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Thus, Ocomp and the correction operators {K(a),a € (Ocomp) } completely determine the influence matrix
T and hence the temporal relation among the measurements.

Conversely, if Ocomp and {K(a),a € (Ocomp)“} are unknown, then the constraints Eq. pose self-
consistency conditions on them. We discuss these conditions further below.

As we have seen in the concrete three-qubit example above, for a given MBQC the relation between
the choice q of measurement bases and the measurement outcomes s in general allows for an offset term
Hg, c.f. Eq. (I54). Thus, the measurement bases for a certain set of qubits can be freely chosen until the
initially arbitrary g becomes fixed. This observation leads to

Definition 8 (Gauge input set). For a given MBQC with input set I, the gauge input set Ioquee C I is a set

of qubits such that for each i € Iyqge the parameter q; specifying the locally measured observable O|qg;]
can be freely chosen.

Analogously to the correction operations, there will be gauge operators which implement the ‘cor-
rections’ of measurement bases for the qubits in Igauge. The definition of the gauge operators ensures that
for all i € Igauge the corresponding g; can be changed individually without changing the others.

Definition 9 (Gauge operators). For an MBQC with a given stabilizer resource state |V), fixed set ¥ of
measurement planes, computational output set Ocopp and gauge input set loqyge, for each i € lggyge, the
corresponding gauge operator K(i) € ./ (|¥)) is a Pauli operator satisfying the conditions

/_\
~. o Tt
—_ —

Q

](j>’ Vje (Igauge N (OCOmP)C)\i’
{10,647}, vk € ((Fgauge)” O (Ocomp) )\
(10,6}, VI € (Tyauge N Ocomp)\i.

(22)

~ N A
m

—
~.
~—

m

Like previously for the correction operations, Eq. (22)) poses self-consistency condition on the possi-
ble sets Ioauge and {K(i),i € Igauge }-

Lemma 1. The correction operators K(a) of Eq. , a € (Ocomp), and the gauge operators K (i) of
Eq. , i € Igquge, are independent. That is, for all sets J C Igauge, L C (Ocomp) with J # 0V L # 0,
R(J,L) = Tlies K (i) Taer K (a) # 1.

Proof of Lemma [I| (indirect) Assume that there exists a pair J,L, with J # 0 VV L # 0, such that
K(J,L) = I'Y). Then, for all b € (Ocomp)®, K(J,L)| = 1. Now, with Eq. , K(b)|» € {Gs(b),o(b)},

s
and K(c)|» € {0}, 1)} for all ¢ € (Ocomp)°\b. With Eq. , K()|p € {oy”, 1)} for all i € Iguge.
Therefore, no other K(-), K(-) can cancel a o.?) -contribution from K (b) to K(J,L). Hence, b ¢ L for all
b € (Ocomp), and thus L = 0. By an analogous argument, no K(-) can cancel the Gg)—contribution of
K(i) to K(J,L), hence i € J for all i € Iyayge, and J = 0. Thus, K(J,L) = 1Y) = J,L = 0. Contradiction.

Hence, the K(a), K(i) are independent. [

Remark: For any given MBQC with fixed temporal relation, the computational output set Ocomp 1S @
subset of the output set O, see Eq. @ But Ocomp and O are not necessarily equal. Likewise, Igayge € 1
by definition, but Igyge and I may not be equal. To illustrate this point, we consider the following two
examples.

Example 1. Consider the 3-qubit cluster state of Section with measurement planes [X /Y] for
all three qubits. We consider the correction operators K(1) = K», K(2) = K3 for qubits 1 and 2, and

gauge operator K(1) = KiK3. Ocomp = {3} and Lyauge = {1} are then permitted by Eqs. and ,
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respectively. As was discussed previously for the above choice of correction operations, / = {1} and
O = {3}. Thus, in the present example Igauge = I and Ocomp = O.

Example 2. Consider a Greenberger-Horne-Zeilinger state |GHZ) = (|000) + |111))/+/2 as resource
state, with all three qubits measured in a basis in the [X,Y]-plane. We use the stabilizer elements K(1) :=
2175 = Gs(l)czym and K(2) := 27,73 = 65(2) Gs(3) as correction operations for qubits 1 and 2, and K(1) :=
X1 X X3 = G(;])GZ)G(]?) as gauge operator. Then, the choice Igauge = {1} and Ocomp = {3} is admitted by
Egs. and (22)), respectively. On the other hand, this is an example of a temporarily flat MQC, T = 0.
Therefore, I = O = {1,2,3}, and Ocomp # O, Igauge # I.

Lemma 2. For any MBQC on a stabilizer state, |lyauge| < |Ocomp|-
We prove Lemma 2]in Section[3.3]
Definition 10. A pair Iyauge, Ocomp is called extremal iff |Lyauge| = |Ocomp|-

As will become clear in the next section, extremal pairs Igauge, Ocomp are easier to handle than general
pairs, and are not very restrictive (c.f. Theorem [2).

We still need to relate the classical output vector o appearing in Eq. @ to the set Ocomp. To this
end, we make the following

Definition 11 (Optimal classical output). A classical output vector o, with processing relations 0 =
Zs + Rg, is optimal iff the following conditions hold

1. Maximality: Upon left-multiplication by an invertible matrix, Z can be brought into a unique
normal form
Z~(z|I), (23)

where the column split is between (Ocomp)¢|Ocomp, and

2. Determinism: For the matrix Z in Eq. (23],
)i = 1= K(j)li € {o", 05 }. (24)

In other words Eq. (24)) informs us that the jth column of Z is simply the restriction of the support of
K (j) t0 Ocomp-

The reason for defining an ‘optimal classical output’ besides a ‘classical output’ is the following:
One could, in principle, run an MBQC perfectly deterministically and then choose o such that nothing
is outputted at all, or all outputted bits, independent of the measurement angles chosen, are zero guar-
anteed or perfectly random guaranteed. The above definition of an optimal classical output eliminates
such choices. Maximality says that there is one bit of optimal output per qubit of Ocomp. The deter-
minism condition can be understood from the correction procedure explained in Eq. (3). For a qubit
J € (Ocomp)¢, we account for the undesired outcome s; = 1 by inserting K(j) into the state overlap
(@roc|¥) = (@roc|K(j)|W). Now consider a qubit i € Ocomp- By Eq. (23)), s; contributes to the output
bit o;, the i-th bit of 0. If K(j)|; € {GS([), Gs(q?}, then the insertion of K(j) into the overlap flips s, i.e.,
s; — 5; @ 1. This needs to be taken into account when reading out s;. The linear combination s; & s;
remains unaffected by the correction for s;.

We have now made the definitions needed to state and prove our results on temporal order in MBQC.
In Section we establish a normal form for the stabilizer generator matrix of the resource state |¥).
This normal form is the basis for our results on MBQC temporal order, which are stated in Sections H]
and
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3.5 Normal form of the resource state stabilizer

Let us briefly review which pieces of information specify an MBQC. A priori, there are four: the set of
measurement angles, the set ¥ of measurement planes, the resource state |¥) and the classical process-
ing relations Eq. (I5a]I5b). The measurement angles entirely drop out of all our considerations about
temporal order. Next, we observe that when specifying the measurement planes and the resource state
separately, we really specify too much. Starting from a given pair |¥),X of resource state and set of
measurement planes, for any local Clifford unitary U, the pair U|W¥),U(X) obtained by applying U to
both the measurement planes X and the stabilizer state |¥) is again a valid pair, i.e., it consists of a set
of a stabilizer state and a set of measurement planes. Furthermore, it amounts to exactly the same com-
putation as the original pair. The pair |¥),X is thus redundant. To remove this redundancy, we combine
the measurement planes and the stabilizer state |¥) into the stabilizer generator matrix ¢ (|¥)) in the
0,/ Og-stabilizer basis,

G(¥)) = (P[I9)- (25)

Therein, the columns to the left (right) form the 6 (0;-) part of the stabilizer generator matrix. ¢ (|¥))
comprises all information from the resource state |¥) and the set of measurement planes X relevant for
the discussion of MBQC. We do not need to know the state and the measurement planes separately.

Now note that the correction operators K (a), a € (Ocomp)®, and the gauge operators K (i), i € Iyauge,
are all elements of the stabilizer .#(|¥)), and, by Lemmal[l] are independent. Thus, they either form or
can be completed to a set of generators for .7 (|¥') ). This observation leads us to the following

Lemma 3. For any MBQC on a stabilizer state |¥) with extremal Lyquge, Ocomp, the generator matrix 4
of L (|¥)) can be written in the normal form

Oy Oy
Igauge (Igauge)c (Ocump)c Oc'()mp

! (26)

I ;0 0 RY
The matrices H, R, T, Z are related to the matrices H, R, T, Z governing the classical processing of
measurement outcomes in MBQOC, ¢ =Ts +Hg mod 2 and 0 =Zs +Rg mod 2, via

T_<%‘i>, H_<I{I>,Z_(Z]I) ,R=R. (27)

Proof. By Definition (7, a correction operator K(a) exists for every a € (Ocomp)®. By Eq. these
operators have no support in / 2 Iyage and are \(OComp)C | in number and must take the following form:
( 0 ‘ A H 1 ‘ B ), where the 0y part is split as Jgauge, Igayge While the og-part is split as Ocomp, (Ocomp)©.
The gauge operators are, by definition, of the form: ( 1 ‘ C H 0 ‘ D ), where the column splits are as for
the correction operators. Since there are |Q| generators for the stabilizer & (|¥)), of which |(Ocomp)¢| are
already accounted for, there can be at most |Ocomp| independent gauge operators, i.e., |lyauge| < |Ocomp|

which proves Lemma @ In the present setting, the pair Igauge, Ocomp 1S €xtremal by assumption, thus
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these two sets of generators exhaust the stabilizer generators and we can write the stabilizer as

Igauge (Igauge)c (Ocomp)c Ocomp

(28)

g(¥)= |,

B
for suitable matrices A, B, C and D. We now need to identify these matrices. By definition, Igauee € 1.

Measurement outcomes on qubits a € Ocomp are not corrected, hence fe(a)=0foralla e Ocomp, and
Ocomp C O follows from the definition of the output set O. Then, the influence matrix T takes the form

00
(3£

where the column split is (Ocomp)¢ | Ocomp and the row split is Igauge\ (Igauge)c. Now consider the correction
operator K (a) for a € (Ocomp)* in the upper part of ¢ (|¥)) in Eq. (28). We already know from Eq. (20),
that the o, part of K (a) is the forward cone of a. Therefore we must have A = T . Further comparing,
with Eq. which states that the restriction of the oy part of the correction operator K(a) to Ocomp 18
the ath column of Z. But this is precisely the ath row of B, thus we infer that B = z7 .

Next, consider row i of the lower part of ¢ (|¥)) in Eq. . Row i is (0,..,0,1,0,..,0/c”||0|dT).
The corresponding stabilizer operator K (i), when inserted into the overlap (@jo.|¥) as in Eq. , flips
the measurement basis at qubit i and of qubits / € (Igauge)¢ With [¢]; = 1. It further flips the measurement
outcomes at qubits m € Ocomp With [d],, = 1. Therefore,

I
H:<H>, with H=CT, and
R =R, with R=DT.

We thus arrive at the normal form Eq. (26)). O

4 Interdependence of resource state and temporal order

Let us return to our discussion from the beginning of Section [3.5] on which pieces of information are
needed to describe an MBQC. At this stage, apart from the set of measurement angles which do not
enter our discussion, we remain with two pieces of data specifying a given MBQC, namely ¢ (|¥)) and
the processing relations Eq. (I5a), (I5b). But it doesn’t stop there. As the results of [14], [15]], [16]
show, the resource state |¥), the measurement planes X and the influence matrix 7—being part of the
classical processing relations Eq. (I5a)), (I5b)—are not independent. Specifically, given the sets I of
first-measurable and O of last-measurable qubits in addition to |¥) and X, the temporal order (generated
by T') can be worked out completely.

Here we prove a statement about the interdependence of ¢ (|'¥)) and the MBQC classical processing
relations which goes the opposite direction. Namely we show that the classical processing relations
Eq. (154), uniquely specify the stabilizer generator matrix ¢ (|¥)), i.e., the pair [¥), X up to
equivalence; See Theorem [ below. Thus, only two pieces of data are needed to specify an MBQC
that satisfies the determinism constraints, namely the measurement angles and the classical processing
relations for the measurement outcomes.
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A further question is whether the temporal relations compatible with a resource state |'¥') and set of
measurement planes X fit into a common framework. In this regard, we show that the classical processing
relations (containing the temporal order) for MBQC with a fixed resource state and set of measurement
planes, for extremal pairs Iyauge, Ocomp, are in one-to-one correspondence with the bases of ¢ (|¥)), c.f.
Theorem [3

4.1 Results

We now present four theorems on the mutual dependence of the resource state and the classical process-
ing relations.

Theorem 1. Consider an MBQC on a stabilizer state |¥), with fixed measurement planes and an ex-
tremal pair of gauge input set lyq,q0 and computational output set Ocomp. Then, the relations ¢ =Ts+Hg
mod 2, and 0 = Zs + Rg mod 2 for an optimal output o are unique.

That is, once the resource state |¥), the measurement planes and Igauge, Ocomp are fixed, there is
no freedom left to choose the classical processing relations. They are uniquely determined by the for-
mer. In particular, for fixed stabilizer state |¥) and measurement planes, 7 = T (Iyauge, Ocomp), H =
H (Iauge, Ocomp) €tC.

A corollary of Theoremis that given the measurement planes and an extremal pair /gauge, Ocomp» the
resource state |¥) uniquely determines the influence matrix 7. One may ask how restrictive a condition
the extremality of the pair Iyayge, Ocomp 18- In this regard, note

Theorem 2. Consider an MBQC on a fixed resource stabilizer state for fixed measurement planes, with
an influence matrix T and input and output sets I(T ), O(T), such that no qubit a € I° can be individually
gauged with respect to I(T), O(T). Then, there exists an extremal pair lyauge C I, Ocomp C O such that
T= T(Igauge? Ocomp)-

The input set (T and the output set O(T) which appear in Theorem 2] are uniquely specified by T
through Definition 5| T (Igauge, Ocomp) is uniquely specified by the pair Iyauge, Ocomp through Theorem

Theorem [2]states that all temporal relations for an MBQC, subject to the extra condition on the qubits
which can be individually gauged, arise from extremal pairs Igauge, Ocomp- By establishing Theorem @
we trade the condition of the pairs Iyauge, Ocomp being extremal for the condition that no qubit in /¢ can
be individually gauged. The latter is a more meaningful condition. Suppose a qubit a in /¢ could be
individually gauged wrt I, O. Then K(a) exists. For any b with K ()|, = o\ K(b) :=K(b)K(a) is a
valid correction operator for qubit b, and K(b)|, = I'“). Hence, a could be removed from all forward
cones and thereby be made a qubit in /. By imposing the extra condition in Theorem 2] we exclude
temporal relations where certain qubits could be in the input set / but aren’t.

Theorem 1|is mute on the question of which extremal pairs Igauge, Ocomp are admissible. Theorem
below describes how much freedom remains for the choice of the classical processing relations, given
9(%)).

Theorem 3. For MBQC with a fixed resource stabilizer state |¥) and fixed measurement planes, the
classical processing relations for extremal lou,ge, Ocomp, as specified by the matrices H, R, T, Z and the
sets Igquge, Ocomp, are in one-to-one correspondence with the bases of the matroid 4 (|¥)).

After we have justified our restriction to extremal pairs of gauge input and computational output sets
in Theorem [2]and have characterized the set of temporal relations compatible with a given resource state
and set of measurement planes in Theorem (3] we now return to Theorem |1} and show that a converse
also holds.



234 Symmetry constraints on temporal order in measurement-based quantum computation

Theorem 4. Consider an MBQC on a stabilizer state |¥), with classical processing relations q = Ts +
Hg mod2, o =Zs+ Rg mod?2 for an optimal classical output o, such that rkH = rkZ. Then the
classical processing relations uniquely specify the stabilizer generator matrix 4 (|¥)) in the 64 /0;-
basis, i.e. the resource stabilizer state |¥') and set X of measurement planes up to equivalence.

Remark: For Theorem [] it does not matter whether or not the classical processing relations codify a
temporal relation which is a partial order.

Remark: There is a constructive procedure for obtaining ¢ (|¥)) (in the 0y /0-basis) from the linear
processing relations. If the processing relation did not stem from an actual computation but rather was
“made up”, the resulting ¢ (|¥)) may not be a valid stabilizer generator matrix. L.e., the rows of ¥ (|¥))
may correspond to Pauli operators which do not pairwise commute.

4.2 Proofs of Theorems 14|

Theorem [I]is an immediate consequence of Lemma 3]

Proof of Theorem|2| Assume that [ is valid input set and O is a valid output set for a given MBQC. Then,
the stabilizer generator matrix of the resource state can be written in the 6 / 0;-basis as

OC
,

Vi I¢ 0
&T
G (|¥)) =
(1¥)) B c 0 b
for some matrices A, B, C and D. The influence matrix 7' can be obtained as

(315

with the column split between I and /¢, and the row split between O° and O. The matrices B and (B|C) do
not necessarily have maximal row-rank. By row transformations of (B|C||0|D) we extract the dependent
rows, and obtain

1 I° o° o
0 T 1 A
/
0 0 0 D (32)
g ( |1P> ) = O C// O D/I 7
B//l C/// 0 Dl//

However, note that each row in the third set of rows in the above matrix can either be interpreted as a
correction operator K (a), with non-empty forward cone fc(a), for some a € O, or a gauge operator K (i)
for some i € I°. The former is ruled out because every a € O must have an empty forward cone. The
latter is ruled out by the assumption that no qubit outside the set / can be individually gauged. Therefore
that set of rows must identically vanish.
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Since ¢ (|'¥)) has full row rank, so does the matrix D’ appearing in Eq. (32). We may then choose
a set AO C O such that the columns of D’ indexed by AO form a maximal independent set. We set
Ocomp := O\AO. Then, by further row transformations which do not affect T, the matrix in Eq. can
be converted to

I 0° A0 Ocomp
0 | T I 0 | A
(33)
0 0 0 I | A
Y(¥)) =
B/// C/// 0 O D///

B has full row rank by construction. We can therefore find a set Zyayge C I such that the columns of B”
indexed by Iyauee form a maximal independent set. For any such set Iy We can convert the matrix in
Eq. fully into the normal form Eq. without affecting 7.

For any of the above choices for gayge € I and Ocomp C O, the resulting influence matrix T (/gauge ; Ocomp)
can be extracted as

o1
T (Igauges Ocomp)’ = | 0] 0 |, (34)

0|0
with the column split between I and I¢, and the row split between O°, AO and Ocomp = O\AO. By
comparison of Egs. and we verify T = T (Igauge, Ocomp)- O

Remark: Comparing Eq.(33)) with the normal form in Eq. (26), we can write the stabilizer matrix in
a slightly varied form that can be useful later.

Iywge Al I° 0° A0 Ocomp

0 0 T 1 0 z!
(35)
0 0 0 0 I I .
Y(|%)) = ?
I ur H? 0 0 RT

where Z = (21 |Z;) and where H = (H! |H]).

Proof of Theorem[3] Denote by 2 the set of bases of ¢, and by .7 the set of extremal classical pro-
cessing relations of form Eq. , , specified by the triple (Iyauge, Ocomp, {H,R,T,Z}). Then, the
mapping h: B — 7 exists and is a bijection. (1) Existence of h: By the normal form Eq. of
¢ = (P||S), for a given basis B(¥) the sets Jyauge and Ocomp are extracted as follows. A qubit i is in Jyayge
if and only if the corresponding column of ® appears in B(¥). A qubit a is in Ocomp if and only if the
corresponding column of S does not appear in B(¢). Knowing Igauge and Ocomp, {H,R,T,Z} is uniquely
determined via Theorem |1} (2) Surjectivity of h: By definition of “extremal”. (3) Injectivity of A4: given
Isauge and Ocomp, B(G) = (<I>| Loauge SOcomp) is unique. O

Proof of Theorem 4] We divide the proof into the following steps: i) First, with rk H = rk Z, the process-
ing relations stem from an extremal pair lyayge,Ocomp- We show that given an extremal pair Igauge, Ocomp,
the matrices H, R, T and Z are uniquely determined by the classical processing relations Eq. (I5al[I5b). ii)
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From these matrices we can derive the corresponding normal form of the resource state uniquely. Let us
denote this by .4". In iii) and iv) we show that the following diagram commutes, which establishes the
equivalence of normal forms of all extremal pairs.

A
(Igauge ) Ocomp) — (Ig/;auge ) Oéomp)
lT,H,Z,R JT’,H’,ZZR’ (36)
M(A)

N N

In Eq. (36), M(A) is a transformation on the normal form .#", dependent on A. Because of their inde-
pendence, we consider the transformations /gauge — Iéauge and Ocomp — OQOmp separately in iii) and iv)
respectively.

i) Extracting H, R, T and Z: Given any set of inputs / and outputs O by Theorem 2} we know that there
always exists an extremal pair (Igauge, 0c0mp), where Igauge € I, Ocomp € O. By Eq. , T is uniquely
specified by T. By the assumption of the classical output being optimal, Z can be brought into the
unique normal form of Eq. (23) by left multiplication with an invertible matrix and (permuting the
columns if necessary), Z can be extracted. The matrix H may not appear in Eq. in its normal
form Eq. (27), nonetheless for an invertible matrix A, the vector q specifying the measurement
bases is invariant under H — HA, g — A‘lg. By definition of Igayge, €very qubit in Igyyge can
be individually gauged with respect to Iyauge, Ocomp- Therefore, (up to row permutations), we can

choose A such that
1
HA = <H> , 37

where the row split is between Igauge (upper) and (Igauge)c (lower). A and H are unique. The classical
output o is invariant under the transformation R — RA’, g — (A’)~'g. However, since Egs.
and refer to g in the same basis, A’ is now fixed: A’ = A. Then, R = RA, with the A of Eq. (37).

ii) Assembling the normal form: Using the unique matrices H, R, T, Z, by Lemma [3] we can now
assemble the normal form Eq. of the stabilizer generator matrix for the resource state |¥'). By
assumption of TheoremE], the matrices H, R, T, Z describe a valid computation, and the normal form
Eq. (26)) derived from them must thus yield a valid description of a quantum state. In particular, all
Pauli operators specified by the rows of ¢4 ({H,R,T,Z}) in Eq. must commute. (The rows are
independent by design of the normal form.) We have thus constructed a description of |¥). Since H,
R, T, Z are unique, so is |¥).

We now proceed to construct the stabilizer .#(|¥)) from the processing relations when Jgayge and
Ocomp are not specified. From the classical processing relation Eq. we can still extract the
input set / and the output set O, by testing which rows and columns of T identically vanish. Then,
the possible choices for Iyauge and Ocomp are limited to Igauge € 1 and Ocomp € O by definition.

iii) Equivalence under A : Igayge — Iéauge. In order to prove this we rely on the slightly variant version
of the normal form of ¢ (|¥)) as shown in Eq. which also includes additional detail about the
correction operators. As noted above, the different normal forms for H can be interconverted by
right-multiplication with an invertible matrix A (change of basis for g), i.e. H,R — HA,RA, where
HT = (I|H"). Under such a transformation, the upper part of the normal form Eq. for 4 (|¥))
remains unchanged, and the lower part is transformed (H||0|RT) — AT (HT||0|RT). Invertible
row transformations on ¢ (|¥)) leave |¥) unchanged, and |¥) is thus independent on the precise
choice of Igauge € 1.
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iv) Equivalence under A : Ocomp — O’Comp. Proving that a different choice of Ocomp does not change the

stabilizer state is a little more complicated. We proceed in the following manner. From Theorem 3]
we know that Igauge U OCom, are the bases of a matroid. Therefore for two distinct computational
output sets Ocomp and Oy, there exists another computational output set Ogopp, = Ocomp \ {1} U{Jj},
where i € Ocomp \ Ogomp and j € Ogomp \ Ocomp- Therefore, it suffices if we show that the stabilizer
state does not change if we change the computational output set from Ocomp to O, Assume that

comp*
the classical relation for the computational output set Ocomp is given as

0=Z7s+Rg=(Z|Z|])s+Rg. (38)

where the column split of Z is between O,

(with the column split in Gy-part Jgauge ]Ig

AO, and Ocomp. The corresponding normal form

auge ) is

olTr ||7]0]zl
ojlolofrzl |, (39)
IH[[o]O0|RT
5T
where TT = <0> Suppose that we transform Ocomp t0 Ocomp \ {i} U {j}, where i € O¢omp and

Jj € AO. Without loss of generality assume that i is the last column of Z,. (It cannot be an all

T
. . . . X
zero column because, then it would not be possible for it to be in Ocomp.) Let Z; = < > and

Zx
20— (<11 pen a = (11O i Z achieves th formation O o
)= Z: b ) enA= | acting on Z achieves the transformation Ocomp t0 Ogopmp-
r r 1/1]0
A(ZI’Z”):(zAibe Zgj—baTObI> 40
r r 11]0
“(zimriztnr iolr) ~@izn @

We claim that this same transformation can be effected by row transformations of ¢ (|¥)). First let
us focus on the middle set of rows in ¢ (|¥)), namely the correction operators for AO. Then acting

1
by M(A) = < 0 611 > gives us

0lo]1|al0]|ZL+ab”
mwolonzh) = (g oo HH T2 @)
0|71]0|a|zl+ab”
~ (ot ) = olonz) @)

Now if take the last row in Eq. (#3), namely (0[|0|0|1|»T) = ¢ and add xc to the top set of rows in
Eq. (39) we obtain

(ofTr|[r]o|x]0|Zf+xb" )~ (O|T|1]0]|2Z,T) (44)

showing the equivalence of Z and Z'. The equivalence of R and R’ under A can be shown in exactly

the same fashion as for Z; and Z’l.
This concludes the proof that the extremal classical relations completely determine the stabilizer state.
O
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5 Flipping measurement planes and temporal invariance

In this section, we introduce a second group of symmetry transformations on MBQCSs which is related
to local complementation [17] - [19]. These transformations leave the temporal relation of the measure-
ments in a any given MBQC unchanged. An addition, if the temporal relation is a partial order, the
distribution of the computational output is left unchanged.

5.1 Flipping measurement planes

According to Eq. (3)), for any qubit a in a given resource state, the local observable measured to drive the
computation is

04q4) = cos @, qua) +(—1)%sing, ol

N

Therein, g, is a linear function of the measurement outcomes {sp,, b € Q}, c.f. Eq. (15a).
Let’s see what happens if we use a different rule for the adjustment of measurement bases, namely

0.[94) = (—1)% cos ¢, cq()“) +sing, qs,(g), (45)

That is, if g, = 1, to obtain O/,[1] we are flipping the observable O,[0] about the G4-axis rather than the
0y-axis. Comparing Eqs. (3) and (@5), we find that

0,[9a) = (=1)%04lqa], (46)

independent of the measurement angle ¢,. The measurements of O[q,] and O,[q,| are always in the
same basis for the same ¢,, and the measured eigenvalues differ by a factor of (—1)%.

We call the transformation 7] : O;[qi] — O}[qi] flipping of the measurement plane at qubit i. On
(i)

the elementary degrees of freedom, namely the resource state |¥), the Pauli observables a”, Ofs,(;) (action
on Gx(i) is implied), and the measurement angle ¢;, the flipping 7,[i] acts as
Gq()i) Gs(i)7
wlil: o — (D)5 —g, (47)

w) — %),

The action of 7,[i] on the Pauli operators o) and the measurement angles ¢ ;, for j # iis trivial. All our
considerations are independent of the values of the measurement angles. In particular, the second part of
the transformation Eq. does not affect temporal order.

We now discuss the effect of the flipping 7,[a], a € Q on a given MBQC. Denote the measurement
outcome of a measurement of O/,(g,) by s,. By Eq. , the following two measurement procedures
are always equivalent. (I) Measuring O,[q,] and outputting s,, and (I) Measuring O,[g,] and outputting
s +q, mod 2. We may call the device that performs Procedure I a ¢-box, and the device that performs
Procedure II a s¢’-box. Then,

¢-box s¢’-box
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The prime in the s¢’-box accounts for the fact that not the measurement outcome s/, itself is outputted,
but rather the locally post-processed value s/, +¢g, mod 2. Now, instead of outputting s/, + g,, the device
at a may only output s/, (that is an s¢-box), and the classical post-processing relations for the adaption
of measurement bases are modified accordingly, i.e. s, —> s/, +¢, mod 2. Can the resulting relations
again be written in a form q = T's’ + H'g?

We now attempt transforming a ¢-box into an s@-box at qubit a. The vectors of measurement out-
comes s and s’ are related via s = s’ + e,e! q. Inserting this relation into Eq. , we obtain

(I+Tesel)q=Ts'+Hg mod?2. (48)

Case I: T,, = 0. Physically, this means that the measurement basis at the flipped qubit a does not
depend on the measurement outcome at a, before the transformation. Multiplying Eq. with el from
the left yields ¢, = e/ Ts' + el Hg mod 2. Inserting back into Eq. , we obtain

T'=T+Te.l T mod2. (49)

Likewise,
H =H®TeelH, 7 =Z®Ze,el T, R = R Zeel H. (50)

Eqgs. and completely describe the effect of the flipping 7,[a] of the measurement plane at qubit
a on the classical processing relations Eq. (I5a)), (I5b).

Remark: If the matrices H,R,T,Z are given their normal form Eq. wrt the pair Iyauge, Ocomp then
the flipping of the measurement plane at any vertex a with 7,, = 0 leaves this normal form intact. We
can therefore state a transformation rule equivalent to Eqs. (49)), (50) for the matrices H,R, T, Z. This rule
is, in fact, simpler. We assemble the composite matrix

00

Tox =

0
0
o | (51

~| oo O

0
T
Z

oo~

0

which is a square matrix of size (|Q|+ |Iyauge| + |Ocomp|) X (|| + | leauge| + |Ocomp|)- The effect of flipping
of the measurement plane at a then is

Toxt — Ty = Text + Texc€4€) Texe  mod 2. (52)

ext

Thus, the rule is just the same as Eq. (#9) for the original influence matrix 7.

Furthermore, Ty is the influence matrix for MBQC on a bigger resource state [¥') constructed from
|¥). For the support Q' of [¥') we require two additional sets of qubits, I’ and O', with |I'| = |0'| =
ILsauge| = |Ocomp|, such that Q' = QUI'UO'. |¥) is obtained from |¥) by the following construction:

NN

(1)
"/

(53)

PPO®

~

(o]
(0]
LOO®E

\ Igaugc Ocomp )

(N
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Therein, the gates 0—O = A, are o;-controlled o,-gates, i.e., ASGSU)AI = Gs(l), ASG(;UAI = qu” & Gs(z),

etc, and the extra qubits in /' and O’ are initially prepared in the eigenstate of o with eigenvalue 1. With
the definition Eq. of |¥’), the labelling of the blocks of rows and columns for the matrix on the r.h.s.
of Eq. is I'|(Ocomp )| Ocomp| O’ for the columns and I'|Igayge| (Izauge )| O” for the rows.

We thus find that all information in the classical MBQC processing relations is temporal information
for the computation on a slightly extended resource state.

Case 2: T,, = 1. In this case, the measurement basis at a does depend on the measurement outcome
at a. This is an example for a closed time-like curve (only involving the measurement device at a), and
an obstacle to deterministic runnability. Now, the matrix / © Te,el on the left side in Eq. is not
invertible, e! (I ® Tesel) = 0. Hence, the relation can not be solved for q in this case. There is no
relation Eq. with the same sets Igauge, Ocomp before and after flipping.

We now discuss the consequences of flipping measurement planes for the above two cases.

5.2 Flipping measurement planes and local complementation

We now return to the above Case 1, namely when flipping of a measurement plane yields a computation
with a new relation Eq. (I5a). Note that the computation before and after the flip generate the same
output distribution. Flipping a ¢-box into an s¢’-box is an equivalence transformation, only based on the
operator identity Eq. . Changing an s¢’-box into an s@-box is again an equivalence transformation,
provided it can be carried out.

The influence matrices T and T’ before and after the flipping, respectively, are in general not the
same, c.f. Eq. (49). However, T and 7" still generate the same temporal order, as we now show.

Lemma 4. Be T an influence matrix with T;; = 0. Then, T and T' =T @ TeieiTT generate the same
temporal relation under transitivity.

Proof of Lemma 4} Let’s introduce a shorthand a — ¢ for ¢ € fc(a) (meaning that the measurement
outcome at a influences the measurement basis at ¢). Now, we have to show that e <7 f <= e €< f,
for any T’ generated from T by the transformation Eq. (49).

(D “=": Assume that e <7 f. Then there exists a sequence of measurement events e — m; —
my — .. —a—c— ..— f. Can we break the arrow a — ¢, say? To investigate this, let us rewrite the
transformation rule Eq. for the flip 7,[i] as

. fe(a) — fe(a)@fe(i), ifie fe(a),

Tld] : fc(a) — fe(a), ifi ¢ fe(a), Y

Case 1: a — i before the transformation 7[i]. Then, fc'(a) = fe(a) @ fe(i). Since T; = 0 by assumption,

a — i after the transformation 7,[i]. Sub-case la: i — ¢ before the transformation 7,[i]. Since 7;; =0

(i & fc(i)), i — c after the transformation 7[i]. Thus a — i — c after the transformation, and hence

a <7 ¢. Sub-case 1b: i /4 ¢ before 7,[i]. Then, a — ¢ remains after the transformation. Case 2: a /i

before the transformation 7,[i]. Then a — c after 7,[i]. Thus, in all cases a <7 ¢, and therefore e <7 f.
(I) “<=": From Eq. (54), 7,[i]* =1. O

Apply a series of transformations Eq. (49) on an initial influence matrix 7" with vanishing diagonal
part may produce an influence matrix with a non-vanishing diagonal part. Thus, the application of the
transformation Eq. (49) is restricted. To circumvent this problem, we introduce a modified transformation

#i]: T — T' =T +Teel T+ 2(Teel T) mod 2. (55)
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Clearly, this transformation takes influence matrices with vanishing diagonal part to influence matrices
with vanishing diagonal part, and thereby avoids the problem of restricted applicability of transforma-
tion Eq. (@9). Note that the transformation Eq. (55)) has the form of local complementation, albeit the
influence matrix 7 that it acts on will in general not be symmetric.

But what is the physical significance of transformation Eq. (53)? The only additional effect of the
transformation 7[i] over 7,[i] is the cancelling of the diagonal part of the influence matrix after the trans-
formation, c.f. the last term in Eq. @ This can be achieved by a local unitary that exchanges oy <> O
on a respective qubit. The action of Z[i] on the elementary degrees of freedom therefore is

) (@)

o, «— Oy,
"o s oW Vj € fe(i)Nbe(i
{ 0, j € feli) nbe(i)

) — |¥)

We find that the local measured operators for all qubits j € bc(i) N fc(i) change in a way that cannot be
accommodated by a change of the respective measurement angle. For those qubits, the new measured
observables lie in a different equatorial plane of the Bloch sphere. Therefore, the transformation Eq. (56),
unlike the transformation Eq. (49), does not necessarily map a given computation onto itself. What it
does, however, is mapping a given computation to a computation with the same temporal relation.

Lemma 5. Be T an influence matrix with T; = 0. Then, T and T' =T © Te;e! T © 9 (Te;e! T) generate
the same temporal relation under transitivity.

Proof of Lemma [5] Assuming the initial influence matrix has vanishing diagonal part, we split the
transformation T — T & Te;e! T & 2(Te;e! T) into two steps, namely T — T' =T & Te;e! T and
T"—T" =T ®%(T'). By Lemmal] T and T’ generate the same temporal order. Now assume that
T}, =1 for some k € Q, k # i. This requires that Tjy = Ty; = 1. Then, we also have T; =7, =1 and
T} =T/ = 1. Thus, k <7 k and k <7~ k. The closed time-like curve involving k is not changed by setting
T = 0. All other relations trivially remain unaffected by the transformation 7/ — 7". [J

6 MBQC - a toy model for quantum space time?

In attempts to unify the theory of general relativity with quantum mechanics, often the viewpoint is
taken that spacetime is not an independent construct, but rather a consequence of the laws of quantum
mechanics. Once this assertion is spelled out, the natural next step is to identify the key quantum property
which yields a mechanism for generating temporal order, and to illustrate this mechanism in a toy model.

We do not solve any puzzle of quantum gravity here, but argue that measurement-based quantum
computation possesses certain properties that one expects to find in a toy model generating spacetime
from none. Namely, (i) Despite its origin in non-relativistic quantum mechanics, time in MBQC is a
binary relation among spacetime events (here quantum-mechanical measurements). In computations
without closed time-like curves—which are the ones of practical interest—this relation is a partial or-
dering. There is no external time parameter. (ii) MBQC invokes a quantum mechanical principle that
strongly constrains the possible temporal orders, namely that the logical processing is not affected by the
randomness inherent in quantum mechanical measurement. This principle can be formulated in terms of
an underlying symmetry group.

Below we discuss aspects of MBQC that we find are of interest for toy models generating spacetime.
These are: an analogue of Malement’s theorem, forward cones arising as solutions of a wave equation,
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and event horizons. We emphasize that these analogies arise at a formal level —MBQC is about bits, not
matter fields.

6.1 An MBQC counterpart of Malament’s theorem?

Malament’s theorem [22f] states that in any spacetime manifold the light cones determine the metric up
to a conformal factor. Here we argue that Theorem [4]is an MBQC counterpart of that. To begin, we
must identify an MBQC counterpart of spacetime. We say that the MBQC equivalent of a spacetime
is the entire measurement-based quantum computation, with its resource state and temporally ordered
measurement events. The reason for this identification is that in Malament’s setting of General Relativity,
spacetime is all there is to reason about while in our setting it is the process of MBQC. We further identify
the spacetime points with the location of measurement events.

Recall that an MBQC is fully specified by (i) the stabilizer generator matrix ¢ of the resource state,
(i) the set of measurement angles, and (iii) the linear processing relations Eq. (I5a), (I5b) for the adap-
tion of measurement bases and generating the output. Theorem 4] states that (iii) determines (ii), i.e. all
of the MBQC except the measurement angles.

We can thus read Theorem [ as an MBQC counterpart of Malament’s theorem if we make two
further identifications: (a) the light cone structure in GR corresponds to the linear processing relations in
MBQC, and (b) the conformal factor in the spacetime metric at every spacetime point corresponds to the
measurement angle at every measurement location.

Regarding (a), sure, the linear processing relations contain the forward cones in MBQC thorough
the matrix 7, but don’t they also contain the additional matrices H, R and Z that have nothing to do
with MBQC temporal order? In this regard, note that by doubling the qubits on the input and output
boundaries Iauge and Ocomp in the support of the resource state, the influence matrix Ty, of the extended
resource state |P’) comprises all information about H, R, T and Z (c.f. Section . In this sense, all
information in the processing relations is temporal.

Regarding (b), we presently do not know of a physical reason for identifying a scale factor for the
metric at any spacetime point with a measurement angle at every MBQC spacetime point. However, we
note that both Malamat’s theorem and its MBQC analogy Theorem [4] in their respective settings, leave
one real-valued parameter per spacetime point unfixed.

6.2 Forward cones satisfy a wave equation

We consider an MBQC on a resource stabilizer state in graph normal form |G). We show that if the
measurement plane is (X/Y) for every qubit then the forward cones satisfy a wave equation. Here,
(X/Y) is an unordered pair such that we are left with both the possibilities of 6y = X and 6y =Y. The
choices may differ for different qubits.

Following [37]], we define the discretization of the Laplacian A = 2?21 ;—; as A := DD, where D is
the incidence matrix of the graph G. In our case, all addition is mod 2. An équivalent formulation then
is

A:=T+92 mod?2, &5

with I" the adjacency matrix of G and & a diagonal matrix such that [Z],, = deg(v), for all v € V(G).
The discretized Laplacian can act on the characteristic vector f, of fc(a), yielding Af,. For further use
we define the function f, : V(G) — Zy, by f,(v) = 1(0) if v € fc(a) (v € fc(a)). Then, the action of A
on f, is defined through Af,(v) := [Af,],.
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The definition Eq. of the Laplacian is in accordance with intuition, as the following example for
two-dimensional lattice graphs (embedded on a torus) shows. There,

(Afa)(xy) = [(falx+1,y) = fa(x,)) = (fa(x,y) = falx— 1,y))]+

+[(fa(x7y+1)_fa(xay))_(fa(xvy)_fa(x7y_1))] mod 2
fa(x+1vy)+fa(x_1aY)+fa(xvy+1)+fa(xay_l) mod 2
[(F—F@)fa](x’y) mod 2.

In the last line, Z = 0 because all vertices have degree 4. Back to general graphs G, the offset & in
Eq. (58) is necessary such that Af = 0 whenever f = const. We now have the following

Lemma 6. Consider MBQC on a graph state |G) where every qubit is measured in the (X,Y)-plane.
Then, the forward cones satisfy a wave equation with position-dependent mass m,

m(v) fa(v) + Afa(v) = 8a, Vv € Ol (58)

Therein, addition is mod 2, and m(v) = deg(v) +b(v) mod 2 with b(v) = 0(1) if the measurement plane
atvis [X,Y] (is [V, X]).

Proof. For a given qubit b, irrespective of whether the measurement plane at b is [X, Y] or [Y,X], with
Eq. for the correction operations K(a) we find that b € fc(a) iff K(a)|, € Xp,Yp. In words, K(a)
has Pauli operators ~ X exactly in those places that are in the forward cone of qubit a. Then, using the
Definition 1] of graph states, we find

K(a) = X(£,)Z(Tt,), (59)

where X (g) := ®yev(6)|[g, =1 Xv-
Special case: The measurement plane is [X,Y] for all qubits (G(Z(,a) =X,,Va e V(G)). Now, for all
b # a we require K (a)|, € {I5,X)}, and K(a)|, € {Z4,Y,}. Using Eq. (59), we thus find the constraint

Tf, 0. =e,. (60)

comp

Therein, e, is a |O¢,y,,|-component vector which has an entry 1 in the ath component, and zeros every-

where else. With Eq. (57), this reproduces Eq. for m(v) = deg(v), in accordance with Lemma [6] for
b(v)=0.

General case. For b # a we require that K(a)|, € {I»,X,} if the measurement basis at b is [X,Y]
and K(a)|p € {I,Y,} if the basis at b is [Y,X]. Furthermore, we require that K (a)|, € {Z,,Y,} if the
measurement basis at a is [X,Y] and K(a)|, € {Z,;,X,} if the measurement basis at a is [Y,X]. Using
Eq. again, we find Eq. (58), with m(v) = deg(v) 4+ b(v) mod 2 as required. [J

6.3 CTCs of length 1 and event horizons

In this section we consider an MBQC that has a closed time-like curce of length 1 at a given qubit i. That
is, the measurement basis at i depends on the measurement outcome at i. We argue that if we flip the
measurement plane at qubit i we obtain an MBQC from which the closed time-like curve is removed, but
instead qubit i vanishes behind the MBQC counterpart of an event horizon.

Be i a qubit such that 7;; = 1 before flipping the measurement plane at qubit i. Such a qubit i cannot
be in Jyauge, since Igauge € I by definition. If 7;; = 1 then i € be(i). The backward cones of all qubits in
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are empty by definition of 7, however. Likewise, i € Ocomp. If T;; = 1 then i € fc(i). However, fc(a) =0
for all a € Ocomp. Thus, there is only one case to consider, namely i € (Zgauge) N (Ocomp)©

In this case, there exists a correction operator K (i) for qubit i before the flipping, K(i) = 05 ®
K(i)|q\;- After flipping at i, this operator turns into

5[i](K() = o)) @ K(i)|oy = K (i). (61)

That is, the operator 7,[i](K (i)) resulting from flipping at i is a gauge type operator, c.f. Eq. (22). Thus,
the flipping transformation 7[i] (when T;; = 1) enlarges /yagc by one qubit,

i) Lgauge — lgauge U {i}, if T = 1.
Furthermore, after the flipping at i there no longer is a correction operation for qubit i, hence
%li] : Ocomp —* Ocomp U {i}, if T;; = 1.

This has two consequences. First, the forward cone of i becomes empty. In particular 7; = O after the

flipping. Thus, the closed time-like curve consisting of qubit i has been removed. Second, an additional

bit of optimal classical output is being created by the flipping at i. What does that output bit signify?
Recall that before the flipping at i, the rule for adjusting the measurement basis at i is

!
qi = si+ Z s; mod 2,
JjeJ\i

for some set J C Q. Here, we have dropped a constant offset h” g on the r.h.s. The symbol “!” above
the equality means that equality is a requirement for the correctness of the computation, but it cannot be
deterministically implemented. As follows from Eq. (46), the measurement outcomes before and after
the flip, s; and s/ are related via s; = s. @ ¢g;. For all the other qubits, s’j = s;. Substituting this into the
above relation, we obtain

si+ ), s mod2 L 0, Vg, € Zy. (62)
JeI\i
Thus, the additional output bit 0; = s} + Y je J\is} mod 2 is a flag. If 0; = 0 then the computation suc-
ceeded, and if o; = 1 then it did not.

Now suppose that the problem solved by the given MBQC is in NP. Then, this flag bit is not neces-
sary. The remaining output may be efficiently checked for correctness anyway. Thus, one may safely
discard the extra bit o; of output. Not post-selecting on o; = 0 can, if anything, only increase the success
probability of the computation. We thus arrive at

Lemma 7. Be .4 an MBQC with a classical output o and influence matrix T such that T; = 1, i.e., M)
has a closed time-like curve involving a single qubit i € Q. Be ., the MBQC with the same classical
output o, obtained from 1 by flipping the measurement plane at i. Then, the closed time-like curve
of i in M\ is removed in M>. Furthermore, if .#\ solves a problem in the complexity class NP with
probability p, then 4 solves the same problem with probability > p.

Remark: Lemmal[7]does not guard against the inefficiencies of post-selection, in particular if multiple
CTCs of length 1 are being removed. While the success probability after removing the CTCs is guar-
anteed not to be smaller than for the original computation with the CTCs (which can only be executed
using post-selection), neither it is provably significantly larger.
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Q

Ocomp

\

o o

Figure 3: Breaking a closed time-like curve of length 1. The looped qubit becomes an element of
Isauge N Ocomp after flipping the measurement plane. As such both its forward cone (Ocomp € O), and
backward cone (Igauge € 1) must be empty.

Event horizons. Let us consider the flow of information between qubit i whose measurement plane
has been flipped and the other qubits. Before the flip (MBQC .#) of Lemma , i € (Ocomp)® N (Tgauge )¢
After the the flip (MBQC .#, of Lemma , i € Ocomp NIgauge. In A5, since i € Igayge, N0 information for
the adaption of measurement basis is flowing into site i from the other sites. Likewise, since i € Ocomp,
no information for the adaption of measurement bases is flowing out of site i. Finally, because of the
normal form Eq. (27), the measurement outcome s; appears in only one readout bit. This readout bit
is 0; as given in Lh.s. of Eq. (62), which is precisely the bit of classical output that can be discarded
if the problem solved by the quantum computation is in NP. If o; is discarded, then no information is
flowing out of the site i at all. Thus, in summary, from the viewpoint of classical processing, qubit i in
> becomes entirely disconnected from the computation. It vanishes behind the MBQC counterpart of
an event horizon.

7 Conclusions and outlook

In this paper we have studied the constraints on temporal order in measurement-based quantum compu-
tation which arise from the principle that the randomness inherent in quantum measurement should not
affect the logical processing. We have established a classification of temporal relations consistent with
a given resource stabilizer state and set of measurement planes. Conversely, we have shown that the
linear processing relations in measurement based quantum computation, subject to the above principle,
specify the resource state and set of measurement planes up to equivalence. We identified gauge degrees
of freedom which need to be included in order to establish the above results. Furthermore, we found a
transformation that leaves the temporal order in every MBQC invariant and is related to local comple-
mentation. Finally, we pointed out formal MBQC analogues of a result and a piece of phenomenology
in the theory of General Relativity, namely of Malament’s theorem and event horizons.
At this point, we are led to ask the following questions:

1. We introduced a group of gauge transformations Eq. (I8), and a group symmetry transformations
Eq. (53), generated by flipping measurement planes. Both transformations preserve MBQC tem-
poral orders. Can the two groups be unified?

2. Some of the temporal relations admitted by the matroid ¢ (|¥)) contain closed time-like curves.
Given a stabilizer state |¥) and set of measurement planes X, can we find an algebraic (or other)
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structure which comprises only the partial orders? Can the partial order of measurements with the
smallest set Ocomp be efficiently computed?

. The generators of the resource state stabilizer commute by definition. As pointed out in the second

remark below Theoremd] this commutativity condition constrains the MBQC linear processing re-
lations, including temporal order. What is the physical meaning of this constraint to the processing
relations?

In MBQC, the link between the randomness in quantum mechanical measurement and temporal
order is the principle that the randomness of measurement outcomes should not affect the logical
processing. In a context more general than quantum computation, what could this principle be
replaced by?
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The gauge transformations Eq. act on q and s, and can therefore have a non-trivial effect on the
classical processing relation Eq. (I5a), q = T's+ Hg. We now study this effect. Since the transformations
Eq. are caused by the insertion of stabilizer operators into the state overlap in Eq. (3)), they do not
change the physical situation. Therefore, the temporal relations before and after any such transformation
must be equally valid, although not necessarily identical. By insertion of the stabilizer operator into
the overlap (®jc|¥), the stabilizer of |¥) and the the sets Iyauge, Ocomp do not change. Therefore, by
Theorem [T} the matrices 7 and H do not change. Thus, besides q and s, all that can change in the relation
Eq. (I5a) under a transformation Eq. (I8) is g. The following two viewpoints are always equivalent:
(A) The relation q = fy(s), under the action Eq. of a Gk on (s,q) is changed into an equivalent
such relation q = fy(s), with Gx : g — g’. (B) The relation q = f(s,g) remains invariant under all
transformations G, acting on the triple (s, q,g). We choose the latter viewpoint.

We now infer the action of the transformations Gg on g. Without loss of generality we assume that
the relations Eq. (I5a) are given with H in its normal form Eq. (27),

1

Furthermore, we assume that the pair Igayge, Ocomp 18 extremal. Since Iyauee € I by definition, for each
i € Igauge, i only depends on g but not on the measurement outcomes s, g; = g;. Now, the correction
operators K(a), a € (Ocomp )€ derived from the normal form Eq. of G(|¥)), K(a)|1,, has no oy-part.
Therefore, the corresponding transformations Gk do not flip g;, for all i € Igauge. In order to preserve the
relation ¢; = g;, they thus leave g unchanged. Now consider the other stabilizer generators, K (i), i € Igauge.
obeying the conditions Eq. . By construction, G?(i) flips g; but no other g;, for i # j € Iyauge. Hence,
to preserve the relations g; = g;, it must also flip g;, but no other g, i # j € Izauge. Thus, for a stabilizer

element K = ®aeg(0s(a))v"(6¢(,a))w"’

Gk: 8 €D Wl (63)
Therein, we have assumed that the basis choice for g is such that the matrix H appearing in Eq. (I5a) is
of normal form Eq. (27).

We have now fully specified the action of Gk on the triple (q,s,g), c.f. Eq. (18), (63). MBQCs

satisfy the invariance condition
q=Ts+Hg mod2<= Gg(q) =TGk(s)+HGgk(g) mod2,VK e .7(|¥)). (64)

It is evident that the requirement of invariance of the processing relations under the gauge
transformations poses constraints on the possible matrices 7 and H. In fact, as we show below, given
Ocomp the matrices T and H are uniquely specified uniquely by the above invariance condition.

To check the invariance condition Eq. (64)) in a specific case, we return to our 3-qubit cluster state
example of Section We consider the effect of the transformations induced by generators K| =
G(UGS(Z), K, = Gs(l)o(z) GS(3) and K3 = 65(2) Gf) on the processing relations Eq. . As noted earlier,
Isauge = {1}. Then, with Egs. and (63),

GKl: q—>q@(17070)T7 S—>S®(07170>T7 81 —>g1@17
GK2: q—)q@(oal’O)T’ S—)S@(I,O,l)T, 81— 81, (65)
GKS: q—>q@(07071)r7 s—>s@(07170>T7 81— &81-
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It is easily checked that the relation Eq. (16) is invariant under the transformations Gg,, G, and Gk, of
Eq. (65). However, if the transformations are restricted to q, s, the relation Eq. (16)) is no longer invariant
under the transformation induced by K.

We now return to the general case and show that, given the set Ocomp and the action Eq. , @ of
the gauge transformations on the triple (q,s,g), the invariance condition Eq. uniquely specifies the
classical processing relations Eq. (I5a)) for the adaption of measurement bases.

Recall that we write the stabilizer generator matrix for |¥) in the 0y /0;-basis as 4 (|¥)) = (P||S).
Then, for the stabilizer generator K, € . (|¥)) corresponding to the a-th row of ¢ (|¥)), with Eq.
the action of the gauge transformation Gk, ons, q is

Gk, : s —> sDrow,(S), q — qDrow,(P). (66)
With Eq. (63)), the action of Gk, on g is

Gk, :— gD row,(P) (67)

’1gaugc :
Here, row,(®)|y,,,,. denotes row,(®P) restricted to lyauge. Then, the condition Eq. 1i for invariance of
q = T's+ Hg under Gk, becomes

row,(®) = Trow,(S) + Hrow, (D) mod 2.

I gauge

This condition must hold for all stabilizer generators K, simultaneously, hence

o' =T15" +HO'|,, mod 2. (68)

auge x Q

By definition, the qubits in /gauge have empty backward cones, and the qubits in Ocomp have empty

forward cones, hence T is of the form
( o >
T = —‘— ,
T

where the column split is (Ocomp)|Ocomp and the row split is Jpauge|(Lgauge)¢> ¢.f. Eq. . By right-
multiplication of relation Eq. with a suitable matrix, we transform &7 | I into a matrix of form

auge X Q
(1/0) where the column split is between Igayge and Igauge. By definition of Igyyge, such a transformation is
always possible. Under the same transformation,

T I ] 0 -
> = < @1 (I)z ? S |(0comp)c><§2 — (S1|S2) (69)

. . 1
Inserting the above into Eq. , we find that H must be of normal form Eq. 1} H= (H) , and

b, = TS;+H mod?2,

b, = TS mod?2. (70)

Now, §; must be an invertible matrix. This is the condition that, by definition of Ocomp, €every measure-
ment outcome in (Ocomp )€ is correctable. Then,

T=d5 "' mod2, H=® +P,5, 'S, mod?2. (71)

Hence the relation q = T's + Hg is uniquely specified.
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A.2 Gauge transformations and computational output

In addition to Eq.[64] we also require invariance of the classical output under the transformations Eq. (I8)),

©3),
0=Z7Zs+Rg mod2=ZGk(s)+RGk(g) mod2, VK € .7(|¥)). (72)

Like Eq. (64), Eq. (72) is a determinism constraint. If for a single output bit o the relation o =z’ s +r’g
is not invariant under all gauge transformations Eq. (I8), (63), then the value of o is guaranteed to be
random, and thus useless as readout bit of a computation. Specifically,

Lemma 8. Assume an MBQC where the relation ¢ = T's + Hg is invariant under the gauge transfor-
mations Eq. (@), , but an output bit o exists whose defining relation o = z's +r! g is not invariant
under the action of G for some K € .7 (|¥)). Then, the value of o is completely random, independent
of the choice of measurement angles.

Proof of Lemma |8, For simplicity, consider first the special case where K € . (|¥)) acts trivially
on g, Gk(g) = g,Vg. We may then write 0 = Y,;;s; +c for an offset ¢ = r’g. We call the string
s|; of measurement outcomes on J even (odd) if it has even (odd) weight. We denote the local post-
measurement state on qubit a by |@,, 54, q4(S, 8)), where @, is the measurement angle, s, the measurement
outcome and ¢, specifies the chosen measurement basis.

Under the transformation Gg, s — s @ Asg, where, by assumption, Ask |, is odd. Now, the proba-
bility of outputting o = c is

2
p(OZC) = Z (®a<¢a,sa7qa(sag)|> ’lP>
s|ly=even | \acQ
2
= Z ( a(PasSasqa(s, )|> K|¥)
s|y=even | \aeQ
2
= Z ( (Pmsa@AsKaaqa@AQKﬂ) ') (73)
s|y=even | \aeQ
2
= Z ( q)a)sa@AsKavqa(S@AsK’ )|> “P>
s|y=even
2
- Z a (Pavsav%l(s g)‘) |lP>
s\] odd | \aeQ
= plo=7).

Thus, p(o = ¢) = p(o =¢) = 1/2. Note that in transitioning from the third to the fourth line of Eq.
we have used the invariance property Eq. (64), i.e., the assumption that the adaption of measurement
bases is deterministic.

In the general case, Gk : s — sB Asg, g —> gD Agx. We note that we can choose any gauge fixing

2
g, and thus p(o = ugaugewz )y <® (@a:54:9a(s; g>|> ¥)

g s|;=even | \aeQ

the above we then find p(o =0) = plo=1)=1/2.0

. By an argument analogous to
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