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A number of extensions exist for Alternating-time Tempdmadjic; some of these mix strategies and
partial observability but, to the best of our knowledge, markvprovides a unified framework for
strategies, partial observability and fairness condsaiin this paper we propogerl LKEO, a logic
mixing strategies under partial observability and epistepnoperties of agents in a system with
fairness constraints on states, and we provide a model tgealgorithm for it.

1 Introduction

A number of extensions exist for Alternating-time Tempduadjic; starting from[[7], partial observability
has been investigated by many authors, see for instancengBiederences therein. But, to the best of
our knowledge, no work provides a unified framework for sg#ts, partial observability and fairness
constraints. For example, Jamroga and van der Hoek propaseoing other logics, ATOL, mixing
partial observability with strategies of agerits|[10]. Adaihe same lines, Schobbens studied pJI4]],
seen as the minimal ATL-based logic for strategies undeigbabservability [9]. On the other hand,
some efforts have been made on bringing fairness to ATL. f&tance the work of Alur et al. [1], or
the work of Kliippelholz and Baier [11] introduce the notiohfairness constraints on actions, asking
for an infinitely often enabled action to be taken infinitelgen. For temporal and epistemic logics,
however, fairness conditions are normally providedtates Furthermore, it has been shown that (weak,
strong or unconditional) fairness constraints on actioas,be reduced to (weak, strong or unconditional,
respectively) fairness constraints on states (see [2]infiance). In this paper we proposg LKEO, a
logic mixing strategies under partial observability andstgmic properties of agents in a system with
unconditional fairness constraints statesand we provide a model checking algorithm for it.

To motivate the need for fairness constraints in ATL undetiglaobservability, consider the simple
card game example in_[10]. The game is played between a péagkba dealer. It uses three cards,
K andQ; A wins overK, K wins overQ and Q wins overA. First, the dealer gives one card to the
player, keeps one and leaves the last one on table. Thendherman keep his card or swap it with
the one on the table. The player wins if his card wins over #eai’s card. Under ATL semantics,
the player cannot win the game: he cannot distinguish betwiee example< A,K > and< A,Q >
(where< a,b > means "player has cam dealer has cari’) and thus has to make the same action in
both states, with a different result in each case. Consideravariation of this game: the game does
not terminate after the first round. Instead, if the playersdaot win, cards are redistributed. In this case,
too, the player cannot win the game: for instance, he wilehavchoose between keeping or swapping
cards in< A/K > and< A, Q >, so he won't be able to enforce a win because the dealer (tioatses
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the given cards) can be unfair and always give the losing Bait if we add one fairness constraint per
intermediate state—i.e. the states in which the playertnabdose between swapping or keeping—the
player has a strategy to finally win the game. In this case,myeapnsider paths along which all fairness
constraints are met infinitely often: this situation cop@sds to a fair dealer, giving the cards randomly.
The player can thus finally win becauseA, K > will eventually happen—even if he cannot distinguish
it from < A,Q >—, so he knows a strategy to win at least a round: keeping his ca

Another example of application of fairness constraints Tri.As Multi-Agent Programs[[5]. These
programs are composed of interleaved agent programs anégaiconstraints are used to avoid unfair
interleaving. Dastani and Jamroga express fairness asufeenof the logic ATL* [5]; in this paper,
instead, we deal only with ATL and therefore fairness camsts cannot be expressed as formulae of the
logic. The situation is similar to the case of LTL versus CTbdel checking: in the first case model
checking fairness is reduced to model checking a more comfplenula using the same verification
algorithms; in the second case fairness is incorporatedo@spoke verification algorithms. In our work
we chose ATL over ATL* because of complexity considerati(gee Sectiohl3).

The rest of the paper is structured as follows: Se¢tlon 2eptsshe syntax and semanticsﬂd‘fLKg0
and Section |3 presents two model checking algorithms fotatje. Finally, Sectiom 4 summarizes the
contribution and draws some future work.

2 Syntax and Semantics

This section presents the syntax and semantiég chﬂ<§o, an extension of ATL with partial observability
under fairness constraints on states. An extension witlohgervability under the same fairness con-
straintsAT LKfFO is also presented because the model checking algorithwh'l’fdan0 relies on the one
for ATLKE,.

Syntax Both logics share the same syntax, composed of the standsigdh connectorsv( A, —,
etc.), CTL operatorsHX, EU, EG, etc.) [4], knowledge operator&{g, Er, Dr, Cr) [6] and strategic
operators ()X, (MG, (MU, (MW and their[l'] counterparts) [1].

Models and notation AT LK, andAT LKE, formulae are interpreted over modéls= (Ag, S Act, T, I,
{~i},V,F) where (1)Agis a set oh agents; (25= S x ... x §, is a set of global states, each of which is
composed oh local states, one for each agent; &2t = Act; x ... x Acly is a set of joint actions, each of
which is composed af actions, one for each agent; (B)C Sx Act x Sis a transition relation between
states inrSand labelled with joint actions (we wrie § if (s,a,8) €T); (5)1 C Sis the a set of initial
states; (6) ~i} is a set of equivalence relations between statesy~ampartitions the set of states in terms
of knowledge of agent—s ~; s’ iff § = g, i.e two states are indistinguishable for ageiftthey share
the same local state foy (7) V : S— 24P labels states with atomic propositionsA®; (8) F C 2Sis a
set of fairness constraints, each of which is a subset @sstat

A joint actiona = (ay,...,a,) completes partially joint actiorer = (&, ...,a’j) composed of actions
of agents il C Ag—writtenar C a—if actions ina for agents irl” correspond to actions . Further-
more, we define the functiomg: Sx Act — 25 asimg(s,a) = {S € Ss-> 5}, i.e.img(s.a) is the set of
states reachable in one step fratirougha.

A model M represents a non-deterministic system where each agemtnhasperfect information
about the current global state. One restriction is madd oivs s € Ss~; § = enableds,i) =
enableds i) whereenableds,i) = {a € Act|3s € Sac Acts.t.(a) C ars—>§}. This means that
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the actions an agent can perform in two epistemically edgntastates are the same. Theabled
function is straightforwardly extended to groups of agents

A pathin a modelM is a sequencer = sy = s; =% ... of elements ofT. We user(d) for sq. A
states is reachablein M if there exist a patht andd > 0 such thatt(0) € | andmn(d) =s. A pathtis
fair according to a set of fairness conditidRs= { f1, ..., fx} if for each fairness conditiori, there exist
infinitely many positiongl > 0 such thatt(d) € f. A statesis fair if there exists a fair path starting sit

A strategyfor agent is a functionf; : S— Act where, for any stats fi(s) € enableds,i); a strategy
maps each state to an enabled action. We call these statgofiml strategies A uniform strategyfor
agenti is a global strategyf; wherevs,s € Ss ~j s = fi(s) = fi(S), i.e. ageni cannot choose two
different actions for two indistinguishable states. Birtegy outcomeom a states for a strategyf;,
denoted without(s, f;), is the set of paths a strategy can enforce, di(s, f;) = {TT= o - s1...|S =
SAVd > 0,54+1 € Img(sy4,ad4+1) A (fi(sd)) C ag+1}- The definition of outcomes is naturally extended to
sets of strategies for a subset of agents.

Semantics The semantics of both logics are defined over states of a nMvdbgl defining the relations
M,s =, @ andM, s =5, @, for ATLKE, andAT LKF,, respectively.M can be omitted when clear from
the context. Both relations share a part of their semantiesyrites =" @ if s =5, g ands =, ¢. The
S F?O @ ands H:)o @ relations are recursively defined over the structurep @nd follow the standard
interpretation for most of the operators=F pif p € V(s); v and— are interpreted in the natural way.
s=F K if @ is true in all fair reachable states indistinguishable frefor agenti, s =" Er ¢ if all
agents i know @, s =F Dr g if, by putting all their knowledge in common, agentsiofvould know,
ands =" Croif @ is common knowledge among agentsof6]. s}=" Ey if there is a pathvt starting
at s satisfyingy, m=F Xoif m(1) satisfiesp, m=F @U@ if @ is true along the path unti is true,
mE Goif @is always true alongr, andim= gW if = (U @) v G [4].

The meaning of thél") operator is different in the two semantics:
s ):EO (MY iff there exists a set ajlobal strategiesfr, one for each agent in, such that for alfair
paths 1T € out(s, fr), m=" y;
(i) s ):EO (M y iff there exists a set afiniform strategies fr-, one for each agent iR, such that for all
g ~r s, for all fair paths e out(s, fr), m=" .

The[] operator is the dual off): s|=" [Mw iff s=F ().

3 Model Checking AT LK, and AT LKF,

Model checking ATLKE, The model checking algorithm faXT LKE, is defined by the functiofi.]f, :

ATLKE, — 25 returning the set of states of a given mobiekatisfying a giverAT LKE, property. This
function is defined in the standard way for Boolean connsctGifL and knowledge operatois [4, 13].
The|[l'] operators are evaluated as follows:

[[F1X@]%, = Prer ([¢]%, N Fairy)
[[F@U @], = HZ.([e]Fo N Fairr) U ([eul 5 N Prer(2))

[M1Gelfo = vZ.[¢]5o N () Prer(uY.(ZN f)u ([¢]fo N Prer(Y)))
feF
VZ.([[QDz]]'fzoﬂ Fairm)

F_
[MeaWelto= " ([@]f.N N Prer; (1Y.([@]f, N Fairr) U (Zn f)u ([@df, NPrer(Y))))
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wherePrer (Z) = {s|Var € enableds,"),3a s.t.ar Canimg(s,a)NZ # 0} andFair - = [[]G true]f,.
pZ.1(Z) andvZ.1(Z) are the least and greatest fix points of functid@). Intuitively, the Prer;(Z)
operator returns the set of states in whicbannot avoid to reach a statef Thus, [[[Gg]f, returns
the set of states in which cannot avoid a path of states [@], going through all fairness constraints
infinitely often; Fairr is the set of states in whidhcannot avoid a fair path. Note that tfi€) operators
can be computed using tlfig] and— operators, but can also be computed directly using the duads
from the ones above. For examdlé)Ge]t, = vZ.([¢]}, UFair|) NPrer (Z), wherePre (Z) =

Prer)(Z) = {s|3ar < enableds,I") such thatva,ar C a = img(s,a) C Z}. Z C Sis the complement
of theseZ C S
The correctness of the model checking algorithmABiLKE follows from Theoreni 1.

Theorem 1. For all states s= S, s=F, @ if and only if se [¢]%,.

Proof sketch.First, Reachy(P1,P;) = puY.RU (PLN Prep(Y)) computes the set of states in whiCh
cannot avoid a finite path of statesifto a state oP,. We can prove it by induction over the computation
of the least fix point. It is true by definition of the least fixipband thePrer| operation.

Then, for thel"|Gg operator[[I1G@]t, = vZ.[@] 5, NNtk Prer(uY.(ZN fu([@]f,NPrer(Y)))
= VZ.[¢]5, N N¢er Prerj(Reachy ([¢]5,.ZN f)) computes the set of states in whickcannot avoid a
fair path (i.e. going through eadhe F infinitely often) that satisfie&¢. We prove it by induction over
the computation of the greatest fix point and by using whableas proved just above.

Thanks to this, we can easily prove tiftir ) = [[[]Gtrue]f, computes the set of states in which
cannot avoid a fair path (it is just a particular case of[f{& operator).

Then,[I']X and[I'|U operators compute the set of states in wiictannot avoid a successorfia]f,
in which I cannot avoid a fair path, respectively in whiCtcannot avoid a finite path through states of
[e]%, to a state ofi@]f,, in whichI" cannot avoid a fair path. In particular, the proof fBtU directly
follows from the proof forReacty.

Finally, the proof for thgl'|]W operator is similar to the one fdif |G operator. The proof of correct-
ness of the algorithms fofl") operators follows from the proof fdi'] operators, the duality of these
operators and standard fix point properties. O

Model checking AT LKE0 — basic algorithm A basic algorithm is presented in Algoritim 1. It relies
on the model checking algorithm féT LKfFO. It uses two sub-algorithmsSplit and [[.ﬂ?oyst,at, where
strat is a strategy represented as a set of state/action pairs.lafike is a modified version of the
algorithm described in the previous section vvﬂre<r>\strat replacingPre;, where Pre<r>]strat(Z) =
{s/3ar € enableds,I") such that(s,ar) € stratAVa,ar C a = img(s,a) C Z}, i.e., Preyr|strat(Z) is
Preyry(Z) restricted to states and actions allowedsbyat. Furthermore[.]%;|strar recursively callg.]5,
on sub-formulae, instead 6f]f...

The Split algorithm is given in Algorithmi2Split(Sx Actr) returns the set of uniform strategies of
the system (a uniform strategy is represented by the aatiogrbupl” allowed in each state, and this
action needs to be the same for each state in the same equwalass).

Intuitively, Algorithm[1 computes, for each possible umifostrategystrat, the set of states for which
the strategy is winning, and then keeps only the stafes which the strategy is winning for all states
equivalent tcs.

Before proving the correctness of the basic algorithms lptbve the correctness of tlslit algo-
rithm.
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Algorithm 1: [(F)y]5,
Data: M a given (implicit) model]” a subset of agents M, ¢ anAT LKEo path formula.
Result The set of states dfl satisfying(I") .
sat={}
for strat € Split(Sx Act) do
winning= [[<r>4’ﬂ'f:o’strat
sat=satU {se€ winningVs ~r s,s € winning}
return sat

Algorithm 2: Split(Strat9
Data: StratsC Sx Actr.
Result The set of all the largest subs@#of StratsC Sx Act- such that no conflicts appear in
SA

C={(sar) € Strat33(s,a) € Strats &. S ~r sAar #ar }
if C=0then return {Strats
else
(s,ar) = pick one inC
E = {(s,ar) € Stratds ~r s}
A= {ar € Actr|3(s,ar) € E}
strats= {}
for ar € Ado

L S={(s.ar) €Ela} =ar}

strats= stratsU Split(SU (Strats\E))

return strats

Theorem 2. Split(Strat§ computes the set of all the largest subsets SA of Str&s Act such that
no conflicts appear in SA.

Remark 1. A conflict appears in SA Sx Actr if there exist two elements, ar) and (s, af-) in SA such
that s ~r s and & # af, i.e. there is a conflict if SA proposes two different actionsvo equivalent

states.

Proof sketch of Theorem 2. Spiets all the conflicting elements 8frats If there are no such elements,
then Stratsis its own largest non-conflicting subset; otherwiSelit takes one conflicting equivalence
classE and, for each of its largest non-conflicting subsBtsi.e. subsets of states using the same
action—it callsSplit on the rest ofStratsaugmented with the non-conflicting subSet

We can prove the correctnessyblit by induction over the number of conflicting equivalence stss
of Strats If Stratsdoes not contain any conflicting equivalence clasSéstsis its own single largest
subset in which no conflicts appear. Otherwise, let's assiinaueS plit(Starts E) with E a conflicting
equivalence class @tratsreturns the set of all the largest non-conflicting subseStoits E; then, by
what has been explained abo$mlit returns the cartesian product between all the largest nafiicting
subsets oE and all the largest non-conflicting subsetsStfats E. Because these cannot be conflicting
as they belong to different equivalence classes, we carummnthatSplit returns the set of the largest
non-conflicting subsets @trats O
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The correctness of Algorithid 1 is then given by the followthgorem.
Theorem 3. [(M Y] EO computes the set of states of M satisfyihgy, i.e.

vse Sse [(MW]hoiff s =po (MW

Proof sketch.First, Split(S x Act-) returns all the possible uniform strategies of the systetmeres a
uniform strategy is represented by the only action alloweéach equivalence class of states—states
equivalent in terms of the knowledge [of—, this action being the same for every state of the class.

Indeed, the set of the largest non-conflicting subse&>oAct- is the set of possible uniform strate-
gies. A non-conflicting subset &x Act- provides at most one action for each equivalence classteksta
otherwise it would not be non-conflicting; second, a largest-conflicting subset dx Act- provides
exactly one action for each equivalence class of statesywite there would be a larger subset giving
one action for the missing equivalence classes and thigsulmaild not be conflicting. Finally, a largest
non-conflicting subset ddx Actr is a uniform strategy because it is exactly the definition ohéorm
strategy: giving one possible action for each equivaletassc This thus ends the proof ti&plit returns
the set of all possible uniform strategies.

Secondwinning= [ y]%,W|strat returns the set of states for which the stratsgt is winning.
Indeed, it use®\T LKE, model checking algorithm, restricted to actionsstmat. It thus returns the set
of states for which there is a (global) winning strategstrat. As strat is, by construction, a uniform
strategywinningis the set of states for which there exists a uniform winningtegy—in fact, it isstrat
itself.

Finally, the set{s € winningVs ~r s,s' € winning} is the set of statesfor which strat is a winning
strategy for alls' ~r s. satthus accumulates all the statefor which there is a winning strategy for alll
states indistinguishable from As this is exactly the semantics of the property, $&tis exactly the set
of states of the system satisfying the property, the prodbrse. O

Improving the basic algorithm The first improvement proposed for the basic algorithm ispfres
filtering of states to the ones satisfying the property uiderKF, ; we can filter them because if a state
s does not satisfyI") ¢ underATLKE,, s cannot satisfy(I) underAT LK, The second one is the
alternation between filtering and splitting the strategi@eth improvements are aimed at reducing the
number of uniform strategies to consider. The improvedritlym is presented in Algorithia] 3. Using
this algorithm, we can compufél) @] EO aslmproved (M y] I[F)O]SXAGr . The intuition behind Algorithrn]3
is to start by computing the set of states satisfying the gntgpand the associated actions (lide 1), then
get all conflicts (linéR) and, if there are conflicts, choose oonflicting equivalence class of states and
possible actions (linds 6 fd 8) and for each possible aaigmecursively call the algorithm with the
strategies followingar (lines[11 and_I2)—i.e. split the class into uniform stragedior this class and
recursively call the algorithm on each strategy.

More in detail, Algorithn_B returns the set of states satigfythe property irStrats So, to get the
final result, we have to take all the states satisfying th@gnty in Sx Act-. Algorithm[3 uses the func-
tion [[.]}f’oaﬂstrats. This function is a modification of thg ], |strats function where actions are linked to

states. More precisely, every sub-call[[tﬂ)f)o or Fairr) is enclosed bystatesActiongstrats to get all en-
abled actions in these states, restrictesttats—StatesActionSsirais(Z) = {(S,ar) € strat§se ZAar €
enableds, ") }—, andPre ) [stratsis replaced b)Pre'z‘ﬁ> Istrats(Z) = {(s,ar) € strat§ar € enableds,[") A
Va,ar Ca = img(s,a) C Z}. For example[[[G¢]} % siras= VZ.(StatesActionssiars [@]5o U
Fair[l’] )) N Pre??) |Strats(z)'
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Algorithm 3: Improved () ¢] 5 |strats

Data: M a given (implicit) model]” a subset of agents M, ¢ anAT LKEo path formula,
StratsC Sx Actr.
Result The set of states dfl satisfying(I") in Strats

1 Z= (M)W swras

2 C={(s,ar) € Z|3(s,ar) € Zsuch thas~r S Aar #a}
if C = 0then

L return {se€ S3ar € Actr s.t.VS ~r s,(S,ar) € Z}

else

(s,ar) = pick one inC

E={(s.a) eZ|s~r S}

A= {ar € Actr|3(s,ar) € E}

sat={}

for ar € Ado

11 strat= {(s,ar) € Elar = ar }U(Z\E)
12 L sat=satU Improved () ¢]5|strat
return sat

S

Intuitively, StatesActionssirats(Z) returns all the states & with their enabled actions allowed by
stratsand Pre?rc>|strats(2) returns the states that can enforce to readh one step, and the actions that

allow them to do so, restricted to actionsstmats [(I) /]2 sirarsthus returns the states satisfyitig)
associated to the actions stfratsthat allow them to do so.

The correctness of Algorithid 3 is given by the following them.
Theorem 4. Improved () Y], |s«ac computes the set of states of M satisfyifigy, i.e.

Vse Sse Improved (M W]Holsxac iff s =5 (MY

Proof sketch.First, [(I) Y] 'f:’oac‘s”ats returns the set of statess(and associated actions) such that there
exists a global strategy Btratsallowing " to enforce the property in This means that if a state/action
pair is not returnedl” has no global strategy to enforce the property from the gstate by using the
action given in the pair. By extension, there is no uniformatsigy to enforce the property neither. Thus,

only state/action pairs returned By ) @] 'f:’oac‘s”ats have to be considered when searching for a uniform

strategy inStrats This also means thdtl) y] f;f‘°| strats filters Stratsto winning global strategies; if the

result is also a uniform strategy, all the states in the netdirset have a uniform strategy to enforce the
property.

Second,mproved () y] Eo\gtrats returns the set of states satisfying the propert$trats We can
prove this by induction on the number of conflicting equivale classes dtrats this is true if there are
no conflicting classes because Lide 1 computes a winningumistrategy—as discussed above—and
Line[4 returns the set of states for which the strategy is immifor all indistinguishable states. This is
also true in the inductive case because (1) filtering Wikh ¢/ f;f‘°| stratsdoesn't lose potential state/action
pairs and (2) the algorithm takes one conflicting class ded &ll the possibilities for this class.

The final result thus is correct since it returns the set aéstfor which there is a uniform strategy
in Sx Actr that is winning for all states equivalent$o O
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Complexity considerations Model checkingAT L with perfect recall and partial observability is an
undecidable problem [14], while model checkik@L;, is aAE—complete problem [9]AT LKEo subsumes
AT L and its model checking problem is therefdxg-hard. Algorithm1 performs a call tf.]]%, for
each uniform strategyf{.]]%, is in P, but in the worst case there could be exponentially mang talihis

procedure, as there could be ugp.r |Act HS‘ uniform strategies to consider.

4 Conclusion

A number of studies in the past have investigated the problemodel checking strategies under partial
observability and, separately, some work has providedrigihgas for including fairness constraints on
actionsin the case of full observability. To the best of our knowledthe issue of fairness constraints
and partial observability have never been addressed tgeth

In this paper we presente&l LKEO, a logic combining partial observability and fairness ¢oaiats
on states(which is the standard approach for temporal and episteogjics), and we have provided a
model checking algorithm.The proposed algorithm is simdeahe one of Calta et al.[3]. They also split
possible actions into uniform strategies, but they do notigie a way to deal with fairness constraints.

Finally, the structure of our algorithm is compatible wiymbolic model checking using OBDDs,
and we are working on its implementation in the model cheBM@&MAS [12], where fairness constraints
are only supported for temporal and epistemic operators.
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