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We propose a logical framework combining a game-theoretic study of abilities of agents to achieve
quantitative objectives in multi-player games by optimizing payoffs or preferences on outcomes with
a logical analysis of the abilities of players for achieving qualitative objectives of players, i.e., reach-
ing or maintaining game states with desired properties. We enrich concurrent game models with
payoffs for the normal form games associated with the states of the model and propose a quantitative
extension of the logic ATL* enabling the combination of quantitative and qualitative reasoning.

1 Introduction

There are two rich traditions in studying strategic abilities of agents in multi-player games:

Game theory has been studying rational behavior of players, relevant for their achievement of quan-
titative objectives: optimizing payoffs (e.g., maximizing rewards or minimizing cost) or, more generally,
preferences on outcomes. Usually, the types of games studied in game theory are one-shot normal form
games, their (finitely or infinitely) repeated versions, and extensive form games.

Logic has been mostly dealing with strategic abilities of players for achieving qualitative objectives:
reaching or maintaining outcome states with desired properties, e.g., winning states, or safe states, etc.

Among the most studied models in the logic tradition are concurrent game models [, 121]. On the
one hand they are richer than normal form games, as they incorporate a whole family of such games,
each associated with a state of a transition system; but on the other hand, they are somewhat poorer
because the outcomes of each of these normal form games, associated with a given state, are simply the
successor states with their associated games, etc. whereas no payoffs, or even preferences on outcomes,
are assigned. Thus, plays in concurrent game models involve a sequence of possibly different one-
shot normal form games played in succession, and all that is taken into account in the purely logical
framework are the properties — expressed by formulae of a logical language — of the states occurring in
the play. Concurrent game models can also be viewed as generalization of (possibly infinite) extensive
form games where cycles and simultaneous moves of different players are allowed, but no payoffs are
assigned.

Put as a slogan, the game theory tradition is concerned with how a player can become maximally
rich, or how to pay as little cost as possible, while the logic tradition — with how a player can achieve a
state of ‘happiness’, e.g. winning, or to avoid reaching a state of ‘unhappiness’ (losing) in the game.

The most essential technical difference between qualitative and quantitative players’ objectives is
that the former typically refer to (a temporal pattern over) Boolean properties of game states on a given
play and can be monitored locally whereas the latter are determined by the entire history of the play
(accumulated payoffs) or even the whole play (its value, being a limit of average payoffs, or of discounted
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accumulated payoffs). It is therefore generally computationally more demanding and costly to design
strategies satisfying quantitative objectives or to verify their satisfaction under a given strategy of a
player or coalition.

These two traditions have followed rather separate developments, with generally quite different agen-
das, methods and results, including, inter alia:

e on the purely qualitative side, logics of games and multiagent systems, such as the Coalition logic
CL [21], the Alternating time temporal logic ATL [5]], and variations of it, see e.g. [15], [18]], etc.,
formalizing and studying qualitative reasoning in concurrent game models;

e some single-agent and multi-agent bounded resource logics [9, 13, [19] extending or modifying
concurrent game models with some quantitative aspects by considering cost of agents’ actions and
reasoning about what players with bounded resources can achieve.

e extensions of qualitative reasoning (e.g., reachability and Biichi objectives) in multi-player con-
current games with ’semi-quantitative’ aspects by considering a preference preorder on the set
of qualitative objectives, see e.g., [6], [7], thereby adding payoff-maximizing objectives and thus
creating a setting where traditional game-theoretic issues such as game value problems and Nash
equlibria become relevant.

e deterministic or stochastic infinite games on graphs, with qualitative objectives: typically, reach-
ability, and more generally — specified as w-regular languages over the set of plays, see e.g. [4],
(LLO], [12].

e on the purely quantitative side, first to mention repeated games, extensively studied in game theory
(see e.g., [20]), which can be naturally treated as simple, one-state concurrent game models with
accumulating payoffs paid to each player after every round and no qualitative objectives;

e from a more computational perspective, stochastic games with quantitative objectives on dis-
counted, mean or total payoffs, in particular energy objectives, see e.g. [11]].

e the conceptually different but technically quite relevant study of counter automata, Petri nets,
vector addition systems, etc. — essentially a study of the purely quantitative single-agent case of
concurrent game models (see e.g. [14]), where only accumulated payoffs but no qualitative objec-
tives are taken into account and a typical problem is to decide reachability of payoff configurations
satisfying formally specified arithmetic constraints from a given initial payoff configuration.

A number of other relevant references discuss the interaction between qualitative and quantitative
reasoning in multi-player games, e.g. [22], [[16], which we cannot discuss here due to space limitations.

This project purports to combine the two agendas in a common logical framework, by enriching
concurrent game models with payoffs for the one-shot normal form games associated with the states,
and thus enabling the combination of quantitative game-theoretic reasoning with the qualitative logical
reasoning. Again, put as a slogan, our framework allows reasoning about whether/how a player can
reach or maintain a state of ‘happiness’ while becoming, or remaining, as rich as (rationally) possible,
or paying the least possible price on the way. The purpose of this extended abstract is to introduce and
discuss a general framework of models and logics for combined quantitative and qualitative reasoning
that would naturally cover each of the topics listed above, and to initiate a long term study on it.

2 Preliminaries

A concurrent game model [5] (CGM) .7 = (Ag, St, {Act, }acag, {acta }acag, out, Prop, L) comprises:
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e anon-empty, fixed set of players Ag = {1,...,k} and a set of actions Act, # 0 for each a € Ag.
For any A C Ag we will denote Acty := [],c4 Acta and will use ﬁA to denote a tuple from Acty.
In particular, Actag is the set of all possible action profiles in ..

e a non-empty set of game states St.

e for each a € Ag a map act, : St — Z?(Act,) setting for each state s the actions available to a at s.

e a transition function out : St x Actag — St that assigns the (deterministic) successor (outcome)
state out(q,ﬁAg) to every state ¢ and action profile ﬁAg = (0y,...,0k) such that a, € act,(q)
for every a € Ag (i.e., every «, that can be executed by player a in state g).

e a set of atomic propositions Prop and a labelling function L : St — Z2(Prop).

Thus, all players in a CGM execute their actions synchronously and the combination of these actions,
together with the current state, determines the transition to a (unique) successor state in the CGM.

The logic of strategic abilities ATL* (Alternating-Time Temporal Logic), introduced and studied in
[5], is a logical system, suitable for specifying and verifying qualitative objectives of players and coali-
tions in concurrent game models. The main syntactic construct of ATL* is a formula of type ((C))7,
intuitively meaning: “The coalition C has a collective strategy to guarantee the satisfaction of the objec-
tive Y on every play enabled by that strategy.” Formally, ATL* is a multi-agent extension of the branching
time logic CTL*, i.e., multimodal logic extending the linear-time temporal logic LTL— comprising the
temporal operators X (“at the next state”), G (“always from now on”) and U (“until”) — with strategic
path quantifiers ((C)) indexed with coalitions C of players. There are two types of formulae of ATL",
state formulae, which constitute the logic and that are evaluated at game states, and path formulae, that
are evaluated on game plays. These are defined by mutual recursion with the following grammars, where
C C Ag, p € Prop: state formulae are defined by ¢ ::=p | =¢ | ¢ A ¢ | ((C))7, and path formulae by
va=o@|-y|vAy|Xy|Gy|yUy.

The logic ATL* is very expressive and that comes at a high computational price: satisfiability and
model checking are 2ExpTime-complete. A computationally better behaved fragment is the logic ATL,
which is the multi-agent analogue of CTL, only involving state formulae defined by the following gram-
mar, for CC Ag, peProp: ¢ :i=p |- | Ao | (C)HXe | (C)Ge | ((C))(¢Ue@). For this logic sat-
isfiability and model checking are ExpTime-complete and P-complete, respectively. We will, however,
build our extended logical formalism on the richer ATL* because we will essentially need the path-based
semantics for it.

Arithmetic Constraints. We define a simple language of arithmetic constraints to express con-
ditions about the accumulated payoffs of players on a given play. For this purpose, we use a set
Vag = {va | a € Ag} of special variables to refer to the accumulated payoffs of the players at a given
state and denote by Vj the restriction of Vg to any group A C Ag. The payoffs can be integers, ratio-
nalsﬂ or any reals. We denote the domain of possible values of the payoffs, assumed to be a subset of
the reals R, by D and use a set of constants symbols X, with O € X, for names of special real values (see
further) to which we want to refer in the logical language.

For fixed sets X and A C Ag we build the set T'(X,A) of terms over X and A from X UV, by applying
addition, e.g. v, +vp. An evaluation of a term ¢ € T(X,A) is a mapping 1 : X UV4 — D. We write
1N [= ¢ to denote that 7 is satisfied under the evaluation 1. Moreover, if some order of the elements X UV,
is clear from context, we also represent an evaluation as a tuple from DIAI+Val and often assume that
elements from X have their canonic interpretation. The set AC(X,A) of arithmetic constraints over X
and A consists of all expressions of the form #; 7, where x € {<,<,=,> >} andt,t, € T(X,A). We use
ACF(X,A) to refer to the set of Boolean formulae over AC(X,A); e.g. (t) <) A(f >13) € ACF(X,A)

Note that models with rational payoffs behave essentially like models with integer payoffs, after once-off initial re-scaling.
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forz),t,13 € T(X,A). We note that the language ACF(X,A) is strictly weaker than Presburger arithmetic,
as it involves neither quantifiers nor congruence relations.

We also consider the set APC(X,A) of arithmetic path constraints being expressions of the type w, * ¢
where a € Ag, x € {<,<,=,>,>} and ¢ € X. The meaning of w, is to represent the value of the current
play for the player a. That value can be defined differently, typically by computing the accumulated
payoff over the entire play, by using a future discounting factor, or by taking the limit — if it exists — of
the mean (average) accumulated payoff (cf. [20]). We note that the discounted, accumulated, mean or
limit payoffs may take real values beyond the original domain of payoffs ID; so, we consider the domain
for X to be a suitable closure of .

3 Concurrent Game Models with Payoffs and Guards

We now extend concurrent game models with utility values for every action profile applied at every state
and with guards that determine which actions are available to a player at a given configuration, consisting
of a state and a utility vector, in terms of arithmetic constraints on the utility of that player.

Definition 1 A guarded CGM with payoffs (GCGMP) is a tuple M = (7, payoff, {ga }acag, {da }acag)
where ¥ = (Ag, St, {Acta }acag, {acta facag,out, Prop, L) is a CGM and:

e payoff : Ag x St X Actag — D is a payoff function assigning at every state s and action profile
applied at s a payoff to every agent. We write payoff (s, 3) for payoff(a,s, 3)

e g,:StxAct, — ACF(X,{a}), for each player a € Ag, is a guard function that assigns for each
state s € St and action o € Act, an arithmetic constraint formula g, (s, ) that determines whether
a is available to a at the state s given the current value of a’s accumulated payoff. The guard must
enable at least one action for a at s. Formally, for each state s € St, the formula \/ g pcy, 8a (S, @)
must be valid. Moreover, a guard g, (s, ) is called state-based if g, (s, &) € ACF(X).

e d, €(0,1] is a discount factor, for each a € Ag, used in order to define realistically values of infinite
plays for players or to reason about the asymptotic behavior of players’ accumulated payoffs.

The guard g, refines the function act, from the definition of a CGM, which can be regarded as a
guard function assigning to every state and action a constant arithmetic constraint true or false. In our
definition the guards assigned by g, only depend on the current state and the current accumulated payoff
of a. The idea is that when the payoffs are interpreted as costs, penalties or, more generally, consumption
of resources the possible actions of a player would depend on her current availability of utility/resources.

Example 1 Consider the GCGMP shown in Figure |I| with 2 players, I and II, and 3 states, where in
every state each player has 2 possible actions, C (cooperate) and D (defect). The transition function is
depicted in the figure. The normal form games associated with the states are respectively versions of the
Prisoners Dilemma at state sy, Battle of the Sexes at state s, and Coordination Game at state s3.

The guards for both players are defined at each state so that the player can apply any action if
she has a positive current accumulated payoff, may only apply action C if she has accumulated payoff
0; and must play an action maximizing her minimum payoff in the current game if she has a negative
accumulated payoff. The discounting factors are 1 and the initial payoffs of both players are 0.

Configurations, plays, and histories. Let 9)t be a GCGMP defined as above. A configuration (in
901) is a pair (s, ) consisting of a state s and a vector i/ = (uy,...,u) of currently accumulated payoffs,
one for each agent, at that state. Hereafter we refer to accumulated payoffs as utility, at a given state. We
define the set of possible configurations as Con(9t) = St x DA€l The partial configuration transition

function is defined as out : Con () x Actag x N — Con(91) such that out((s, 7),3,1) = (¢, 7) iff:
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C D
2, 2 | -3, 3
3,-3 | —1,—1

Prisoners Dilemma

I\” C D
C 4, 3 0, 2
D|—1,2] 2 3

Battle of Sexes

[\[l C D
cl 1, 1] -1,-1
D —1,-1] 1, 1

Coordination Game

(CD)
(D.)

(D,D)

Figure 1: A simple GCGMP.

(i) out(s, 3) =" (s’ is a successor of s if d is executed).

(i) assigning the value u, to v, satisfies the guard g, (s, @, ) for each a € Ag, i.e. u, = ga(s, ) (each
agent’s move (!, is enabled at s by the respective guard g, applied to the current accumulated utility
value u,).

(i) u = u, +d. - payoff, (s, 7) for all a € Ag (i.e., the utility values change according to the utility
function and the discounting rate where / denotes the number of steps that took place).

A GCGMP 20t with a designated initial configuration (so, u_o>) gives rise to a configuration graph on
9 consisting of all configurations in 9 reachable from (s, 70) by the configuration transition function.
A play in a GCGMP 90 is an infinite sequence 7 = co0,c1 Q... from (Con(91) x Act)® such that
cn € o/u\t(cn_l , ﬁn_l) for all n > 0. The set of all plays in 901 is denoted by Playsyy. Given a play & we
use 7[i] and 7[i,oo] to refer to the ith element and to the subplay starting in position i of 7, respectively.
A history is any finite initial sequence h = o0, c104,. .. ,cn € (Con(MM) x Act)*Con(9M) of a play in
Playsqy. The set of all histories is denoted by Histgy. For any history 4 we also define A[i] as for plays
and additionally h[last] and h[i, j] to refer to the last state on & and to the sub-history between i and j,
respectively. Finally, we introduce functions -, -, and -* which denote the projection of a given play
or history to the sequence of its configurations, utility vectors, and states, respectively. For illustration,
let us consider the play w = coa_>0,c1a_>1,.... We have that 7[i,c0] = ciﬁi,ciﬂm,...; n[i] = c,-ﬁi;
€I 0] = ¢i,Civts .3 W€ = ¢y W0[i] = &3 w[i] = vy; and 7°[i] = s; where ¢; = (s;, 0} ).
Example 2 Some possible plays starting from s in Example |l| are given in the following where we
assume that the initial accumulated payoff is 0 for both agents. We note that this implies that the first
action taken by any agent is always C.

1. Both players cooperate forever: (s1,0,0),(s1,2,2),(s1,4,4),...

2. After the first round both players defect and the play moves to s,, where player I chooses to defect
whereas Il cooperates. Then I must cooperate while Il must defect but at the next round can choose

any action, so a possible play is: (s1,0,0),(s1,2,2),(s2,1,1),(s2,0,—1), (52,0, 1), (52,0,3), (52,0,5),...

3. After the first round player I defects while Il cooperates and the play moves to s3, where they can
get stuck indefinitely, until — if ever — they happen to coordinate, so a possible play is:
(51,0,0),(s1,2,2),(s3,5,—2),(s3,4,—3),(s3,3,—4),...(53,0,—7), (s3,—1,—8),....

Note, however; that once player I reaches accumulated payoff 0 he may only apply C at that round,
so if player Il has enough memory or can observe the accumulated payoffs of I he can use the
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opportunity to coordinate with I at that round by cooperating, thus escaping the trap at s3 and
making a sure transition to s».

4. If, however, the guards did not force the players to play C when reaching accumulated payoffs 0,
then both players could plunge into an endless misery if the play reaches s3.

Strategies. A strategy of a player a is a function s, : Hist — Act such that if s,(h) = o then
h"[last], = ga(h'[last], a); that is, actions prescribed by a strategy must be enabled by the guard. Our
definition of strategy is based on histories of configurations and actions, so it extends the notion of strat-
egy from [5] where it is defined on histories of states, and includes strategies, typically considered e.g.
in the study of repeated games, where often strategies prescribe to the player an action dependent on
the previous action, or history of actions, of the other player(s). Such are, for instance, TIT-FOR-TAT
or GRIM-TRIGGER in repeated Prisoners Dillemma; likewise for various card games, etc. Since our
notion of strategy is very general, it easily leads to undecidable model checking problems. So, we also
consider some natural restrictions, such as: state-based, action-based or configuration-based, memo-
ryless, bounded memory, of perfect recall strategies || Here we adopt a generic approach and assume
that two classes of strategies .#’” and .¥° are fixed as parameters, with respect to which the proponents
and opponents select their strategies, respectively. The proponent coalition A selects a .’P-strategy s4
(i.e. one agreeing with the class .’?) while the opponent coalition Ag\A selects a .7°-strategy SAg\A-
The outcome play outcome_playgy (¢, (sa,5ag\4),1) in a given GCGMP 9t determines the play emerging
from the execution of the (complete) strategy profile (s4,5a\4) from configuration ¢ in O.

4 The Logic: Quantitative ATL*

We now extend the logic ATL* to the logic QATL* with atomic quantitative objectives being state or path
arithmetic constraints over the players’ accumulated payoffs. The semantics of QATL* naturally extends
the semantics of ATL* over GCGMPs, but parameterised with the two classes of strategies .’” and .7°.

Definition 2 (The logic QATL*) The language of QATL* consists of state formulae @, which constitute
the logic, and path formulae ¥, generated as follows, where A C Ag, ac € AC, apc € APC, and p € Prop:
pu=plac|-@|one|(A)yandy:=@]|apc|-y[yAY[XY|Gy[YUY.

Let 9 be a GCGMP, c¢ a configuration, @, @1, @, state-formulae, v,7Y:,Y, path formulae, and | €
N. Further, let P and ° be two classes of strategies as described above. The semantics of the
path constraints is specified according to the limit-averaging or discounting mechanism adopted for
computing the value of a play for a player. Then the truth of a QATL* formula at a position of a
configuration in M is defined by mutual recursion on state and path formulae as follows:
M, c,l = p forpePropiff peL(c’), M,ec,l = acforace ACiff " = ac,
M, c,l = ((A))y iff there is a collective SP-strategy sa for A such that for all collective .°-strategies

Sag\a Jor Ag\A we have that M, outcome_play™ (c, (s4,5ag\a)5 1), L = 7.

M, m,l =@ iff M, x[0],] =¢@; M, ] = apciff t*,] = apc for apc € APC.
M, 7, =Gy iff M, x[i],l+i =y foralliec N,
M7, =Xy iff Mrl],l+1 =7,
M, m,l = Uy iff there is j € Ng such that M, w[j], 1+ j = vo and M, xw[i],l +i = forall 0 <i< j.
Ultimately, we define M,c = ¢ as M,c,1 = @. Moreover, if not clear from context, we also write

':(ym 70) fOi" ):

2We note that all strategies need to be consistent with the guards, so state-based strategies are only applicable in models
where the guards only take into account the current state, but not the accumulated payoffs.




Nils Bulling & Valentin Goranko 39

The semantics presented above extends the standard semantics for ATL* and is amenable to various
refinements and restrictions, to be studied further. For instance, if appropriate, an alternative semantics
can be adopted, based on irrevocable strategies [[1] or, more generally, on strategy contexts [8] or other
mechanisms for strategy commitment and release [2]]. Also, the nested operators as defined here access
the accumulated utility values and require plays to be infinite. Similarly to [9], one can consider variants
of these settings which may yield decidable model checking and better complexity results.

As the logic QATL* extends ATL*, it allows expressing all purely qualitative ATL* properties. It
can also express purely quantitative properties, e.g.: (({a}))G(va > 0) meaning “Player a has a strategy
to maintain his accumulated payoff to be always positive”, or ((A)) (w, > 3) meaning “The coalition A
has a strategy that guarantees the value of the play for player a to be at least 3”. Moreover, QATL* can
naturally express combined qualitative and quantitative properties, e.g. (({a,b}))((va+vp > 1)Up)), etc.

Example 3 The following QATL* state formulae are true at state sy of the GCGMP in Example[l| where
pi Is an atomic proposition true only at state s;, for eachi =1,2,3:

(i) ({LII})YF(py Avp > 100 Avg > 100) A ({1, 1T }) XX({({I1})) (G(p2 Avi =0) A F vy > 100).

(ii) (NG (p1 Vv > 0) A~(({LITY)F(p3 A G(ps A (v +vir > 0)))

5 (Un)Decidability: Related Work and Some Preliminary Results

Generally, the GCGMP models are too rich and the language of QATL* is too expressive to expect
computational efficiency, or even decidability, of either model checking or satisfiability testing. Some
preliminary results and related work show that model checking of QATL* in GCGMPs is undecidable
under rather weak assumptions, e.g. if the proponents or the opponents can use memory-based strategies.
These undecidability results are not surprising as GCGMPs are closely related to Petri nets and vector
addition systems and it is known that model checking over them is generally undecidable. In [13], for
example, this is shown for fragments of CTL and (state-based) LTL over Petri nets. Essentially, the
reason is that the logics allow to encode a “test for zero”; for Petri nets this means to check whether
a place contains a token or not. In our setting undecidability follows for the same reason, and we will
sketch some results below.

Undecidability results. The logic QATL restricts QATL* in the same way as ATL restricts ATL*, due
to lack of space we skip the formal definition. As a first result we show that model checking QATL is
undecidable even if only the proponents are permitted to use perfect recall strategies and the opponents
are bound to memoryless strategies. More formally, let S”” denote the class of perfect recall state-based
strategies and S” the class of memoryless state-based strategies. That is, strategies of the former class
are functions of type St* — Act and of the latter class functions of type St — Act.

Undecidability can be shown using ideas from e.g. [9, [13]. Here, we make use of the construction
of [9] to illustrate the undecidability by simulating a two-counter machine (TCM). A TCM [17] can
be considered as a transition system equipped with two integer counters that enable/disable transitions.
Each step of the machine depends on the current state, symbol on the tape, and the counters, whether
they are zero or not. After each step the counters can be incremented (+1), or decremented (—1) , the
latter only if the respective counter is not zero. A TCM is essentially a (nondeterministic) push-down
automaton with two stacks and exactly two stack symbols (one of them is the initial stack symbol) and
has the same computation power as a Turing machine (cf. [17]). A configuration is a triple (s,w;,w>)
describing the current state (s), the value of counter 1 (w1) and of counter 2 (w). A computation J is a
sequence of subsequent configurations effected by transitions.
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For the simulation, we associate each counter with a player. The player’s accumulated payoff encodes
the counter value; actions model the increment/decrement of the counters; guards ensure that the actions
respect the state of the counters. The accepting states of the two-counter machine are encoded by a special
proposition halt. Now, the following lemma stating the soundness of the simulation can be proved:

Lemma 1 (Reduction) For any two-counter machine A we can construct a finite GCGMP R4 with two
players and proposition halt such that the following holds: A halts on the empty input iff A contains a

play m with € = (s, (9,9))(s', (v}, v1)) ... such that there exists j € N with halt € L(s/).

The next theorem gives two cases for which the model checking problem is undecidable. By the
previous Lemma we have to ensure that the halting state is reached which can be expressed by ((1))Fhalt.
We can also use purely state-based guards and encode the consistency checks in the formula as follows:
(1) (vi >0Avy >0Ae; — vy =0Ae; — vy = 0)Uhalt where the proposition e; is added to the model
to indicate that the value of counter i is zero. Not that this information is static and obtained from the
transition relation of the automaton.

Proposition 1 Model checking the logic QATL is undecidable, even for the 2 agent case and no nested
cooperation modalities, where /P = SP" and .#° = S™. This does even hold either for formulae not
involving arithmetic constraints, or for state-based guards.

Restoring decidability. There are some natural semantic and syntactic restrictions of QATL* where
decidability may be restored; these include for instance, the enabling of only memoryless strategies,
imposing non-negative payoffs, constraints on the transition graph of the model, bounds on players
utilities etc. For instance, the main reason for the undecidability result above is the possibility for negative
payoffs that allow for decrementing the accumulated payoffs and thus simulating the TCM operations.
Therefore, a natural restriction in the quest for restoring decidability is to consider only GCGMP models
with non-negative payoffs. In this case the accumulated payoffs increase monotonically over every play
of the game, and therefore the truth values of every arithmetic constraint occurring in the guards and in
the formula eventually stabilize in a computable way, which in the long run reduces the model checking
of any QATL-formula in an GCGMP to a model checking of an ATL-formula in a CGM. One can thus
obtain decidability of the model checking of the logic QATL in finite GCGMP with non-negative payoffs
and perfect information. We will discuss these and other decidability results in a future work, where we
will also consider restrictions similar to [9]].

6 Concluding Remarks
This paper proposes a long-term research agenda bringing together issues, techniques and results from
several research fields. It aims at bridging the two important aspects of reasoning about objectives and
abilities of players in multi-player games: quantitative and qualitative, and eventually providing a uni-
form framework for strategic reasoning in multi-agent systems.

Acknowledgements: We thank the anonymous referees for detailed and helpful comments and ad-
ditional references.
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