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We introduce a new class of games where each player’s aim is torandomise her strategic choices
in order to affect the other players’ expectations aside from her own. The way each player intends
to exert this influence is expressed through a Boolean combination of polynomial equalities and
inequalities with rational coefficients. We offer a logicalrepresentation of these games as well as a
computational study of the existence of equilibria.1

1 Introduction

In the situations of strategic interactions modelled in Game Theory, the goal of each player is essentially
the maximisation of her own expected payoff. Players, however, often care not only about maximising
their own expectation, but also about influencing other players’ expected outcomes. As an example, con-
sider a number of competing investment banks selling and buying tradable assets so that the trading of
financial products affects each other’s profit. These banks might randomize their choices and obviously
aim at maximizing their expected profit. Still, their strategy might go beyond the choice of a specific in-
vestment and they might be interested in influencing the market and the behavior of other banks possibly
undermining the expected gain of their competitors.

In this work, we offer logical models to formalize these kinds of strategic interactions, called Ex-
pectation Games, where each player’s aim is to randomise herstrategic choices in order to affect the
other players’ expectations over an outcome as well as theirown expectation. Expectation Games are an
extension of Łukasiewicz games [9] and are based on the logicsE(G) that formalise reasoning about ex-
pected payoffs in a class of Łukasiewicz games [4]. Łukasiewicz games [9], a generalisation of Boolean
games [7], involve a finite set of playersPi each controlling a finite set of propositional variablesVi,
whose strategy corresponds to assigning values from the scale Lk =

{

0, 1
k , . . . ,

k−1
k ,1

}

to the variables in
Vi. Strategies can be interpreted as efforts or costs, and eachplayer’s strategic choice can be seen as an
assignment to each controlled variable carrying an intrinsic cost. Each player is given a finitely-valued
Łukasiewicz logic formulaϕi, with variables from

⋃n
i Vi, whose valuation is interpreted as the payoff

function for Pi and corresponds to the restriction overLk of a continuous piecewise linear polynomial
function [2].

Expectation Games expand Lukasiewicz games by assigning toeach playerPi a modal formulaΦi

of the logicE(G), whose interpretation corresponds to a piecewise rationalpolynomial function whose
variables are interpreted as the expected values of the payoff functionsϕi. Each formulaΦi is then meant
to represent a player’s goal concerning the relation between her and other players’ expectations.

1This extended abstract is based on the article [4] and an upcoming extended version of the same work.
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2 Logical Background

The language of Łukasiewicz logic Ł (see [2]) is built from a countable set of propositional variables
{p1, p2, . . .}, the binary connective→ and the truth constant0 (for falsity). Further connectives are
defined as follows:

¬ϕ is ϕ → 0̄, ϕ ∧ψ is ϕ&(ϕ → ψ),
ϕ&ψ is ¬(ϕ →¬ψ), ϕ ∨ψ is ((ϕ → ψ)→ ψ),

ϕ ⊕ψ is ¬(¬ϕ&¬ψ), ϕ ↔ ψ is (ϕ → ψ)&(ψ → ϕ),
ϕ ⊖ψ is ϕ&¬ψ , d(ϕ ,ψ) is ¬(ϕ ↔ ψ).

Let Form denote the set of Łukasiewicz logic formulas. A valuatione from Form into [0,1] is a
mappinge: Form→ [0,1] assigning to all propositional variables a value from the real unit interval (with
e(0) = 0) that can be extended to complex formulas as follows:

e(ϕ → ψ) = min(1−e(ϕ)+e(ψ),1) e(¬ϕ) = 1−e(ϕ)
e(ϕ&ψ) = max(0,e(ϕ)+e(ψ)−1) e(ϕ ⊕ψ) = min(1,e(ϕ)+e(ψ))
e(ϕ ⊖ψ) = max(0,e(ϕ)−e(ψ)) e(ϕ ∧ψ) = min(e(ϕ),e(ψ))
e(ϕ ∨ψ) = max(e(ϕ),e(ψ)) e(d(ϕ ,ψ)) = |e(ϕ)−e(ψ)|

e(ϕ ↔ ψ) = 1−|e(ϕ)−e(ψ)|

A valuatione satisfiesa formulaϕ if e(ϕ) = 1. As usual, a set of formulas is called a theory. A valuation
esatisfies a theoryT, if e(ψ) = 1, for everyψ ∈ T.

Infinite-valued Łukasiewicz logic has the following axiomatisation:

(Ł1) ϕ → (ψ → ϕ), (Ł2) (ϕ → ψ)→ ((ψ → χ)→ (ϕ → χ)),
(Ł3) (¬ϕ →¬ψ)→ (ψ → ϕ), (Ł4) ((ϕ → ψ)→ ψ)→ ((ψ → ϕ)→ ϕ).

The only inference rule ismodus ponens, i.e.: fromϕ → ψ andϕ deriveψ .
A proof in Ł is a sequenceϕ1, . . . ,ϕn of formulas such that eachϕi either is an axiom of Ł or follows

from some precedingϕ j ,ϕk ( j,k< i) by modus ponens. We say that a formulaϕ can be derived from a
theoryT, denoted asT ⊢ ϕ , if there is a proof ofϕ from a setT ′ ⊆ T. A theoryT is said to be consistent
if T 6⊢ 0.

Łukasiewicz logic is complete with respect to deductions from finite theories for the given semantics,
i.e.: for every finite theoryT and every formulaϕ , T ⊢ ϕ iff every valuatione that satisfiesT also satisfies
ϕ .

For eachk∈N, the finite-valued Łukasiewicz logic Łk is the schematic extension of Ł with the axiom
schemas:

(Ł5) (n−1)ϕ ↔ nϕ , (Ł6) (kϕk−1)n ↔ nϕk,

for each integerk= 2, . . . ,n−2 that does not dividen−1, and wherenϕ is an abbreviation forϕ ⊕·· ·⊕ϕ
(n times) andϕk is an abbreviation forϕ& . . .&ϕ , (k times). The notions of valuation and satisfiability
for Łk are defined as above just replacing[0,1] by

Lk =

{

0,
1
k
, . . . ,

k−1
k

,1

}

as set of truth values. Every Łk is complete (in the above sense) with respect to deductions from finite
theories for the given semantics.

It is sometimes useful to introduce constants in addition to0 that will denote values in the domain
Lk. Specifically, we will denote by Łck the Łukasiewicz logic obtained by adding constantsc for every
valuec∈ Lk. We assume that valuation functionse interpret such constants in the natural way:e(c) = c.
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A McNaughton function [2] is a continuous piecewise linear polynomial functions with integer co-
efficients over thenth-cube[0,1]n. To each Łukasiewicz formulaϕ(p1, . . . , pn) we can associate a Mc-
Naughton functionfϕ so that, for every valuatione

fϕ(e(p1), . . . ,e(pn)) = e(ϕ(p1, . . . , pn)).

Every Ł-formula is then said to define a McNaughton function.The converse is also true, i.e. every
continuous piecewise linear polynomial function with integer coefficients over[0,1]n is definable by a
formula in Łukasiewicz logic. In the case of finite-valued Łukasiewicz logics, the functions defined by
formulas are just the restrictions of McNaughton functionsover(Lk)

n. In this sense, we can associate to
every formulaϕ(p1, . . . , pn) from Łk a function fϕ : (Lk)

n → Lk. As for each Łck, the functions defined
by a formula are combinations of restrictions of McNaughtonfunctions and, in addition, the constant
functions for eachc ∈ Lk. The class of functions definable by Łc

k-formulas exactly coincides with the
class of all functionsf : (Lk)

n → Lk, for everyn≥ 0.
The expressive power of infinite-valued Łukasiewicz logic lies in, and is limited to, the definability

of piecewise linear polynomial functions. Expanding Ł withthe connectives⊙,→Π of Product logic [6],
interpreted as the product of reals and as the truncated division, respectively, significantly augments the
expressive power of the logic. The ŁΠ1

2 logic [3] is the result of this expansion, obtained by addingthe

connectives⊙,→Π,
1
2, whose valuationseextend the valuations for Ł as follows:

e(ϕ ⊙ψ) = e(ϕ) ·e(ψ), e(ϕ →Π ψ) =

{

1 e(ϕ)≤ e(ψ)
e(ψ)
eϕ otherwise

, e
(

1
2

)

= 1
2.

Notice that the presence of the constant1
2 makes it possible to define constants for all rationals in[0,1]

(see [3]). ŁΠ1
2 ’s axioms include the axioms of Łukasiewicz and Product logics (see [6]) as well as the

following additional axioms, where∆ϕ is ¬ϕ →Π 0:

(ŁΠ1) (ϕ ⊙ψ)⊖ (ϕ ⊙ χ)↔ ϕ ⊙ (ψ ⊖ χ),
(ŁΠ2) ∆(ϕ → ψ)→ (ϕ →Π ψ),
(ŁΠ3) ∆(ϕ →Π ψ)→ (ϕ → ψ),

(ŁΠ4) 1
2 ↔¬1

2.

The deduction rules are modus ponens for & and→, and the necessitation rule for∆, i.e.: fromϕ derive
∆ϕ . ŁΠ1

2 is complete with respect to deductions from finite theories for the given semantics [3].
While Ł is the logic of McNaughton functions, ŁΠ1

2 is the logic of piecewise rational functions
over [0,1]n, for all n (see [10]). In fact, the function defined by each ŁΠ1

2-formula with n variables
corresponds to a supremum of rational fractions

P(x1, . . . ,xn)

Q(x1, . . . ,xn)

over [0,1]n, whereP(x1, . . . ,xn),Q(x1, . . . ,xn) are polynomials with rational coefficients. Conversely,
every piecewise rational function with over the unit cube[0,1]n can be defined by an ŁΠ1

2-formula.

3 Logics for Łukasiewicz Games with Expectations

In this section we briefly introduce Łukasiewicz games on Łc
k along with the logicsE(G) to represent

expected payoffs in classes of games.E(G) will be the basis upon which Expectation Games are defined.
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3.1 Łukasiewicz Games

Definition 3.1 ([9]) A Łukasiewicz gameG on Łc
k is a tupleG = 〈P,V,{Vi},{Si},{ϕi}〉 where:

1. P= {P1, . . . ,Pn} is a set ofplayers;

2. V = {p1, . . . , pm} is a finite set of propositional variables;

3. For each i∈ {1, . . . ,n}, Vi ⊆ V is the set of propositional variables under control of player Pi, so
that the setsVi form a partition ofV, with |Vi |= mi, and∑n

i=1mi = m.

4. For each i∈ {1, . . . ,n}, Si is the strategy set for player Pi that consists of all valuations s: Vi → Lk

of the propositional variables inVi, i.e. Si = {s | s : Vi → Lk}.

5. For each i∈ {1, . . . ,n}, ϕi(p1, . . . , pt) is an Łc
k-formula, built from variables inV, whose associated

function fϕi : (Lk)
t → Lk corresponds to thepayoff functionof Pi, and whose value is determined

by the valuations in{S1, . . . ,Sn}.

We denote byS = S1× ·· ·× Sn the product of the strategy spaces. A tuple~s= (s1, . . . ,sn) ∈ S of
strategies is called astrategy combination. With an abuse of notation, we denote byfϕi (~s) the value of
the payoff functionfϕi under the valuation corresponding to the strategy combination~s.

Given a gameG , let δ : P → {1, . . . ,m} be a function assigning to each playerPi an integer from
{1, . . . ,m} that corresponds to the number of variables inVi: i.e.: δ (Pi) = mi. δ is called avariable
distribution function. Given a gameG , the typeof G is the triple〈n,m,δ 〉, wheren is the number of
players,m is the number of variables inV, andδ is the variable distribution function forG .

Definition 3.2 (Class) Let G and G ′ be two Łukasiewicz gamesG and G ′ on Łc
k of type〈n,m,δ 〉 and

〈n,m,δ ′〉, respectively. We say thatG andG ′ belong to the same classG if there exists a permutationj
of the indices{1, . . . ,n} such that, for all Pi, δ (Pj(i)) = δ ′(Pi).

Notice that what matters in the definition of a type is not which players are assigned certain variables,
but rather their distribution.

Let G be a Łukasiewicz game on Łc
k. A mixed strategyπi for playerPi is a probability distribution

on the strategy spaceSi. By π−i, we denote the tuple of mixed strategies(π1, . . . ,πi−1,πi+1, . . . ,πn).
P−i denotes the tuple of players(P1, . . . ,Pi−1,Pi+1, . . . ,Pn). Given the mixed strategies(π1, . . . ,πn), the
expected payofffor Pi of playingπi, whenP−i play π−i, is given by

expϕi (πi,π−i) = ∑
~s=(s1,...,sn)∈S

((

n

∏
j=1

π j(sj)

)

· fϕi (~s)

)

3.2 The LogicsE(G)

Given a class of gamesG on Łc
k, the language ofE(G) is defined as follows:(1) The set NModF of non-

modal formulas corresponds to the set of Łc
k-formulas built from the propositional variablesp1, . . . , pm.

(2) The set ModF of modal formulas is built from the atomic modal formulasEϕ , with ϕ ∈ NModF,
using the connectives of the ŁΠ1

2 logic. Eϕ is meant to encode a player’s expected payoff of playing a
mixed strategy, given the payoff function associated toϕ . Nested modalities are not allowed.

A modelM for E(G) is a tuple〈S,e,{πi}〉, such that:

1. S= S1×·· ·×Sn is the set of all strategy combinations, i.e.

{~s= (s1, . . . ,sn) | (s1, . . . ,sn) ∈ S1×·· ·×Sn}.
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2. e : (NModF× S) → Lk is a valuation of non-modal formulas, such that, for eachϕ ∈ NModF
e(ϕ ,~s) = fϕ(~s), where fϕ is the function associated toϕ and~s= (s1, . . . ,sn).

3. πi : Si → [0,1] is a probability distribution, for eachPi.

The truth value of a formulaΦ in M at~s, denoted‖Φ‖M ,~s, is inductively defined as follows:

1. If Φ is a non-modal formulaϕ ∈ NModF, then‖ϕ‖M ,~s = e(ϕ ,~s),

2. If Φ is an atomic modal formulaEϕ , then‖Eϕ‖M ,~s = expϕ (π1, . . . ,πn).

3. If Φ is a non-atomic modal formula, its truth value is computed byevaluating its atomic modal
subformulas and then by using the truth functions associated to the ŁΠ1

2-connectives occurring in
Φ.

Since the valuation of a modal formulaΦ does not depend on a specific strategy combination but
only on the modelM , we will often simply write‖Φ‖M to denote the valuation ofΦ in M .

Theorem 3.3 (Completeness)LetΓ andΦ be a finite modal theory and a modal formula inE(G). Then,
Γ ⊢E(G) Φ if and only if for every modelM such that, for eachΨ ∈ Γ, ‖Ψ‖M = 1, also‖Φ‖M = 1.

4 Expectation Games

In this section we introduce a class of games with polynomialconstraints over expectations. These games
expand Lukasiewicz games by assigning to each player a formula Φi of E(G), whose interpretation corre-
sponds to a piecewise rational polynomial function whose variables are expected values. The formulaΦi

is meant to represent a player’s goal concerning the relation between her and other players’ expectations.

Definition 4.1 An Expectation GameEG onE(G) is a tupleEG = 〈G ,{Mi},{Φi}〉, where:

1. G is a Łukasiewicz game onŁc
k, with G ∈G,

2. for each i∈ {1, . . . ,n}, Mi is the set of all mixed strategies onSi of player Pi,

3. for each i∈ {1, . . . ,n}, Φi is anE(G)-formula such that every atomic modal formula occurring in
Φi has the formEψ , with ψ ∈ {ϕ1, . . . ,ϕn}, i.e. the payoff formulas inG .

A model M = 〈S,e,{πi}〉 of E(G) for a gameEG is called abest response modelfor a playerPi

whenever, for all modelsM ′ = 〈S,e,{π ′
i }〉 with π ′

−i = π−i,

‖Φi‖M ′ ≤ ‖Φi‖M .

An expectation gameEG onE(G) is said to have aNash Equilibrium, whenever there exists a model
M ∗ that is a best response model for each playerPi. In that caseM ∗ is called anequilibrium model.

Example 1. Let EG be any expectation game where eachPi is simply assigned the formulaΦi := Eϕi .
This game corresponds to the the situation where each playercares only about her own expectation and
whose goal is its maximisation. Clearly, by Nash’s Theorem [11], everyEG of this form admits an
Equilibrium, since it offers a formalisation of the classical case where equilibria are given by tuples of
mixed strategies over valuations in a Łukasiewicz game.

Example 2. Not every expectation game has an equilibrium. In fact, consider the following game
EG = 〈P,V,{Vi},{Si},{ϕi},{Mi},{Φi}〉, with i ∈ {1,2}, where:
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(1) ϕ1 := p1 andϕ2 := p2, and (2) Φ1 := ¬d(E(p1),E(p2)) andΦ2 := d(E(p1),E(p2)).2

The above game can be regarded as a particular version of Matching Pennies with expectations. In fact,
while P1 aims at matchingP2’s expectation,P2 wants their expectations to be as far as possible. It is easy
to see that there is no modelM that gives an equilibrium forEG . Therefore:

Proposition 4.2 There exist Expectation Games onE(G) that do not admit a Nash Equilibrium.

5 Complexity

Definition 5.1 For a given gameEG , theMEMBERSHIPproblem is the problem of determining whether
there exists an equilibrium modelM . For a given gameEG and modelM with with rational mixed
strategies(π1, . . . ,πn), theNON-EMPTINESSproblem is the problem of determining whetherM belongs
to the set of Nash Equilibria.

Recall that the first-order theoryTh(R) of real closed fields is the set of sentences in the language of
ordered rings〈+,−, ·,0,1,<〉 that are valid over the field of reals [8]. The existence of an equilibrium in
a gameEG can be expressed through a first-order sentenceξ of Th(R):

Proposition 5.2 For each Expectation GameEG there exists a first-order sentenceξ of the theoryTh(R)
of real closed fields so thatEG admits a Nash Equilibrium if and only ifξ holds inTh(R).

As a consequence of the above, it is easy to see that a gameEG admits an equilibrium if and only if there
exists a quantifier-free formula in the language of ordered rings that defines a non-empty semialgebraic
set over the reals [8].

We exploit the connection withTh(R) to determine the computational complexity of both the MEM-
BERSHIPand the NON-EMPTINESSproblem. In fact, given a gameEG , it can be shown that the sentence
ξ can be computed fromEG but its length is exponential in the number of propositionalvariables of the
payoff formulasφi . Deciding the validity of a sentence inTh(R) is singly exponential in the number of
variables and doubly exponential in the number of alternations of quantifier blocks [5]. It can be shown
that for every game the alternation of quantifiers inξ is always fixed. As a consequence, we obtain:

Theorem 5.3 Given an Expectation GameEG the NON-EMPTINESS problem can be decided in2-
EXPTIME.

Deciding the validity of a sentence with only existential quantifiers inTh(R) can be solved in
PSPACE [1]. We can show that, given a gameEG and modelM with rational mixed strategies(π1, . . . ,πn),
we can compute in polynomial time an existential sentence ofTh(R) whose validity is equivalent to the
fact thatM is an equilibrium model.

Theorem 5.4 Given an Expectation GameEG and a modelM with rational mixed strategies(π1, . . . ,πn),
theMEMBERSHIPproblem can be decided inPSPACE.

2 Where¬d(E(p1),E(p2)) is interpreted as 1− |expp1(π1,π2)− expp2(π1,π2)| andd(E(p1),E(p2)) as |expp1(π1,π2)−
expp2(π1,π2)| (see [4]).
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6 Extensions and Future Work

This work lends itself to several extensions and generalizations. On the one hand we plan to study
the notion of correlated equilibria for Expectation Games as well as to determine the complexity of
checking their existence. In addition, we are interested instudying games where an external agent can
exert influence on the game by imposing constraints on the payoffs and the expectations. This agent
would then play the role of an enforcer by pushing the playersto make choices that agree with her
dispositions. Also, we plan to investigate games based on infinite-valued Łukasiewicz logic [2] where
players have infinite strategy spaces. Finally, we intend toexplore possible relations with stochastic
games and whether our framework can be adapted to formalize those kinds of strategic interactions.
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