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We study the security of interaction protocols when incentives of participants are taken into account.
We begin by formally defining correctness of a protocol, given a notion of rationality and utilities of
participating agents. Based on that, we propose how to assess security when the precise incentives are
unknown. Then, the security level can be defined in terms ofdefender sets, i.e., sets of participants
who can effectively “defend” the security property as long as they are in favor of the property.

We present some theoretical characterizations of defendable protocols under Nash equilibrium,
first for bijective games (a standard assumption in game theory), and then for games with non-
injective outcomes that better correspond to interaction protocols. Finally, we apply our concepts
to analyze fairness in the ASW contract-signing protocol.

1 Introduction

Interaction protocols are ubiquitous in multi-agent systems. Protocols can be modeled as games, since
every participant in the protocol has several strategies that she can employ. From a game-theoretic
perspective, protocols are an interesting class of games since they have agoal, i.e., a set of outcomes that
are preferred by the designer of the protocol.Security protocolsuse cryptography to enforce their goals
against any possible behavior of participants. Such a protocol is deemed correct with respect to its goal
if the goal is achieved in all runs where a predefined subset ofplayers follows the protocol.

We point out that this definition of correctness can be too strong, since violation of the goal may
be achievable only by irrational responses from the other players. On the other hand, the definition may
also prove too weak when the goal can be only achieved by an irrational strategy of agents supporting the
goal, in other words: one that they should never choose to play. To describe and predict rational behavior
of agents, game theory has proposed a number ofsolution concepts[13]. Each solution concept captures
some notion of rationality which may be more or less applicable in different contexts. We do not fix a
particular solution concept, but consider it to be a parameter of the problem.

Our main contributions are the following. First, in Section3.1, we define a parametrized notion of
rational correctnessfor security protocols, where the parameter is a suitable solution concept. Secondly,
based on this notion, we define a concept ofdefendability of securityin a protocol, where the security
property is guaranteed under relatively weak assumptions (Section 3.3). Thirdly, in Section 4, we propose
a characterizationof defendable security properties when rationality of participants is based on Nash
equilibrium. Finally, we consider the case of mixed strategies in Section 5, we generalize the results to
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non-injective game models in Section 6, and apply our concepts to analyze fairness in the ASW contract-
signing protocol in Section 7. Most of this paper (Sections 2–5) is a compressed version of the material
already published in [9]. The novel contribution is presented in Sections 6 and 7.

We want to emphasize that our work does not focus on “classical” security protocols where most
participants are assumed to be “honest”, i.e., to follow a typically deterministic sequence of actions. More
appropriately, we should say that we studyinteraction protocolsin general, where actions of participants
may or may not be “honest”, and the actual set of available behaviors depends on the execution semantics
of the protocol. We believe that the two kinds of assumptions(honesty vs. being in favor of the protocol
objective) are largely orthogonal. A study of interplay between the two is left for future work.

1.1 Related Work

Researchers have considered protocol execution as a game with the very pessimistic assumption that
the only goal of the other participants (“adversaries”) is to break the intended security property of the
protocol. In this case, a protocol is correct if the “honest”participants have a strategy such that, for all
strategies of the other agents, the goal of the protocol is satisfied (cf. e.g. [10]). Recently, protocols have
been analyzed with respect to some game theoretic notions ofrationality [7, 2] where preferences of
participants are taken into account. An overview of connections between cryptography and game theory
is given in [6]. Another survey [12] presents arguments suggesting that study of incentives in security
applications is crucial. Buttyán, Hubaux andČapkun [4] model protocols in a way similar to ours, and
also use incentives to model the behavior of agents. However, they restrict their analysis to strongly
Pareto-optimal Nash equilibria which is not necessarily a good solution concept for security protocols:
First, it is unclear why agents wouldindividually converge to a strongly Pareto-optimal play. Moreover,
in many protocols it is unclear why agents would play a Nash equilibrium in the first place. Our method
is more general, as we use the solution concept as a parameterto our analysis. Asharov et al. (2011)
[2] use game theory to study gradual-release fair exchange protocols. They consider a protocol to be
game-theoretically fair if the strategy that never aborts the protocol is a computational Nash-equilibrium.
They prove that their analysis allows for solutions that arenot admitted by the traditional cryptographic
definition. Groce and Katz [8] show that if agents have a strict incentive to achieve fair exchange, then
gradual-release fair exchange without trusted third party(TTP) is possible under the assumption that the
other agents play rationally. Syverson [14] presents arational exchangeprotocol for which he shows
that “enlightened, self-interested parties” have no reason to cheat. Finally, Chatterjee & Raman [5] use
assume-guarantee synthesis for synthesis of contract signing protocols.

In summary, rationality-based correctness of protocols has been studied in a number of papers, but
usually with a particular notion of rationality in mind. In contrast, we define a concept of correctness
where a game-theoretic solution concept is a parameter of the problem. Even more importantly, our con-
cept ofdefendabilityof a security property is completely novel. The same appliesto our characterizations
of defendable properties under Nash equilibrium.

2 Protocols and Games

A protocol is a specification of how agents should interact. Protocols can containchoice pointswhere
several actions are available to the agents. An agent ishonestif he follows the protocol specification,
anddishonestotherwise, i.e., when he behaves in a way that is not allowed by the protocol. In the latter
case, the agent is only restricted by the physical and logical actions that are available in the environment.
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For instance, in a cryptographic protocol, dishonest agents can do anything that satisfies properties of
the cryptographic primitives, assuming perfect cryptography (as in [11]). The protocol, together with a
model of the environment of action, a subset of agents who areassumed to be honest, and the operational
semantics of action execution, defines a multi-agent transition system that we call themodelof the
protocol. In the rest of the paper, we focus on protocol models, and abstract away from how they arise.
We also do not treat the usual “network adversary” that can intercept, delay and forge messages, but
essentially assume the existence of secure channels. The issue of the “network adversary” is of course
highly relevant for security protocols, but orthogonal to the aspects we discuss in this paper. In the full
version of this paper [9], we present contract signing protocols as a running example. In such a protocol,
Alice and Bob want to sign a contract. Among the most relevantgame-theoretic security properties of
such protocols are fairness, balancedness, and abuse-freeness.

We usenormal-form gamesas abstract models of interaction in a protocol.

Definition 2.1 (Frames and games). A game frameis a tupleΓ = (N,Σ), where N= {A1, . . . ,A|N|} is a
finite set ofagents, andΣ = ΣA1 ×·· ·×ΣA|N|

is a set of strategy profiles.
A normal-form (NF) gameis a game frame plus autility profile u= {u1, . . . ,u|N|} where ui : Σ → R

is a utility function assigning utility values to strategy profiles.

Game theory usessolution conceptsto define which strategy profiles capture rational interactions.
Let G be a class of games with the same strategy profilesΣ. Formally, a solution concept forG is
a functionSC: G → P(Σ) that, given a game, returns a set ofrational strategy profiles. Well-known
solution concepts include e.g. Nash equilibrium (NE), dominant and undominated strategies, Stackelberg
equilibrium, Pareto optimality etc.
Protocols as Games.Let P be a model of a protocol. We will investigate properties ofP through the
game frameΓ(P) in which strategies areconditional plansin P, i.e., functions that specify for each
choice point which action to take. A set of strategies, one for each agent, uniquely determines arun of
the protocol, i.e., a sequence of actions that the agents will take. Γ(P) takes runs to be the outcomes in
the game, and hence maps strategy profiles to runs.

Security protocols are designed to achieve one or moresecurity requirementsand/orfunctionality
requirements. We only consider requirements that can be expressed in terms of single runs having a
certain property. We model this by a subset of possible behaviors, called theobjective of the protocol.

Definition 2.2. Given a game frameΓ = (N,Σ), anobjectiveis a setγ ⊆ Σ. We callγ nontrivial in Γ iff
γ is neither impossible nor guaranteed inΓ, i.e., /0 6= γ 6= Σ.

3 Incentive-Based Security Analysis

In this section, we give a definition of correctness of security protocols that takes into account rational
decisions of agents, based on their incentives.

3.1 Incentive-Based Correctness

As we have pointed out, the requirement that all strategy profiles satisfy the objective might be too strong.
Instead, we will require that allrational runs satisfy the objective. In case there are no rational runs, all
behaviors are equally rational; then, we require that all strategy profiles must satisfyγ .
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Definition 3.1. A protocol model represented as game frameΓ = (N,Σ) with utility profile u iscorrect
with respect to objectiveγ under solution conceptSC, written(Γ,u) |=SCγ , iff:

{

SC(Γ,u)⊆ γ if SC(Γ,u) 6= /0
γ = Σ otherwise.

3.2 Unknown Incentives

Definition 3.1 applies to a protocol when a utility profile is given. However, the exact utility profiles are
often unknown. One way out is to require the protocol to be correct forall possibleutility profiles.

Definition 3.2. A protocol model represented by game frameΓ is valid with respect to objectiveγ under
solution concept SC (writtenΓ |=SCγ) iff (Γ,u) |=SC γ for all utility profiles u.

It turns out that, under some reasonable assumptions, protocols are only valid for trivial objectives.

Definition 3.3. Let G= (N,Σ,(u1, . . . ,un)). Let π = (π1, . . . ,πn), where for all i∈ N, πi : Σi → Σi is a
permutation onΣi . We slightly abuse the notation by writingπ((s1, . . . ,sn)) for (π1(s1), . . . ,πn(sn)).
A solution concept isclosed under permutationiff s ∈ SC((N,Σ,(u′1, . . . ,u′n))) if and only if π(s) ∈
SC((N,Σ,(u′1 ◦π−1

1 , . . . ,u′n◦π−1
n ))).

Theorem 3.4. If SC is closed under permutation, thenΓ |=SCγ iff γ = Σ.1

Thus, correctness for all distributions of incentives is equivalent to correctness in all possible runs.

3.3 Defendability of Protocols

Typical analysis of a protocol implicitly assumes some participants to be aligned with its purpose. E.g.,
one usually assumes that communicating parties are interested in exchanging a secret without the eaves-
dropper getting hold of it, that a bank wants to prevent web banking fraud etc. In this section, we
formalize this idea by assuming a subset of agents, called the defendersof the protocol, to be in favor
of its objective. Our new definition of correctness says thata protocol is correct with respect to some
objectiveγ if and only if it is correct with respect to every utility profile in which the preferences of all
defenders comply withγ .2

Definition 3.5. A group of agents D⊆ N supportsthe objectiveγ in game(N,Σ,u) iff for all i ∈ D, if
s∈ γ and s′ ∈ Σ\ γ then ui(s) > ui(s′).

A protocol model represented as game frameΓ is defended by agentsD, written Γ |=SC [D]γ , iff
(Γ,u) |=SCγ for all utility profiles u such that D supportsγ in game(Γ,u).

Clearly, if there are no defenders, then defendability is equivalent to ordinary protocol validity:

Proposition 3.6. If Γ is a game frame and SC is a solution concept, we have thatΓ |=SC [ /0]γ iff Γ |=SCγ .

If all agents are defenders, any protocol is correct, as longas the solution concept does not select
strongly Pareto-dominatedstrategy profiles, and there always is some strategy profile which is rational
according to the solution concept.

Definition 3.7. A solution concept isweakly Paretoiff it never selects a strongly Pareto dominated
outcome (i.e., such that there exists another outcome strictly preferred by all the players). It isefficient
iff it never returns the empty set.

1 For proofs of all theorems and definitions of auxiliary concepts, we refer to the original paper [9].
2 There is an analogy of the concept to [1] where “robust” goalsare studied, i.e., goals that are achieved as long as a selected

subset of agents behaves correctly.
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Theorem 3.8. If Γ is a game frame and SC is an efficient weakly Pareto solution concept thenΓ |=SC[N]γ .

Many solution concepts are both efficient and weakly Pareto,for example: Stackelberg equilibrium,
maximum-perfect cooperative equilibrium, backward induction and subgame-perfect Nash equilibrium
in perfect information games. On the other hand, Nash equilibrium is neither weakly Pareto nor efficient,
and equilibrium in dominant strategies is weakly Pareto butnot necessarily efficient.

Clearly, defendability of a protocol is monotonic with respect to the set of defenders. This justifies
the following definition.
Definition 3.9. Thegame-theoretic security levelof protocol P is the antichain of minimal sets of de-
fenders that make the protocol correct.

4 Characterizing Defendability under Nash Equilibrium

In this section, we turn to properties that can be defended ifagents’ rationality is based on Nash equilib-
rium or Optimal Nash Equilibrium.

4.1 Defendability under Nash Equilibrium

From Theorem 3.4, we know that no protocol is valid under Nashequilibrium (NE) for any nontrivial
objective, since NE is closed under permutation. Do things get better if we assume some agents to be
in favor of the security objective? We now look at the extremevariant of the question, i.e., defendabil-
ity by the grand coalitionN. Note that, by monotonicity of defendability wrt the set of defendersD,
nondefendability byN implies that the objective is not defendable by any coalition at all.

Our first result in this respect is negative: we show that in every game frame there are nontrivial
objectives that are not defendable under NE.
Theorem 4.1. Let Γ be a game frame with at least two players and at least two strategies per player.
Moreover, letγ be a singleton objective, i.e.,γ = {ω} for someω ∈ Σ. Then,Γ 6|=NE [N]γ .

In particular, the construction from the above proof shows that, as mentioned before, there are cases
where the “defending” coalition has a strategy to achieve a goal γ , but there are still rational plays in
which the goal is not achieved.

To present the general result that characterizes defendability of security objectives under Nash equi-
librium, we need to introduce additional concepts. In what follows, we uses[ti/i] to denote(s1, . . . ,si−1, ti ,
si+1, . . . ,sN), i.e., the strategy profile that is obtained fromswhen playeri changes her strategy toti .
Definition 4.2. Let γ be a set of strategy profiles inΓ. Thedeviation closureof γ is defined as Cl(γ) =
{s∈ Σ | ∃i ∈ N, ti ∈ Σi . s[ti/i] ∈ γ}.

Cl(γ) extendsγ with the strategy profiles that are reachable by unilateral deviations fromγ . Thus,
Cl(γ) can be seen as the closure ofγ with the behaviors that are relevant for Nash equilibrium. More-
over, the following notion captures strategy profiles that can be used to construct sequences of unilateral
deviations ending up in a cycle.
Definition 4.3. A strategic knotin γ is a subset of strategy profiles S⊆ γ such that there is a permutation
(s1, . . . ,sk) of S where: (a) for all1≤ j < k, sj+1 = sj [sj+1

i /i] for some i∈ N, and (b) sj = sk[sj
i /i] for

some i∈ N, j < k.

Essentially, this means that every strategysj+1 is obtained fromsj by a unilateral deviation of a
single agent. If these deviations are rational (i.e., increase the utility of the deviating agent), then the
knot represents a possible endless loop of rational, unilateral deviations which precludes a group of
agents from reaching a stable joint strategy. We now state the main result of this section.
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Theorem 4.4. Let Γ be a finite game frame andγ a nontrivial objective inΓ. Then,Γ |=NE [N]γ iff
Cl(γ) = Σ and there is a strategy profile inγ that belongs to no strategic knots inγ .

4.2 Optimal Nash Equilibria

Nash equilibrium is a natural solution concept for a game played repeatedly until the behavior of all
players converges to a stable point. For a one-shot game, NE possibly captures convergence of the pro-
cess of deliberation. It can be argued that, among the available solutions, no player should contemplate
those which are strictly worse for everybody when compared to another stable point. This gives rise to
the following refinement of Nash equilibrium: OptNE(Γ,u) is the set ofoptimal Nash equilibriain game
(Γ,u), defined as those equilibriathat are not strongly Pareto-dominated by another Nash equilibrium.
Defendability by the grand coalition under OptNE has the following simple characterization.

Theorem 4.5. Let Γ be a finite game frame andγ a nontrivial objective inΓ. Then,Γ |=OptNE [N]γ iff
there is a strategy profile inγ that belongs to no strategic knots inγ .

5 Defendability in Mixed Strategies

So far, we considered only deterministic (pure) strategies. It is well known that for many games and
solution concepts, rational strategies exist only when taking mixed strategies into account. We now
extend our definition of correctness to mixed strategies, i.e., randomized conditional plans represented
by probability distributions over pure strategies fromΣAi . Letdom(s) be the support (domain) of a mixed
strategy profiles, i.e., the set of pure strategy profiles that have nonzero probability in s. We extend the
notion to sets of mixed strategy profiles in the obvious way. By SCm we denote the variant ofSCin mixed
strategy profiles. A protocol is correct in mixed strategiesiff all the possible behaviors resulting from a
rational (mixed) strategy profile satisfy the goalγ ; formally: Γ,u |=m

SC γ iff dom(SCm(Γ,u)) ⊆ γ when
SCm(Γ,u) 6= /0 andγ = ΣΓ otherwise. The definitions of protocol validity and defendability in mixed
strategies (Γ |=m

SC γ andΓ |=m
SC [D]γ) are analogous. For defendability in mixed strategies under Nash

equilibrium, we have the following, rather pessimistic result.

Theorem 5.1. Let Γ be a finite game frame, andγ an objective in it. Then,Γ,u |=m
NE [N]γ iff γ = Σ.

On the other hand, it turns out thatoptimal Nash equilibriumyields a simple and appealing charac-
teristics ofN-defendable properties. In the following,γ is closed under convex combination of strategies
iff every combination of strategies that appear in some profile in γ again is an element ofγ .

Theorem 5.2. Γ |=m
OptNE [N]γ iff γ =Conv(γ), i.e.,γ is closed under convex combination of strategies.

Corollary 5.3. Γ |=m
OptNE [N]γ iff there exist subsets of individual strategies

χ1 ⊆ Σ1, . . . ,χ|N| ⊆ Σ|N| such thatγ = χ1×·· ·× χ|N|.

That is, security propertyγ is defendable by the grand coalition inΓ iff γ can bedecomposed into
constraints on individual behavior of particular agents.

6 Defendability in Non-Injective Games

Normal game frames are usually defined in the literature asΓ = (N,Σ,Ω,o), whereN,Σ are as before,
Ω is the set of (abstract)outcomesof the game, ando : Σ → Ω maps strategy profiles to outcomes. Our
analysis so far has been based on the standard assumption that o is a bijection. In other words, there
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Alice Bob
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stop ω0 ω0

sign ω1 ω2

Figure 1: Naive contract-signing: from protocol to EF game to NF game

is a 1-1 relationship between joint behaviors of agents and the outcomes of those behaviors. Then, we
can identify outcomes with strategy profiles, and omit the former from the game model. However, the
standard construction of a game model from a protocol assumes the outcomes to berunsof the protocol.
In that case, the assumption doesnot hold; in particular, the mapping is not injective.

Example 6.1. Consider the naive contract signing protocol in Figure 1. Alice sends her signature to
Bob, who responds with his signature. Alice and Bob can stop the protocol at any moment (thereby
deviating from the protocol). If we assume runs of the protocol to be the outcomes, this gives rise to
an Extensive Form game frame, which can be then transformed to an NF game frame by the canonical
construction. Clearly, the mapping between strategy profiles and outcomes is not injective.

In general NF games, utility functions assign utility values tooutcomesrather than strategy profiles.
That is,ui : Ω →R. Moreover, an objective is assumed to select asubset of outcomes. This follows from
the methodological assumption that an outcome encapsulates every relevant aspect of the play that has
occurred. We observe that the definitions in Section 3 can be lifted to the general case by changing the
types ofui andγ accordingly. However, the results in Sections 4–5 cannot belifted that easily. Games
with non-injective outcome functions require a more general treatment, which we present below.

Definition 6.2. Given a game frameΓ, we define thedeviation graph ofΓ (Dev(Γ)) to be the undirected
graph where outcomes fromΓ are vertices, and edges connect outcomes that are obtained from strategy
profiles which differ only in1 individual strategy (thus corresponding to a potential unilateral deviation).

Moreover, for an objectiveγ ⊆ Ω, we will use Devγ(Γ) to denote the subgraph of Dev(Γ) consisting
only of the vertices fromγ and the edges between them.

It is easy to see that the construction ofDev(Γ) andDevγ(Γ) from Γ,γ is straightforward. LetV be a
subset of nodes in a graph. We define theneighborhood of V, denotedNeighb(V), asV together with all
the nodes adjacent toV. We observe thatNeighb(V) “implements” the deviation closure ofV in Dev(Γ).
Moreover,ω does not lie on a strategic knot iff its connected component does not include a cycle. This
leads to the following, more general, characterizations ofdefendability (we omit the proofs due to lack
of space). Again, we assume thatγ is nontrivial, i.e., /06= γ 6= Ω.

Theorem 6.3. γ is defended by the grand coalition inΓ under Nash equilibrium iff:

1. The neighborhood ofγ in in Dev(Γ) covers the whole graph (Neighb(γ) = Ω), and

2. Devγ(Γ) includes at least one connected component with no cycles.

Theorem 6.4. γ is defended by the grand coalition inΓ under optimal Nash equilibrium iff Devγ(Γ)
includes at least one connected component with no cycles.

Theorem 6.5. γ is defended in mixed strategies by the grand coalition inΓ under optimal Nash equilib-
rium iff γ is obtained by a convex combination of strategies.



24 On Defendability of Security Properties

7 Example: The ASW contract-signing protocol

A contract-signing protocol is used by two participants, usually called Alice and Bob, to sign a contract
over an asymmetric medium as the internet. The central security properties arefairness(Alice should
get a signed copy of the contract if and only if Bob gets one),balancedness(there is no point in the
protocol run where Bob alone can decide whether the contractwill be signed or not, i.e., Alice cannot
abort the signing anymore but Bob still can abort) andabuse-freeness(if balance cannot be achieved,
then at least Bob should not be able to prove the fact that he has the above-mentioned strong position
in the current state of the protocol to an outsider). The contract-signing protocolPASW, introduced
in [3], usescommitments, which are legally binding “declarations of intent” by Alice and Bob to sign the
contract. The protocol operates as follows: (1) Alice sendsa commitmentcmA to Bob; (2) Bob sends his
commitmentcmB to Alice; (3) Alice sends the contractscA, digitally signed with her signature, to Bob;
(4) Bob sends the contractscB, signed with his signature, to Alice.

If one of these messages is not sent by the corresponding signer, the other party may contact the TTP:

• If Alice does not receive a commitment from Bob, she can contact the TTP with anabort request,
which instructs the TTP to mark this session of the protocol as aborted;

• If Bob does not receive Alice’s signature, but has her commitment, he can send aresolve request
to the TTP, who then issues areplacement contract(a document that is legally equivalent to the
contract signed by Alice), unless Alice has sent an abort request earlier,

• If Alice does not receive Bob’s signature, but has his commitment, she can send aresolve request
to the TTP as well, which allows her to receive a replacement contract.

It can be shown that the protocol is fair if the TTP is reliable(it will never stop the protocol on its
own). It is also balanced if neither Alice nor Bob can drop or delay messages from the other signer to
the TTP. Let us denote outcomes by sets of agents who have obtained the signature of the other player.
Thus, /0 represents the situation where nobody got a signed contract,{signA} the situation where Alice
obtained Bob’s signature but note vice versa, etc. Applyingthe definitions in Section 3.3, one can show
the following. If SCis eitherNash equilibriumor undominated strategies, we have:

1. PASW |=SC [{Bob}]{ /0,{signB},{signA,signB}},

2. PASW |=SC [{Alice}]{ /0,{signA},{signA,signB}}.

We now consider the case where TTP is not necessarily reliable. If the TTP can stop the protocol
at any time, then the protocol does not guarantee fairness anymore. On the other hand, if Bob wants
the protocol to be fair, then he can ensure fairness by simplysending a signed contract to Alice as soon
as he receives her signature. Clearly, Alice alone (withoutan honest TTP to assist her) cannot achieve
fairness. Hence the game-theoretic security level of the ASW protocol without reliable TTP is the set
{{Bob} ,{TTP}}. This holds for both Nash equilibrium and undominated strategies.

8 Conclusions

We propose a framework for analyzing security protocols (and other interaction protocols), that takes into
account the incentives of agents. In particular, we consider a novel notion ofdefendabilitythat guarantees
that all the runs of the protocol are correct as long as a givensubset of the participants (the “defenders”) is
in favor of the security property. We have obtained some characterization results for defendability under
Nash equilibria and optimal Nash equilibria. In the original paper [9], we also address the computational
complexity of the corresponding decision problems, both inthe generic case and in some special cases.
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In the future, we plan to combine our framework with results for protocol verification using game logics
(such as ATL), especially for those solution concepts that can be expressed in that kind of logics.
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