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We introduce a new class of games where each player’s aimrentiomise her strategic choices
in order to affect the other players’ expectations asidenfter own. The way each player intends
to exert this influence is expressed through a Boolean caatibimof polynomial equalities and
inequalities with rational coefficients. We offer a logicapresentation of these games as well as a
computational study of the existence of equililE}ia.

1 Introduction

In the situations of strategic interactions modelled in @arheory, the goal of each player is essentially
the maximisation of her own expected payoff. Players, h@nesften care not only about maximising
their own expectation, but also about influencing othergisyexpected outcomes. As an example, con-
sider a number of competing investment banks selling anthuyadable assets so that the trading of
financial products affects each other’s profit. These barightmandomize their choices and obviously
aim at maximizing their expected profit. Still, their stigggemight go beyond the choice of a specific in-
vestment and they might be interested in influencing the etankd the behavior of other banks possibly
undermining the expected gain of their competitors.

In this work, we offer logical models to formalize these lgnaof strategic interactions, called Ex-
pectation Games, where each player’s aim is to randomisstregegic choices in order to affect the
other players’ expectations over an outcome as well as thgirexpectation. Expectation Games are an
extension of Lukasiewicz games [9] and are based on thed&gi) that formalise reasoning about ex-
pected payoffs in a class of Lukasiewicz games [4]. Lukasiegames|[9], a generalisation of Boolean
games|[F], involve a finite set of playeRs each controlling a finite set of propositional variabMs
whose strategy corresponds to assigning values from tihelsca {O, %, ey k;kl, 1} to the variables in
V. Strategies can be interpreted as efforts or costs, andmagtr’s strategic choice can be seen as an
assignment to each controlled variable carrying an irtringst. Each player is given a finitely-valued
tukasiewicz logic formulag;, with variables fromJi'V;, whose valuation is interpreted as the payoff
function for B and corresponds to the restriction ovgrof a continuous piecewise linear polynomial
function [2].

Expectation Games expand Lukasiewicz games by assigniegcto playel? a modal formulad;
of the logicE(®), whose interpretation corresponds to a piecewise ratipolghomial function whose
variables are interpreted as the expected values of thdffagiotions ¢;. Each formulad; is then meant
to represent a player’s goal concerning the relation betvee and other players’ expectations.

1This extended abstract is based on the article [4] and amuipgoextended version of the same work.
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2 Logical Background

The language of tukasiewicz logic L (see [2]) is built from @uatable set of propositional variables
{p1, p2,...}, the binary connective+ and the truth constar@ (for falsity). Further connectives are
defined as follows:

-9 is ¢ —0, dbAY is 9&(P — ),
P&y is —(¢ = Y), vy is (9 —y¢)—y),
poyY is —(—¢&-Y), p=y is (=&Y —9),

poy is P&y, d¢,@) is (¢ W)

Let Form denote the set of tukasiewicz logic formulas. A valuatefrom Forminto [0,1] is a
mappinge: Form — [0, 1] assigning to all propositional variables a value from tre umit interval (with
e(0) = 0) that can be extended to complex formulas as follows:

e¢ =) = min(l—e(¢)+e(y)1) e—¢) = 1-e¢)

e(¢&y) = max0.e¢)+e(y)—1) epoy) = min(le¢)+e(y))
epoy) = max0.e(¢)—ey)) e¢pAy) = mine(d)e(y))
epVvy) = maxe(d).ey)) ed(¢.¢) = [e(d)—e(y)|
e¢y) = 1-[e(d)—e(y)|

A valuatione satisfies formulag if e(¢) = 1. As usual, a set of formulas is called a theory. A valuation
e satisfies a theory, if e(¢) =1, foreveryy € T.
Infinite-valued tukasiewicz logic has the following axiotisation:

k)¢ —(Y—9), (£2) (0 = ) = (P = x) = (¢ = X)),
k) (¢ —=-u)=W—¢) ‘H(¢—=¢)—y)—(Y—0)—9).
The only inference rule imodus ponens.e.: from¢ — Y and¢ derive .

A proofin L is a sequencés,. .., ¢, of formulas such that eaah either is an axiom of L or follows
from some preceding;, ¢« (j,k < i) by modus ponens. We say that a formgl@an be derived from a
theoryT, denoted a3 ¢, if there is a proof ofp from a sefl’ C T. A theoryT is said to be consistent
if T 0.

tukasiewicz logic is complete with respect to deductionsfifinite theories for the given semantics,
i.e.: for every finite theoryl and every formula, T - ¢ iff every valuationethat satisfie§ also satisfies
0.

For eaclk € N, the finite-valued tukasiewicz logicdis the schematic extension of £ with the axiom
schemas:

(£5) (n—1)¢ <> ng, (£6) (k¢ )" <> ng¥,
for each integek=2,...,n— 2 that does not divide— 1, and wherag¢ is an abbreviation fop &--- @ ¢
(n times) andgX is an abbreviation fop& ...& ¢, (k times). The notions of valuation and satisfiability
for L are defined as above just replacifgl] by

1 k—1
Lk—{O,R,...,T71}

as set of truth values. Everyfis complete (in the above sense) with respect to deductions finite
theories for the given semantics.

It is sometimes useful to introduce constants in additiof tbat will denote values in the domain
Lx. Specifically, we will denote by }the tukasiewicz logic obtained by adding constamfsr every
valuec € Lx. We assume that valuation functioasterpret such constants in the natural wefc) = c.
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A McNaughton function[[?] is a continuous piecewise lineatypomial functions with integer co-
efficients over theath-cube[0,1]". To each tukasiewicz formulé(ps,..., pn) we can associate a Mc-
Naughton functionfy so that, for every valuatioa

fo(e(p1);---,€(pn)) = &(@(P1;---,Pn))-

Every t-formula is then said to define a McNaughton functidrhe converse is also true, i.e. every
continuous piecewise linear polynomial function with geee coefficients ovef0, 1]" is definable by a
formula in Lukasiewicz logic. In the case of finite-valuedikasiewicz logics, the functions defined by
formulas are just the restrictions of McNaughton functiomsr (Li)". In this sense, we can associate to
every formulag (py,...,pn) from ty a functionf, : (Lx)" — Lx. As for each &, the functions defined
by a formula are combinations of restrictions of McNaughtonctions and, in addition, the constant
functions for eaclc € Lx. The class of functions definable by-formulas exactly coincides with the
class of all functiond : (Lx)" — Ly, for everyn > 0.

The expressive power of infinite-valued tukasiewicz logss lin, and is limited to, the definability
of piecewise linear polynomial functions. Expanding £ witle connectives), —n of Product logic([6],
interpreted as the product of reals and as the truncatesiahvirespectively, significantly augments the
expressive power of the logic. TheﬂL% logic [3] is the result of this expansion, obtained by addimg

connectivesy, —n, % whose valuatione extend the valuations for £ as follows:

1 _
Pow) — ep) e, b ony) - {% A=A el) = 4

Notice that the presence of the constgrmakes it possible to define constants for all rational@®id)
(see [3)). H'I%’s axioms include the axioms of Lukasiewicz and Productdsdseel[6]) as well as the
following additional axioms, wher&¢ is ~¢ —n O:

(N1 (poy)o(dox) o (Wox),

(£N2) Al — @) = (¢ =n ¥),

(LM3) Al —=ny) — (¢ = y),

(tn4) 3+ -1
The deduction rules are modus ponens for & amgdand the necessitation rule fari.e.: from¢ derive
A@. LI‘I% is complete with respect to deductions from finite theorargtie given semantics|[3].

While t is the logic of McNaughton functions,rl_% is the logic of piecewise rational functions

over [0,1]", for all n (see [10]). In fact, the function defined by eachl %_—formula with n variables
corresponds to a supremum of rational fractions

P(X1,-.-,X)
Q(Xg,---,%n)

over [0,1]", whereP(x,...,X)),Q(X1,...,X,) are polynomials with rational coefficients. Conversely,
every piecewise rational function with over the unit cydg|" can be defined by anl'll.%—formula.

3 Logics for Lukasiewicz Games with Expectations

In this section we briefly introduce tukasiewicz games gratong with the logicsE(®) to represent
expected payoffs in classes of gamegs) will be the basis upon which Expectation Games are defined.
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3.1 tukasiewicz Games

Definition 3.1 ([9]) A tukasiewicz gam& on t is a tuple = (P,V,{Vi},{Si},{¢i}) where:
1. P={P,...,P,} is a set ofplayers
2. V={ps,..., pm} is afinite set of propositional variables;

3. Foreachie {1,...,n}, V; C V is the set of propositional variables under control of plaie so
that the setd/; form a partition ofV, with |Vi| =m, and 3, m = m.

4. Foreach ie {1,...,n}, S; is the strategy set for player that consists of all valuations:3/; — Li
of the propositional variables iV, i.e.S; = {s| s: V; — Lk}.

5. Foreachie {1,...,n}, ¢i(py,..., pt) is an t-formula, built from variables iV, whose associated
function §, : (Lx)! — Lk corresponds to thpayoff functionof R, and whose value is determined
by the valuations i{S1,...,Sn}.

We denote bys = S; x --- x Sy the product of the strategy spaces. A tuple (sq,...,s,) € S of
strategies is called strategy combinationWith an abuse of notation, we denote fy(S) the value of
the payoff functionfys, under the valuation corresponding to the strategy combimat

Given a game?, letd : P — {1,...,m} be a function assigning to each play&ran integer from
{1,...,m} that corresponds to the number of variables/ijni.e.: 6(R) = m. J is called avariable
distribution function Given a game?, thetypeof ¢ is the triple (n,m,d), wheren is the number of
playersmis the number of variables i, andd is the variable distribution function f&f.

Definition 3.2 (Class) Let ¥ and¥’ be two tukasiewicz gamég and¥’ on t| of type(n,m,d) and
(n,m, &), respectively. We say tha@t and¥’ belong to the same clags if there exists a permutation
of the indices{1,...,n} such that, for all R 5(P;;)) = &'(R).

Notice that what matters in the definition of a type is not whitayers are assigned certain variables,
but rather their distribution.

Let ¢ be a tukasiewicz game orft A mixed strategyt for playerP is a probability distribution
on the strategy spac®. By 1, we denote the tuple of mixed strategigs,..., 71,7 11,...,Th).
P_; denotes the tuple of playe(®s,...,R_1,R+1,...,P,). Given the mixed strategigss, ..., ), the
expected payofbr B of playing 5, whenP_; play 1T_j, is given by

epr’i(TE> )= Z ((IELT[J (Si)> ar (§)>
3=(s1,...,51)€S =

3.2 The LogicsE(®)

Given a class of game$ on t{, the language dE(®) is defined as follows(1) The set NModF of non-
modal formulas corresponds to the set gffarmulas built from the propositional variablgs, ..., pm.
(2) The set ModF of modal formulas is built from the atomic modahfulasE¢, with ¢ € NModF,
using the connectives of thd’l:% logic. E¢ is meant to encode a player’s expected payoff of playing a
mixed strategy, given the payoff function associate@ ttNested modalities are not allowed.

A modelM for E(&) is a tuple(S, e, {7%}), such that:

1. S=5; x--- x Spis the set of all strategy combinations, i.e.

{S=(s1,....%) | (S1,---,%) €S1X -+ X Sp}.
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2. e: (NModF x S) — Ly is a valuation of non-modal formulas, such that, for egca NModF
e(¢,35) = fy(3), wherefy is the function associated tbandS= (sy,...,S).

3. 15 :Sj — [0,1] is a probability distribution, for each.
The truth value of a formuléb in M at§, denoted|®||y s, is inductively defined as follows:

1. If ®is a non-modal formulg € NModF, then||¢|m s=€(¢,S),
2. If @ is an atomic modal formulB¢, then||E¢ ||y s = exp (T, ..., Th).

3. If ® is a non-atomic modal formula, its truth value is computecdetgluating its atomic modal
subformulas and then by using the truth functions assattatéhe Ll'l%-connectives occurring in
.

Since the valuation of a modal formu does not depend on a specific strategy combination but
only on the modeM, we will often simply write||®||y to denote the valuation @b in M.

Theorem 3.3 (Completeness) etl” and® be a finite modal theory and a modal formuleE(®). Then,
[ Fes) @ if and only if for every modeVl such that, for each € T, ||W[ju =1, also||®|m = 1.

4 Expectation Games

In this section we introduce a class of games with polynogoaktraints over expectations. These games
expand Lukasiewicz games by assigning to each player a fatqwf E(&), whose interpretation corre-
sponds to a piecewise rational polynomial function whosealtes are expected values. The form@a

is meant to represent a player’s goal concerning the rel&tween her and other players’ expectations.

Definition 4.1 An Expectation Gaméy onE(®) is a tupledy = (¢4,{M;},{®;}), where:
1. ¢ is a Lukasiewicz game dtf, with € &,
2. foreachie {1,...,n}, M; is the set of all mixed strategies 6nof player R,
3. foreachie {1,...,n}, ®@; is anE(&)-formula such that every atomic modal formula occurring in
®; has the fornEy, with ¢ € {@1,...,¢n}, i.e. the payoff formulas if.

A modelM = (S,e {r5}) of E(&) for a gameéy is called abest response modé&r a playerR
whenever, for all models’ = (S,e, {17 }) with ', = 1.,

il lmr < [|Pi |-

An expectation gaméy on E(®) is said to have &lash Equilibrium whenever there exists a model
M* that is a best response model for each pldein that casévl* is called arequilibrium model

Example 1 Let & be any expectation game where edtls simply assigned the formul®; := E¢;.
This game corresponds to the the situation where each ptayes only about her own expectation and
whose goal is its maximisation. Clearly, by Nash’s Theorddi],[ everyéy of this form admits an
Equilibrium, since it offers a formalisation of the clasdicase where equilibria are given by tuples of
mixed strategies over valuations in a Lukasiewicz game.

Example 2 Not every expectation game has an equilibrium. In fact,siw@r the following game
&g = P,V {Vi},{Si},{¢i},{Mi},{®;}), withi € {1,2}, where:
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(1) ¢1:= prandez := pz, and  (2) ®1:=~d(E(p1),E(p2)) and®, := d(E(py),E(p2)) A

The above game can be regarded as a particular version ohiMgteennies with expectations. In fact,
while P, aims at matchind®,’s expectationP, wants their expectations to be as far as possible. Itis easy
to see that there is no moddl that gives an equilibrium fofy . Therefore:

Proposition 4.2 There exist Expectation Games B(®) that do not admit a Nash Equilibrium.

5 Complexity

Definition 5.1 For a given game&y, the MEMBERSHIP problem is the problem of determining whether
there exists an equilibrium mod®&l. For a given gamesy and modelM with with rational mixed
strategies(7m, . .., Th), theNON-EMPTINESS problem is the problem of determining whetiébelongs

to the set of Nash Equilibria.

Recall that the first-order theoiyh(RR) of real closed fields is the set of sentences in the language of
ordered rings+, —,-,0,1, <) that are valid over the field of reals [8]. The existence of @ulérium in
a gamesy can be expressed through a first-order senténoeTh(R):

Proposition 5.2 For each Expectation Gam&;, there exists a first-order senten€ef the theoryTh(RR)
of real closed fields so that, admits a Nash Equilibrium if and only & holds inTh(R).

As a consequence of the above, it is easy to see that a §fam@mits an equilibrium if and only if there
exists a quantifier-free formula in the language of ordeneglsrthat defines a non-empty semialgebraic
set over the reals [8].

We exploit the connection witfih(R) to determine the computational complexity of both then
BERSHIPand the NON-EMPTINESS problem. In fact, given a gam#&y, it can be shown that the sentence
& can be computed frorg, but its length is exponential in the number of propositioreiables of the
payoff formulas@. Deciding the validity of a sentence h(R) is singly exponential in the number of
variables and doubly exponential in the number of alteomatiof quantifier blocks [5]. It can be shown
that for every game the alternation of quantifiers iis always fixed. As a consequence, we obtain:

Theorem 5.3 Given an Expectation Gamé&, the NON-EMPTINESS problem can be decided i-
EXPTIME.

Deciding the validity of a sentence with only existentialaqtifiers in Th(R) can be solved in
PSPACEI[1]. We can show that, given a gafiieand modeM with rational mixed strategi€ga, ... , T,,),
we can compute in polynomial time an existential sentencEh¢R) whose validity is equivalent to the
fact thatM is an equilibrium model.

Theorem 5.4 Given an Expectation Gan#; and a modeM with rational mixed strategie&m, ..., ),
the MEMBERSHIP problem can be decided IRSPACE

2 Where—d(E(pz),E(p2)) is interpreted as 4 |expy, (1, T) — eX, (78, 76)| andd(E(py),E(p2)) as |expy, (1m, ) —
exp, (1, )| (seel[4]).
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6 Extensions and Future Work

This work lends itself to several extensions and genetaize. On the one hand we plan to study
the notion of correlated equilibria for Expectation Gamesaell as to determine the complexity of
checking their existence. In addition, we are interestestudying games where an external agent can
exert influence on the game by imposing constraints on theffsagnd the expectations. This agent
would then play the role of an enforcer by pushing the playermake choices that agree with her
dispositions. Also, we plan to investigate games based famtgrvalued tukasiewicz logic [2] where
players have infinite strategy spaces. Finally, we intendxfglore possible relations with stochastic
games and whether our framework can be adapted to formhtize kinds of strategic interactions.
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