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We investigateuniformity propertiesof strategies. These properties involve sets of plays in order
to express useful constraints on strategies that are notµ-calculus definable. Typically, we can state
that a strategy is observation-based. We propose a formal language to specify uniformity proper-
ties, interpreted over two-player turn-based arenas equipped with a binary relation between plays.
This way, we capturee.g.games with winning conditions expressible in epistemic temporal logic,
whose underlying equivalence relation between plays reflects the observational capabilities of agents
(for example, synchronous perfect recall). Our framework naturally generalizes many other situa-
tions from the literature. We establish that the problem of synthesizing strategies under uniformity
constraints based on regular binary relations between plays is non-elementary complete.

1 Introduction

In extensive infinite duration games, the arena is represented as a graph whose vertices denote positions
of players and whose paths denote plays. In this context, a strategy of a player is a mapping prescribing
to this player which next position to select provided she hasto make a choice at this current point of the
play. As mathematical objects, strategies can be seen as infinite trees obtained by pruning the infinite
unfolding of the arena according to the selection prescribed by this strategy; outcomes of a strategy are
therefore the branches of the trees.

Strategies of players are not arbitrary in general, since players aim at achieving some objectives.
Infinite-duration game models have been intensively studied for their applications in computer science
[3] and logic [13]. First, infinite-duration games provide anatural abstraction of computing systems’
non-terminating interaction [2] (think of a communicationprotocol between a printer and its users, or
control systems). Second, infinite-duration games naturally occur as a tool to handle logical systems for
the specification of non-terminating behaviors, such as forthe propositionalµ-calculus [10], leading to
a powerful theory of automata, logics and infinite games [13]and to the development of algorithms for
the automatic verification (“model-checking”) and synthesis of hardware and software systems. In both
cases, outcomes of strategies are submitted toω-regular conditions representing some desirable property
of a system.

Additionally, the cross fertilization of multi-agent systems and distributed systems theories has led
to equip logical systems with additional modalities, such as epistemic ones, to capture uncertainty [27,
21, 11, 24, 20, 15], and more recently, these logical systemshave been adapted to game models in order
to reason about knowledge, time and strategies [17, 19, 9]. The whole picture then becomes intricate,
mainly because time and knowledge are essentially orthogonal, yielding a complex theoretical universe
to reason about. In order to understand to which extent knowledge and time are orthogonal, the angle of
view where strategies are infinite trees is helpful: Time is about thevertical dimension of the trees as it
relates to the ordering of encountered positions along plays (branches) and to the branching in the tree.
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On the contrary, Knowledge is about thehorizontaldimension, as it relates plays carrying, e.g., the same
information.

As far as we know, this horizontal dimension, although extensively studied when interpreted as
knowledge or observation [4, 17, 19, 8, 1, 9], has not been addressed in its generality. In this paper,
we aim at providing a unified setting to handle it. We introduce the generic notion ofuniformity proper-
tiesand associated so-calleduniform strategies(those satisfying uniformity properties). Some notions of
“uniform” strategies have already been used, e.g., in the setting of strategic logics [29, 5, 19] and in the
evaluation game of Dependence Logic [28], which both fall into the general framework we present here.

We use a simple framework with two-player turn-based arenasand where information lies in posi-
tions, but the approach can be extended to other settings. Additionally, although uniformity properties
can be described in a set-theoretic framework, we propose the logical formalismIRLTL which can be
exploited to address fundamental automated techniques such as the verification of uniformity properties
and the synthesis of uniform strategies – arbitrary uniformity properties are in general hopeless for au-
tomation. The formalism we use combines the Linear-time Temporal LogicLTL [12] and a new modality
IR (for “for all related plays”), the semantics of which is given by a binary relation between plays. Modal-
ity IR generalizes the knowledge operator “K” of [15] for the epistemic relations of agents in Interpreted
Systems. The semantic binary relations between plays are very little constrained: they are not neces-
sarily equivalences, to capture,e.g.plausibility (pre)orders one finds in doxastic logic [16], neither are
they knowledge-based, to capture particular strategies ingames where epistemic aspects are irrelevant.
Formulas of the logic are interpreted over outcomes of a strategy. TheIR modality allows to universally
quantify over all plays that are in relation with the currentplay. Distinguishing between the universal
quantification over all plays in the game and the universal quantification over all the outcomes in the
strategy tree yields two kinds of uniform strategies: thefully-uniform strategiesand thestrictly-uniform
strategies.

As extensively demonstrated in [22], uniform properties turn out to be many in the literature: they
occur in games with imperfect information, in games with opacity conditions and more generally with
epistemic conditions, as non-interference properties of computing systems, as diagnosability of discrete-
event systems, in the game semantics of Dependence Logic.

We investigate the automated synthesis of fully-uniform strategies, for the case of finite arenas and
binary relations between plays that are rational in the sense of [6]. Incidentally, all binary relations
that are involved in the relevant literature seem to follow this restriction. In this context, two problems
can be addressed: thefully-uniform strategy problemand thestrictly-uniform strategy problem, which
essentially can be formulated as “given a finite arena, a finite state transducer describing a binary relation
between plays, and a formula expressing a uniformity property, does there exist a fully-uniform (resp.
strictly-uniform) strategy for Player 1?”. From [22], the fully-uniform strategy problem is decidable but
non-elementary – since then we have established that it is non-elementary hard. The algorithm involves
an iterated non-trivial powerset construction from the arena and the finite state transducer which enables
to eliminate innermostIR modalities. Hence, the required number of iterations matches the maximum
number of nestedIR modalities of the formula expressing the uniformity property. As expected, each
powerset construction is computed in exponential time. This procedure amounts to solving an ultimate
LTL game, for which a strategy can be synthesized [25] and tracedback as a solution in the original
problem. The decidability of the strictly-uniform strategy problem is an open question.

The rest of the paper is organized in five sections. In Section2, we present the standard material
two-player turn-based arenas. We set up the framework and define uniform strategies in Section 3, and
we illustrate the notion with two examples in Section 4. Finally in Section 5, we give tight complexity
bounds for the fully-uniform strategy problem, and we discuss future work in Section 6.
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2 Preliminaries

We consider two-player turn-based games that are played on graphs with vertices labelled with proposi-
tions. These propositions represent the relevant information for the uniformity properties one wants to
state. From now on and for the rest of the paper, we letAPbe an infinite set ofatomic propositions.

An arenais a structureG = (V,E,v0, ℓ) whereV =V1⊎V2 is the set ofpositions, partitioned between
positions of Player 1 (V1) and those of Player 2 (V2), E ⊆ (V1×V2)∪ (V2×V1) is the set ofedges, v0 ∈V
is theinitial position andℓ : V → P(AP) is avaluation function, mapping each position to the finite set
of atomic propositions that hold in this position.Plays∗ andPlaysω are, respectively, the set of finite and
infinite plays. For an infinite playπ = v0v1 . . . andi ∈N, π[i] := vi andπ[0, i] := v0 . . .vi . For a finite play
ρ = v0v1 . . .vn, last(ρ) = vn.

A strategyfor Player 1 is a partial functionσ : Plays∗ →V that maps a finite play ending inV1 to the
next position to play. Letσ be a strategy for Player 1. We say that a playπ ∈ Playsω is induced byσ if
for all i ≥ 0 such thatπ[i] ∈V1, π[i +1] = σ(π[0, i]), and theoutcome ofσ , noted Out(σ)⊆ Playsω , is
the set of all infinite plays that are induced byσ . Definitions are similar for Player 2’s strategies.

3 Uniform strategies

We define the formal languageIRLTL to specify uniformity properties. This language enables toexpress
properties of the dynamics of plays, and resembles the Linear Temporal Logic (LTL) [12]. However,
while LTL formulas are evaluated on individual plays (paths), we wanthere to express properties on
“bundles” of plays. To this aim, we equip arenas with a binaryrelation between finite plays, and we
enrich the logic with a modalityIR that quantifies over related plays, the intended meaning of “IRϕ holds
in ρ” being “ϕ holds in every play related toρ”.

The syntax ofIRLTL is similar to that of linear temporal logic with knowledge [15]. However, we
useIR instead of the usual knowledge operatorK to emphasize that it need not be interpreted in terms of
knowledge in general, but merely as a way to state propertiesof bundles of plays. The syntax is:

ϕ ,ψ ::= p | ¬ϕ | ϕ ∧ψ | #ϕ | ϕUψ | IRϕ p∈ AP

Consider an arenaG = (V,E,v0, ℓ) and a rational relation; ⊆ Plays∗ ×Plays∗. A formula ϕ of
IRLTL is evaluated at some pointi ∈ N of an infinite playπ ∈ Playsω , within a universeΠ ⊆ Playsω .
The semantics is given by induction over formulas.

Π,π, i |= p if p∈ ℓ(π[i]) Π,π, i |= ¬ϕ if Π,π, i 6|= ϕ
Π,π, i |= ϕ ∧ψ if Π,π, i |= ϕ andΠ,π, i |= ψ Π,π, i |= #ϕ if Π,π, i +1 |= ϕ
Π,π, i |= ϕUψ if there is j ≥ i such thatΠ,π, j |= ψ and for alli ≤ k< j, Π,π,k |= ϕ
Π,π, i |= IRϕ if for all π ′ ∈ Π, j ∈N such thatπ[0, i] ; π ′[0, j], Π,π ′, j |= ϕ

From this semantics, we derive two notions of uniform strategies, which differ only in the universe the
IR modality quantifies over: Out(σ) or Playsω (with the latter, related plays not induced by the strategy
also count). The motivation for these two definitions is clear from [22] where many examples from the
literature are given.

Definition 1 LetG be an arena,; be a rational relation andϕ be an IRLTL formula. A strategyσ is:
(;,ϕ)-strictly-uniform if for all π ∈ Out(σ), Out(σ),π,0 |= ϕ ,
(;,ϕ)-fully-uniform if for all π ∈ Out(σ), Playsω ,π,0 |= ϕ .
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4 Concrete examples

In this section we illustrate our notions of strictly and fully uniform strategies defined in the previous
section with the examples of observation-based strategiesin games with imperfect information, and
games with opacity condition.

4.1 Observation-based strategies

Games with imperfect information, in general, are games in which some of the players do not know ex-
actly what is the current position of the game. Poker is an example of imperfect-information game: one
does not know which cards her opponents have in hands. One important aspect of imperfect-information
games is that not every strategy is “playable”. Indeed, a player cannot plan to play differently in sit-
uations that she is unable to distinguish. This is why players are required to use strategies that select
moves uniformly over observationally equivalent situations. This kind of strategies is sometimes called
uniform strategiesin the community of strategic logics ([29, 5, 19]), orobservation-based strategiesin
the community of computer-science oriented game theory ([8]). In fact, all the additional complexity of
solving imperfect-information games, compared to perfect-information ones, lies in this constraint put
on strategies.

We show that the notion of observation-based strategy, and hence the essence of games with imper-
fect information, can be easily embedded in our notion of uniform strategy. In two-player imperfect-
information games as studied for example in [26, 8, 7], Player 1 only partially observes the positions of
the game, such that some positions are indistinguishable toher, while Player 2 has perfect information
(the asymmetry is due to the focus being on the existence of strategies for Player 1). Arenas are labelled
directed graphs together with a finite set ofactions Act, and in each round, if the position is a nodev,
Player 1 chooses an available actiona, and Player 2 chooses a next positionv′ reachable fromv through
ana-labelled edge.

We equivalently define this framework in a manner that fits oursetting by putting Player 1’s actions
inside the positions. We have two kinds of positions, of the formv and of the form(v,a). In a positionv,
when she chooses an actiona, Player 1 actually moves to position(v,a), then Player 2 moves from(v,a)
to somev′. So an imperfect-information game arena is a structureGimp = (G ,∼) whereG = (V,E,v0, ℓ)
is a two-player game arena with positions inV1 of the form v and positions inV2 of the form (v,a).
We require thatvE(v′,a) impliesv= v′, andv0 ∈V1. For a position(v,a) ∈V2, we note(v,a).act := a.
We assume thatp1 ∈ AP, and for every actiona in Act, pa ∈ AP. p1 holds in positions belonging to
Player 1, andpa holds in positions of Player 2 where the last action chosen byPlayer 1 isa: ℓ(v) = {p1}
for v ∈ V1, ℓ(v,a) = {pa} for (v,a) ∈ V2. Finally, ∼ ⊆ V2

1 is an observational equivalence relation on
positions, that relates positions indistinguishable for Player 1. We define its extension≃ to finite plays:
v0(v0,a1)v1 . . . (vn−1,an)vn ≃ v0(v0,a′1)v

′
1 . . . (v

′
n−1,a

′
n)v

′
n if for all i > 0, vi ∼ v′i andai = a′i .

We add the classic requirement that the same actions must be available in indistinguishable positions:
for all v,v′ ∈V1, if v∼ v′ thenvE(v,a) if, and only if, v′E(v′,a). In other words, if Player 1 has different
options, she can distinguish the positions.

Definition 2 A strategyσ for Player1 is observation-basedif for all ρ ,ρ ′ ∈ v0(V2V1)
∗, ρ ≈ ρ ′ implies

σ(ρ).act= σ(ρ ′).act.

We define the formula
SameAct := G(p1 →

∨

a∈Act

IR#pa)
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which, informally, expresses that whenever it is Player 1’sturn to play, there is an actiona that is played
in every equivalent finite play.

Proposition 1 A strategyσ for Player1 is observation-based iff it is(≈,SameAct)-strictly-uniform.

Here we have to make use of the notion of strict uniformity, and not the full uniformity. Indeed, after
a finite playπ[0, i] ending inV1, we want to enforce that in all equivalent prefixes of infiniteplaysthat
conform to the strategy considered, Player 1 plays the same action. It would obviously make no sense to
enforce the same on equivalent prefixes of every possible play in the game, which encompass all possible
behaviours of Player 1.

Notice that in order to embed the case of players with different memory abilities,e.g. imperfect-
recall, one would just have to replace≈ with the appropriate relation.

For the moment we have not mentioned any winning condition. For a strategy, being(≈,SameAct)-
strictly-uniform only characterizes that it is “playable”for a player with imperfect information, but it does
not characterize the outcome of this strategy. However, if one considers a game with imperfect informa-
tion in which the winning condition for Player 1 is an LTL formula ϕ , then the set of(≈,SameAct∧ϕ)-
strictly-uniform strategy is exactly the set of winning observation-based strategy.

When talking about knowledge and strategic abilities, the question ofobjectivevs subjectiveability
should be raised (see [18]). The difference is basically whether a strategy is defined only on “concrete”
plays, starting from the initial position, or if it has to be defined on all “plays” starting from any position
the player confuses with the initial one. In the setting presented here, the initial position is part of the
description of the arena, hence players are assumed to know it and all plays considered start from this
position. But in order to model in this setting the case of Player 1 not knowing the initial position, one
could add a fresh artificial initial positionv′0, from which no matter the action Player 1 chooses, Player
2 can move to any position that Player 1 confuses withv0. Then, for a winning conditionϕ ∈ LTL, the
existence of an observation-based winning strategy for Player 1 fromv0 (resp.v′0) would denote objective
(resp. subjective) ability to enforceϕ .

4.2 Games with opacity condition

Games with opacity condition, studied in [23], are based on two-player imperfect-information arenas,
with Alice having perfect information as opposed to Bob who partially observes positions. In such
games, some positions are “secret” as they reveal a criticalinformation that Bob aims at discovering. We
are interested in Alice’s ability to prevent Bob from “knowing” the secret, in the epistemic sense.

More formally, assume that a propositionpS ∈ AP represents the secret. LetGin f = (G ,∼) be an
imperfect-information arena as described in Section 4.1, with a distinguished set of positionsS⊆ V1

that denotes the secret. Bob is Player 1 as he has imperfect information, and Alice is Player 2. Letting
G = (V,E,vI , ℓ), we require thatℓ−1({pS}) = S(positions labeled bypS are exactly positionsv∈ S). For
a finite playρ with last(ρ) ∈V1, Bob’s information setor knowledgeafterρ is I(ρ) := {last(ρ ′) | ρ ′ ∈
Plays∗,ρ ≈ ρ ′}. It is the set of all the positions he considers possible after observingρ . An infinite play
is winning for Bob if there exists a finite prefixρ of this play whose information set is contained inS,
i.e. I(ρ)⊆ S, otherwise Alice wins. It can easily be shown that:

Proposition 2 A strategyσ for Alice is winning if, and only if,σ is (≈,G¬IRpS)-fully-uniform.

Here we are interested in Alice’s strategies and Bob’s knowledge. Since Bob only partially observes
what Alice is playing, some plays that are not brought about by Alice’s strategy are considered possible
by Bob. Full uniformity is therefore the right notion to capture correctly Bob’s knowledge.
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Here again, to model different memory and observational abilities of Bob, one can use the appropriate
binary relation, provided it is rational. Also, notice thatthough we chose to illustrate our framework with
opacity aspects, any winning condition that is expressibleby a formula of the epistemic linear temporal
logic with one knowledge operator would fit in our setting.

5 Synthesizing fully-uniform strategies

In this section, we investigate the complexity of synthesizing a fully-uniform strategy. We first consider
the associated decision problem, called here thefully-uniform strategy problem: given a uniform property
ϕ ∈ IRLTL, a finite arenaG = (V,E,v0, ℓ), and a finite state transducerT over alphabetV representing a
rational binary relation between plays (see [6]), does there exist a([T],ϕ)-fully-uniform strategy inG ,
where[T] is the binary relation denoted byT.

Definition 3 For a formulaϕ ∈ IRLTL, the IR-depthof ϕ , written dIR(ϕ), is the maximum number of
nested IR modalities inϕ . For each k∈ N, we let IRLTLk := {ϕ ∈ IRLTL | dIR(ϕ) = k}.

Theorem 3 The fully-uniform strategy problem for formulas ranging over
⋃

k≤n IRLTLk is n-EXPTIME-
complete for n> 2, and2EXPTIME-complete for n≤ 2.

The proof for the upper bounds in Theorem 3 can be found in [22], in which we devise a decision
procedure based on a powerset construction which simulatesthe execution of the transducer along plays
in the arena, enabling the computation of information sets.Dealing with information sets enables us
to performIR-modalities elimination, yielding a reduction of the initial problem to solving someLTL
game. The procedure is however non-elementary since it requires one powerset construction per nesting
of IR-modalities. The proof for the matching lower bounds is a direct reduction from the word problem
for exp[n]-space bounded alternating Turing Machines, which is(n+1)-EXPTIME complete. Due to lack
of space, it is omitted here.

Corollary 4 The fully-uniform strategy problem is non-elementary complete.

Regarding the synthesis problem, the procedure of [25] for solving the terminalLTL game in the
decision procedure of Theorem 3 is an effective construction of a winning strategy when it exists. This
strategy provides a fully-uniform strategy of the initial game, by means of a transducer mapping plays of
the initial game to plays in the terminal game. This transducer itself is straightforwardly built from the
arena of the last game itself.

6 Discussion

We are currently working on sufficient conditions on the binary relation between plays to render the
fully-uniform strategy synthesis problem elementary. It appears that being an equivalence relation is not
enough, but if moreover the relation verifies a weak form ofno learningproperty (see [14]), the problem
seems to be elementary. Concerning the strictly-uniform strategy problem, we conjecture undecidability
in general, but we are investigating interesting subclasses of rational relations that make the problem
decidable.

It would then be interesting to extend the language to the case ofn modalitiesIRi with n relations;i.
Also, the difference between the fully-uniform semantics and the strictly-uniform one could be at the
level of modalities instead of the decision problems level.In Section 4.1 we have seen that uniformity
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properties can representuniformity constraintson the set of elegible strategies, and in Section 4.2 we
have seen how they can representepistemic winning conditions. However, while some properties require
strict uniformity, others require full uniformity. Allowing to use both kinds of modalities in a formula
would enable, for example, to express that a strategy must both be winning for some condition on the
opponent’s knowledge (with a fully-uniform modality, see Section 4.2), and to be observation based for
the player considered (with a strictly-uniform modality).A formula of the following kind could be used
for a variant of games with opacity condition where Alice would also have imperfect information (note
that the arenas should be modified, and we assume thatp2 would mark positions where Alice has to
choose an action):

ϕ := G(p2 →
∨

a∈Act

IRstrictly
Alice #pa)

︸ ︷︷ ︸

Observation-based constraint

∧ G¬IRf ully
Bob pS

︸ ︷︷ ︸

Winning condition

In a next step, we would like to consider how our framework adapts if we take as base language the
one of Alternating-time Temporal Logic [2] instead of LTL, so as to obtain an Alternating-time Temporal
Epistemic Logic-like language. It would enable us to express the existence of uniform strategies directly
in the logic, and not only at the level of decision problems asit is the case for now. This step will
require to pass from the two-player turn-based arenas considered so far to multiplayer concurrent game
structures, that are ATL models, but the definitions should adapt without difficulties. However we should
be cautious in generalizing these notions as undecidability will easily be attained.
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