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We propose extending Alternating-time Temporal Logic (AHly an operatofi C I')¢ to express
thati can distribute its powers to a set of sub-agdnti® a way which satisfies ATL condition
¢ on the strategic ability of the coalitions they may form, sibly together with others agents.
We prove the decidability of model-checking of formulas wié C .)-subformulas have the form
(i1CT1)...(imC m)¢, with no further occurrences ¢fC .) in .

Introduction

The basic co-operation modality of Alternating-time Temgdd.ogics (ATL, [AHK97,[AHKO2]) invites
perceiving agent coalitions as single agents who enjoy dingbined powers of the coalition members.
We investigate an operator to reverse this, by addressm@dhksibility to partition the strategic ability
of a single agent among several sub-agents. We \irliel')¢ to denote that agerntcan partition its
strategic ability among the members of a set of fresh subtafiein a way which satisfieg, a formula
written in terms of the new ageniswho assumé's powers, and the other original agents, exdejfor
example, a purchase scenario with the vendor representsdléspersosPand delivery teanDT can
be described as
((customerSP)<purchase agreement
{vendorC. SRDT) < [SPIO(purchase agreement ((DT, customey) o delivery) > '

The combined powers of all @6 sub-agents are always equali’'®

(aufithe e iCri(@\{iHur)¢
where[i C I'] stands for-(i C I')—. CoalitionsA 2 I' may be weaker than but also have abilities
contributed by agents frodw\ I'. The realizability of schemes such as the example one ggnéepends
on the basic composition of agents’ actions. For instanogyle mechanisms make it always possible
to deny theproper subsets of all substantial strategic ability or makeuse simple majority vote as
indicated by the validity of the formula:

(@A (iNg=GCET) A ~(@yeaicr) A —(pen A (Q)¢.
ACr ACT JA|<|M\A| ACT JA]>[M\A|
Subtracting strategic ability from one agent and transégttiin the form of a virtual sub-agent to another

is a way of implementinglelegation Refinement can be instrumental in expressingatlienability of
the ability in question. E.g.,

{(i)) ounlockA —={(j)) ounlockA (i C i’ key) (—=((i")) o unlockA ((j,key)) o unlock)
——"
j/
states the possibility of givings unlocking ability separate identitkeywhich enables its passage jto
The relevant vocabulary introduced consistkefitself, { j, key} for j keyin-hand and’ for i without
key, respectively.
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Notably we investigate refining and delegating powers andegponsibilities as in, e.gl, [NRO2].
Sub-agents can pursue their own goals. As it becomes cleaw,libey do so by influencing the choice
of actions on behalf of their super-agent with the share @stiper-agents’ power given to them. Unlike
proper delegation as in, e.d., [vdHWW10] ahd [BFD02], whgikers and receivers of control co-exist,
just (i C ") is aboutreplacing iby its sub-agents.

Our main result about ATL witl. C .) in this paper is a model-checking procedure for the subset
in which (. C .) is restricted to occur only in subformulas of the fotmC I'y) ... (im C 'm)@, with no
further occurrences gf C .) in ¢. This is sufficient for the handling of scenarios like therepée one
above, but with refinements affecting more than one primgena

Structure of the paper After brief formal preliminaries on ATL on GCMs, we introdeiour proposed
operator and model-checking algorithm. We conclude byflgri;ommenting on some more related
work, assessing our result and mentioning some work in pssgr

1 Preliminaries

Definition 1 (concurrent game structures and models)A concurrent game structur@CGS) for some
given set of agents = {1,...,N} is a tuple of the formW, (Act : i € X),0) where
W is a non-empty set dftates

Act; is a non-empty set adctions i € Z; given al”’ C Z, Actr stands for[] Act;;
iel
0:W x Acts — W is atransitionfunction.

A concurrent game modéCGM) for X~ and atomic proposition8P is a tuple of the form{W, (Act; :
i €2),0,V) where(W, (Act; : i € X),0) is a CGS forz andV C W x APis a valuation relation.

In the sequel we always assumet;, i € X to be pairwise disjoint.

Below we writear to indicate that € Act- wherell C 2. If a€ Acta andll C A, thenar also stands
for the subvector oé consisting of the actions for the memberd ofGiven disjointl",A C %, we write
ar - bp for ¢ € Actra which is defined by putting; = g; fori € I andc = b fori € A.

Definition 2 (ATL on CGMs) The syntax ofAT L formulasé¢ is given by the BNF

¢, ¢i=LIpl(@=¢)[(Thod |(M)(PUY)|[TT(¢Uy)

where p ranges over atomic propositions ahdanges over finite sets of agents. Satisfaction of ATL
formulas are defined in terms of strategiessthategyfor i € £ in CGM M = (W, (Act : i € ),0,V) is

a function fromW to Act. Given a vector of strategies = (s : i € ') for the members of C Z, the
possible outcomes 6f starting from statev and followingsr is the set of infinite runs

out(w,sr) = {wow!... e W@ wl = wwkr! = o(wk &), &%l ... € Act?, ak = sr(wWP...wK),k < w}.

Assuming a fixedV, we write §- for the set of all vectors of strategies foin M. Satisfaction is defined
on CGMsM, statesv € W and formulasp:
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M,w = L
M.w=p iff V(w,p)
MwE¢ =y iff either M,w = @ orM,w = ¢

M,wk (M)og iff there exists arsr € S s. t.wow?... € out(w,sr) impliesM,w! = ¢
M,w = (M) (¢Uy) iff there exists arr € S s. t. for anyw®w? ... € out(w,s-)

there exists & < ws. t. MW = @,...,M, W< = ¢ andM, WK |=
M,w= [F(¢Uy) iff forevery s € S there exists aPw!... € out(w,s)

andak < ws. . MW = @,... .M, w1 = ¢ andM, WK |=

T, =, V, A and< and the remaining combinations @f)) and[.] with the temporal connectives <
andO are regarded as derived constructs. See, .., [AHKO2h&odéfinitions.

2 Refining Strategic Ability in ATL: ATLc

Definition 3 (I'-to-i homomorphisms of CGMs) Given ~ and AP, ani € ~ and some non-empty set
of agent name§ which is disjoint withX, consider CGMIM = (W, (Act; : j € Z),0,V) and M’ =
(W', (Act; : j € ¥),0,V’) for AP, andZ andZ’ = (2\ {i}) UT, respectively. A mapping: 'l_ll'Aij —
je
Act is al-to-i homomorphism from Mo M, if
W' =W, V' =V andAct; = Act; for j € \ {i};
rangeh = Act ando’(w,a) = o(w, as\ iy - h(ar)) for all w € W and alla € Acts,.

Informally, if M is al -to-i homomorphism oM, then the strategic ability ofin M is distributed among
the new agentge I in M’. For each actiom; of i in M there exists a vector of actioas for the members

of I in M’ such that(ar) = a. Together with the correspondence between the outcomé&dneo and

o of the two models, this means that the combined powers of #malmers of” in M’ are equal to those

of i in M, but proper sub-coalitions éf may be less powerful. Next we introduce the operator which is
central to this work. LeM, i andl" be as above.

Definition 4 (refinement operator) Let ¢ be written in terms of=\ {i}) Ul'. Then

MW (i CT)¢
iff there exist anM’ for ¥’ andAP such thatM’,w |= ¢, and al -to-i homomorphism fronM’ to M.

The occurrences of € ' in (i C I')¢ areboundin the usual sense. Informallyi C )¢ means that
can distribute its powers among the members eb that¢ holds in about the new set of agents. Its dual
[i CI'¢ means thap holds regardless of how the powersi @ire distributed among the agents frém

3 Model-checking(. C .)*-Flat ATL -

(. C.)*-flat ATL is the subset of ATE in which (. C .)-subformulas have the form

<ilgr1>---<imgrm>¢ (1)
where@ has no further occurrences ofC .). Note that only occurrences ¢fC .) of the same polarity
can be chained. E.g., # andy are (. C .)-free, then((i)O((IC M (T A AKC Y]l C Z]Y) is
(.C.)*flat, but[i CT](j T A)¢ and(i C ) ({(k))<(j E A)g are not. Our algorithm reduces the model-
checking problem to satisfiability in thé)) o-subset of ATL, or, equivalently, in Coalition Logic [Paip2

which is known to be decidable. We first do the casenct 1 and¢ being a boolean combination of
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((.))o-formulas with boolean combinations of atomic propostias the arguments {f))o, in full detail.
Then we explain how the technique extends to arbitnargind, finally, however inefficiently, to formulas
of the form [1) with an(. C .)-free ¢ in which the use of the ATL connectives is unrestricted.

The case ofm=1 Consider some formulé C I')¢ with ¢ restricted as above. Let CGM be as
above and consider a CGM' = (W, (Act :i € ¥'),0,V), ¥ =%\ {i}UT, and al -to- homomorphism
h from M’ to M. Let ((A)) o x be a subformula of. For M’ ;w |= ((A)) o x to hold, there should be a
vector of actionsay such that, for anyor\a, aar -h(aanr -br\a) givesA\T U {i} a strategy to achieve
ox in M. For a fixedan\r this means

h(aanr -br\a) € {a € Act : Ves\ (augipM, 0(W, aa\r - & - Cx\ (augiy) F X} 2
Henceforth we writeALaA\r,W.X for the subset oAct; in (2).

Now consider a CGMM = (W, (Act; : j € I'),0,V) for I' as the set of agent&P = Act as the set
of atomic propositions and/ = Act U {wP°} as the set of states. L&(w,a) be equivalent tav = a for
a c Act, thus enabling reference to each individual action dfhe intended meaning of the statedvbf
from Act; is to represent the possible choices’sfactions by the members 6f w0 is a distinguished
reference state. Lefctj = Act; for j € I, and leto(w?,a) = h(a) for all a € Actr. Then

MW = (@)o \/ an A (@)o-(arnb)a A (M)ea ®3)

acAct; a,beAct ,a£b acAct;
since, due to the surjectivity &f, each ofi’'s actions can be enforced Iby which is the grand coalition
in M.
Let the translation replace subformulas d@f of the form ((A)) o x by their corresponding
\V/ anm)o \/  a.

an\r €ACH\ - aieAi,aA\r,w,x
ThenM,w = (i C )¢ is equivalent taVl,w = t(¢).

Conversely, let a moddfl = (W, (Act; : j € ),0,V) exist such thabl,wP |= t(¢) and [3) hold. Then
we can define akl’ and al -to-i homomorphisnh to withnessM,w = (i C M) ¢ as follows. We puAct’j =
Actj, j € T. For everyar € Actr, we defineh(ar) as the uniquey € Act such thatM,o(wP, ar) = &.
The identityd (w,a) = o(wP, h(a)) determines’. Now a direct check shows thit,w = (i C ') ¢.

Hence, the existence of a moddl which satisfiex(¢) and [3) at some state is equivalent to the
satisfaction ofp at the given statev of the givenM. Since satisfiability of formulas such &%) and [3)
is solvable, this entails the solvability of model-checkinC .)-formulas.

The case oin>1 To keep notation simple, let= 2, i.e., consider formulas of the fortd C 1) (2 C
2)¢. Biggermare handled analogously. We first revise conditldn (2), wepect to formulagA)) o
X € Subf(¢) inwhichACZY, ¥ =%\ {12} ulr;ulr,. Them= 2-form of (2) is about sets gfairs of
actions, for 1 and 2, respectively. Given a fis&@dr,r,), () assumes the form

(hi(@anr, - brpa), h2(@anr, -br\a)) €
{(a1,@2) € Acty x Acty : VCz\ (aug1,2)M, O(W, @y - @2 - 8\ (ryur,) - Cs\ (aufL2}) = X}
We denote the subset 8kt; x Act, above byAla2~aA\(l'1ul' LW The ability of A to achievey in one step
from w is equivalent to the ability of each &fN T, ancfAﬂ I, to enforce actiongs; anda, on behalf
of 1 and 2, respectively, so théd;,ay) € A1.2,aA\<r1ur2>.w x for some appopriaten r,ur,). Therefore we
definet(((A)) o x) as
\/ \/ <<Aﬁ r1>>O \/ al/\(<Aﬂ r2>>0 \/ .

aA\(rlurz)EACtA\<r1ur2) AlXAngl‘zvaA\<r1ur2)“"’vX A A,



D. P. Guelev 61

Formulas obtained by th@ C I'1)(2 C I'p)-form of t are boolean combinations of formulas of the form
({A\)) o x whereA C 'y and is a disjunction of members @cty, for k being either 1 or 2. In the single
(.C.) case we are interested in the existence of a satisfying n\ddet t(¢) as the transitin function
of such a model can be used to determine the homomorghismneed. For the case of= 2, the part
of M is played by a pair of modeMly = (Act U {wox}, (Ack : j € [k}, 0k, Vi) to represent the ability
f
=W,

of coalitions withingl k to enforce actions with s:)me desired effect on behalf of tigdn=1,2. We are
interested in the satisfiability aftranslations at pairs of such models in the following ser@@ensider
a ((A))ox € Subf(t(¢)) with eitherA C "1 and x a boolean combination of atomic propositions from
AP; = Acty, or A C I'; andx a boolean combination of atomic propositions fréi, = Act,. We define
M1, M2, W 1,Wo2 = ((A)) 0 x asMy, Wok = ((A)) o x for @ being ((A)) o x with A C 'y and x written in
terms ofAct, k = 1,2. The clauses fat. and for formulas built usings- are as usual.

Satisfiability at pair of models of the special type of foramibbove straightforwardly reduces to the
usual satisfiability at single models ont@) is given a disjunctive normal form: &¢) of this form
is satisfiable iff some of its disjunctive members is, andhedisjunctive member can be viewed as a
conjunction of two formulasglk, Y being a conjunction of formulas of the forfA)) o x with A C ',
and x written in terms ofAPy, k = 1,2. The satisfiability ofyy A g, is obviously equivalent to the
satisfiability of bothy;, andy, in the usual sense, at a model of the typ&/pf

Formulas (T) with arbitrary (. C .)-free ¢ Removing the restriction ogs to be in the flat(.))o-
subset of ATL makes it necessary to synthesisélaand the respective with conditions such as (the
many-dimensional form of] {2) associated with not just oneal the statesv of M. To enable this, we
first elimitate the use of.U.) in ¢ using thatW| is known(] Assuming thatp is (.U.)-free, and that
m= 1 again, for the sake of simplicity, we consider assignménts Subf ¢) — 2. We are interested
in the existence of an assignmenf such that aM’ that admits & -to-i homomorphisnh to M exists
in which ¢ holds at the given state and{w' : M’ W = ¢/} = ||| for all ¢ € Subf(¢). For ¢ being
somep € AP the latter condition holds iff p|| is as detemined from the valuatidhof M. For ¢ being
either L, or with = as the main connective, or of the forf)) o ' whereANT =0, ||| is similarly
unambiguously determined by the identities|| = 0, ||/ = ¢"|| = ||¢'|| = ||¢"| and|[{{A)) o ¢'|| =
{W eW:M,wW = ((A)) o/ }. The latter set can be computed using just ATL model-checkgimilarly,
[{A) o /|| = {W e W : MW = (((A\T)U{i})) o'} in caseA D . Therefore every acceptable
assignment is determined unambiguously as soon as itssvalife) o || for ((A)) o ¢ € Subf(¢) such
that 0# ANT # T are specified, and the latter values satisfy the inclusions

{WeW:MW = ((A\T)) oy} C[[{{A) o] C{W eW: MW = ((A\F)U{i}) oy}
Assuming an assignmeijt|| of the above form, the existence of the requictdndh which link M’ to
M depends on the satisfiability of the conjunction

A A \/ @@anmye \/  a

<<A>%;"Aﬁ§“;rf<¢> WeE| (D)ol amr ACh\r AEA ap iyl

at a model of the type df already introduced above. As expected, h&(gA\erwH = {a € Act :
VCs\ (auiy) (O(W, an\r - & - Cx\ (augi})) € X)}-

Obviously the algorithm implied by the above argument isyambod to conclude decidability in
principle because of the forbidding number|ofs to be considered.

1This can cause aB(|W|)-blowup in the number of the subformulas of the gidermaking it clear that we are after nothing
more than decidability in principle.
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4 Concluding Remarks

Related Work There is an analogy between ourC .) and the refinement quantifier &fefinement
Modal Logic[BvDF"12] and its extensions to special classes of multimodal ésafflFD12]. For-
mal studies focusing on controlling the decisions of setéfiested delegates can be found_ in [KW12,
EPW13]. A notion ofrefinementf alternating transition systems, ATL'’s original type obdels from
[AHK97], allowing, unlike [AHKV98], the powers of differensetsof agents to be related, was studied
in [RSO01]. The approach of [RSD1] suggests considering aaefent modality of the formA C IM)
with |A] > 1. The authors of [RS01] stopped short of extending Aphtaxby such an operator. Our
model-checking algorithm extends to the case of non-diogleoalition-to-coalition refinement as in our
CGM-based setting in a straightforward way. Abstractiamteques with the agents being jlkstowers
were studied in([EDQ7, CDLR09]. Abstraction involving ovand under-approximation of coalitions
to contain model size was proposedlin [KL11]. A formalizatiof teaming sub-agents under a sched-
uler as turn-based simulation was proposed_ in [GF10, GR34&delling varying the considered set of
agents is addressed modular interpreted systenidA07,[JMS13]. Distinctively, our setting is about
varying the set of agents in a system by just redistributitngtegic ability, with the overall activities
which the system can accommodate unchanged. In CGMs, et effactions is defined by means of
the transition function. Considering actions which are ptate with a description of their effect and an
additional parameter to the co-operation modality measpezify the availability of actions to agents
as in [HLW13,[Her14] enables specifying delegation too, Byying availability of actions to express
their changing hands with their effect on system state beamgferred too. This form of delegation is,
broadly speaking, complementary to our work as we propaagoreng about migrating the ability to
enforce temporal conditions, asginthesizingmplementations in terms of actions through satisfiability
checking.

Some Work in Progress (. C .) admits a definition with no reference feto-i homomorphisms, which
enables translating thg.))o-subset of ATl into a promising looking subset of many-sorted predicate
logic or, similarly, into ((.))o-subsets of explicit strategy languages such as strateggsi¢CHPOY,
MMV10]. Exploring the tractability of the translated fortas is one way of addressing satisfiability in
ATLc, which is yet to be done. The translation gives rise to a caongpaoperator, which holds some
promise as the means for indirect axiomatization. Reggrdirect axiomatization, for any fixadandr",
(iCT)is aKD- and, with some adjustment to compensate for switchingeddbal agent vocabulary
Z\{itur, also aT-modality. We have also established some non-trivial $jgebasic equivalences
leading to a normal form, and a conventional-looking rukeifitroducing negative occurrences(ot .),

but still lack sufficiently strong axioms for the positivecocrences.
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