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We propose extending Alternating-time Temporal Logic (ATL) by an operator〈i ⊑ Γ〉ϕ to express
that i can distribute its powers to a set of sub-agentsΓ in a way which satisfies ATL condition
ϕ on the strategic ability of the coalitions they may form, possibly together with others agents.
We prove the decidability of model-checking of formulas whose〈. ⊑ .〉-subformulas have the form
〈i1 ⊑ Γ1〉 . . . 〈im ⊑ Γm〉ϕ , with no further occurrences of〈.⊑ .〉 in ϕ .

Introduction

The basic co-operation modality of Alternating-time Temporal Logics (ATL, [AHK97, AHK02]) invites
perceiving agent coalitions as single agents who enjoy the combined powers of the coalition members.
We investigate an operator to reverse this, by addressing the possibility to partition the strategic ability
of a single agent among several sub-agents. We write〈i ⊑ Γ〉ϕ to denote that agenti can partition its
strategic ability among the members of a set of fresh sub-agentsΓ in a way which satisfiesϕ , a formula
written in terms of the new agentsΓ who assumei’s powers, and the other original agents, excepti. For
example, a purchase scenario with the vendor represented bysalespersonSPand delivery teamDT can
be described as

〈vendor⊑ SP,DT〉

(
〈〈customer,SP〉〉✸purchase agreement∧
[[SP]]✷(purchase agreement⇒ 〈〈DT,customer〉〉 ◦delivery)

)

.

The combined powers of all ofi’s sub-agents are always equal toi’s:

〈〈∆∪{i}〉〉ϕ ⇔ [i ⊑ Γ]〈〈(∆\{i})∪Γ〉〉ϕ
where [i ⊑ Γ] stands for¬〈i ⊑ Γ〉¬. Coalitions∆ 6⊇ Γ may be weaker thani, but also have abilities
contributed by agents from∆\Γ. The realizability of schemes such as the example one generally depends
on the basic composition of agents’ actions. For instance, simple mechanisms make it always possible
to deny theproper subsets ofΓ all substantial strategic ability or makeΓ use simple majority vote as
indicated by the validity of the formula:

¬〈〈 /0〉〉ϕ ∧〈〈i〉〉ϕ ⇒ 〈i ⊑ Γ〉
∧

∆(Γ
¬〈〈∆〉〉ϕ ∧〈i ⊑ Γ〉

∧

∆⊂Γ,|∆|≤|Γ\∆|
¬〈〈∆〉〉ϕ ∧

∧

∆⊆Γ,|∆|>|Γ\∆|
〈〈∆〉〉ϕ .

Subtracting strategic ability from one agent and transfering it in the form of a virtual sub-agent to another
is a way of implementingdelegation. Refinement can be instrumental in expressing thealienability of
the ability in question. E.g.,

〈〈i〉〉 ◦unlock∧¬〈〈 j〉〉 ◦unlock∧〈i ⊑ i′,key〉(¬〈〈i′〉〉 ◦unlock∧〈〈 j,key
︸ ︷︷ ︸

j ′

〉〉 ◦unlock)

states the possibility of givingi’s unlocking ability separate identitykeywhich enables its passage toj.
The relevant vocabulary introduced consists ofkey itself, { j,key} for j key-in-hand andi′ for i without
key, respectively.
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Notably we investigate refining and delegating powers and not responsibilities as in, e.g., [NR02].
Sub-agents can pursue their own goals. As it becomes clear below, they do so by influencing the choice
of actions on behalf of their super-agent with the share of the super-agents’ power given to them. Unlike
proper delegation as in, e.g., [vdHWW10] and [BFD02], wheregivers and receivers of control co-exist,
just 〈i ⊑ Γ〉 is aboutreplacing iby its sub-agentsΓ.

Our main result about ATL with〈. ⊑ .〉 in this paper is a model-checking procedure for the subset
in which 〈. ⊑ .〉 is restricted to occur only in subformulas of the form〈i1 ⊑ Γ1〉 . . . 〈im ⊑ Γm〉ϕ , with no
further occurrences of〈. ⊑ .〉 in ϕ . This is sufficient for the handling of scenarios like the example one
above, but with refinements affecting more than one primary agent.

Structure of the paper After brief formal preliminaries on ATL on GCMs, we introduce our proposed
operator and model-checking algorithm. We conclude by briefly commenting on some more related
work, assessing our result and mentioning some work in progress.

1 Preliminaries

Definition 1 (concurrent game structures and models)A concurrent game structure(CGS) for some
given set of agentsΣ = {1, . . . ,N} is a tuple of the form〈W,〈Acti : i ∈ Σ〉,o〉 where

W is a non-empty set ofstates;

Acti is a non-empty set ofactions, i ∈ Σ; given aΓ ⊆ Σ, ActΓ stands for∏
i∈Γ

Acti ;

o : W×ActΣ →W is atransition function.

A concurrent game model(CGM) for Σ and atomic propositionsAP is a tuple of the form〈W,〈Acti :
i ∈ Σ〉,o,V〉 where〈W,〈Acti : i ∈ Σ〉,o〉 is a CGS forΣ andV ⊆W×AP is a valuation relation.

In the sequel we always assumeActi, i ∈ Σ to be pairwise disjoint.

Below we writeaΓ to indicate thata∈ ActΓ whereΓ ⊆ Σ. If a∈ Act∆ andΓ ⊆ ∆, thenaΓ also stands
for the subvector ofa consisting of the actions for the members ofΓ. Given disjointΓ,∆ ⊆ Σ, we write
aΓ ·b∆ for c∈ ActΓ∪∆ which is defined by puttingci = ai for i ∈ Γ andci = bi for i ∈ ∆.

Definition 2 (ATL on CGMs) The syntax ofATL formulasϕ is given by the BNF

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | 〈〈Γ〉〉 ◦ϕ | 〈〈Γ〉〉(ϕUψ) | [[Γ]](ϕUψ)

where p ranges over atomic propositions andΓ ranges over finite sets of agents. Satisfaction of ATL
formulas are defined in terms of strategies. Astrategyfor i ∈ Σ in CGM M = 〈W,〈Acti : i ∈ Σ〉,o,V〉 is
a function fromW+ to Acti. Given a vector of strategiessΓ = 〈si : i ∈ Γ〉 for the members ofΓ ⊆ Σ, the
possible outcomes ofΓ starting from statew and followingsΓ is the set of infinite runs

out(w,sΓ) = {w0w1 . . . ∈Wω : w0 = w,wk+1 = o(wk,ak),a0a1 . . . ∈ ActωΣ , ak
Γ = sΓ(w0 . . .wk),k< ω}.

Assuming a fixedM, we writeSΓ for the set of all vectors of strategies forΓ in M. Satisfaction is defined
on CGMsM, statesw∈W and formulasϕ :
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M,w 6|=⊥
M,w |= p iff V(w, p)
M,w |= ϕ ⇒ ψ iff either M,w |= ψ or M,w 6|= ϕ
M,w |= 〈〈Γ〉〉 ◦ϕ iff there exists ansΓ ∈ SΓ s. t. w0w1 . . . ∈ out(w,sΓ) impliesM,w1 |= ϕ
M,w |= 〈〈Γ〉〉(ϕUψ) iff there exists ansΓ ∈ SΓ s. t. for anyw0w1 . . . ∈ out(w,sΓ)

there exists ak< ω s. t. M,w0 |= ϕ , . . . ,M,wk−1 |= ϕ andM,wk |= ψ
M,w |= [[Γ]](ϕUψ) iff for every sΓ ∈ SΓ there exists aw0w1 . . . ∈ out(w,sΓ)

and ak< ω s. t. M,w0 |= ϕ , . . . ,M,wk−1 |= ϕ andM,wk |= ψ
⊤, ¬, ∨, ∧ and⇔ and the remaining combinations of〈〈.〉〉 and[[.]] with the temporal connectives◦, ✸
and✷ are regarded as derived constructs. See, e.g., [AHK02] for the definitions.

2 Refining Strategic Ability in ATL : ATL⊑

Definition 3 (Γ-to-i homomorphisms of CGMs) Given Σ and AP, an i ∈ Σ and some non-empty set
of agent namesΓ which is disjoint withΣ, consider CGMsM = 〈W,〈Actj : j ∈ Σ〉,o,V〉 and M′ =
〈W′,〈Act′j : j ∈ Σ′〉,o′,V ′〉 for AP, andΣ andΣ′ = (Σ\{i})∪Γ, respectively. A mappingh : ∏

j∈Γ
Act′j →

Acti is aΓ-to-i homomorphism from M′ to M, if
W′ =W, V ′ =V andActj = Act′j for j ∈ Σ\{i};
rangeh= Acti ando′(w,a) = o(w,aΣ\{i} ·h(aΓ)) for all w∈W and alla∈ Act′Σ′ .

Informally, if M is aΓ-to-i homomorphism ofM, then the strategic ability ofi in M is distributed among
the new agentsj ∈ Γ in M′. For each actionai of i in M there exists a vector of actionsaΓ for the members
of Γ in M′ such thath(aΓ) = ai . Together with the correspondence between the outcome functionso and
o′ of the two models, this means that the combined powers of the members ofΓ in M′ are equal to those
of i in M, but proper sub-coalitions ofΓ may be less powerful. Next we introduce the operator which is
central to this work. LetM, i andΓ be as above.

Definition 4 (refinement operator) Let ϕ be written in terms of(Σ\{i})∪Γ. Then

M,w |= 〈i ⊑ Γ〉ϕ

iff there exist anM′ for Σ′ andAPsuch thatM′,w |= ϕ , and aΓ-to-i homomorphism fromM′ to M.

The occurrences ofj ∈ Γ in 〈i ⊑ Γ〉ϕ areboundin the usual sense. Informally,〈i ⊑ Γ〉ϕ means thati
can distribute its powers among the members ofΓ so thatϕ holds in about the new set of agents. Its dual
[i ⊑ Γ]ϕ means thatϕ holds regardless of how the powers ofi are distributed among the agents fromΓ.

3 Model-checking〈.⊑ .〉∗-Flat ATL⊑

〈.⊑ .〉∗-flat ATL⊑ is the subset of ATL⊑ in which 〈.⊑ .〉-subformulas have the form

〈i1 ⊑ Γ1〉 . . . 〈im ⊑ Γm〉ϕ (1)

whereϕ has no further occurrences of〈.⊑ .〉. Note that only occurrences of〈.⊑ .〉 of the same polarity
can be chained. E.g., ifϕ and ψ are 〈. ⊑ .〉-free, then〈〈i〉〉✸(〈i ⊑ Γ〉〈 j ⊑ ∆〉ϕ ∧ [k ⊑ ϒ][l ⊑ Ξ]ψ) is
〈. ⊑ .〉∗-flat, but [i ⊑ Γ]〈 j ⊑ ∆〉ϕ and〈i ⊑ Γ〉〈〈k〉〉✸〈 j ⊑ ∆〉ϕ are not. Our algorithm reduces the model-
checking problem to satisfiability in the〈〈.〉〉◦-subset of ATL, or, equivalently, in Coalition Logic [Pau02],
which is known to be decidable. We first do the case ofm= 1 andϕ being a boolean combination of
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〈〈.〉〉◦-formulas with boolean combinations of atomic propositions as the arguments of〈〈.〉〉◦, in full detail.
Then we explain how the technique extends to arbitrarym, and, finally, however inefficiently, to formulas
of the form (1) with an〈.⊑ .〉-freeϕ in which the use of the ATL connectives is unrestricted.

The case ofm= 1 Consider some formula〈i ⊑ Γ〉ϕ with ϕ restricted as above. Let CGMM be as
above and consider a CGMM′ = 〈W,〈Act′i : i ∈ Σ′〉,o′,V〉, Σ′ = Σ\{i}∪Γ, and aΓ-to-i homomorphism
h from M′ to M. Let 〈〈∆〉〉 ◦ χ be a subformula ofϕ . For M′,w |= 〈〈∆〉〉 ◦ χ to hold, there should be a
vector of actionsa∆ such that, for anybΓ\∆, a∆\Γ ·h(a∆∩Γ ·bΓ\∆) gives∆ \Γ∪{i} a strategy to achieve
◦χ in M. For a fixeda∆\Γ this means

h(a∆∩Γ ·bΓ\∆) ∈ {ai ∈ Acti : ∀cΣ\(∆∪{i})M,o(w,a∆\Γ ·ai ·cΣ\(∆∪{i})) |= χ} (2)

Henceforth we writeAi,a∆\Γ,w,χ for the subset ofActi in (2).

Now consider a CGMM = 〈W,〈Actj : j ∈ Γ〉,o,V〉 for Γ as the set of agents,AP= Acti as the set
of atomic propositions andW = Acti ∪{w0} as the set of states. LetV(w,a) be equivalent tow= a for
a∈ Acti , thus enabling reference to each individual action ofi. The intended meaning of the states ofM
from Acti is to represent the possible choices ofi’s actions by the members ofΓ; w0 is a distinguished
reference state. LetActj = Act′j for j ∈ Γ, and leto(w0,a) = h(a) for all a∈ ActΓ. Then

M,w0 |= 〈〈 /0〉〉 ◦
∨

a∈Acti

a∧
∧

a,b∈Acti ,a6=b

〈〈 /0〉〉 ◦¬(a∧b)∧
∧

a∈Acti

〈〈Γ〉〉 ◦a, (3)

since, due to the surjectivity ofh, each ofi’s actions can be enforced byΓ, which is the grand coalition
in M.

Let the translationt replace subformulas ofϕ of the form〈〈∆〉〉 ◦χ by their corresponding
∨

a∆\Γ∈Act∆\Γ

〈〈∆∩Γ〉〉 ◦
∨

ai∈Ai,a∆\Γ,w,χ

ai .

ThenM,w |= 〈i ⊑ Γ〉ϕ is equivalent toM,w0 |= t(ϕ).
Conversely, let a modelM = 〈W,〈Actj : j ∈ Γ〉,o,V〉 exist such thatM,w0 |= t(ϕ) and (3) hold. Then

we can define anM′ and aΓ-to-i homomorphismh to witnessM,w |= 〈i ⊑ Γ〉ϕ as follows. We putAct′j =
Actj , j ∈ Γ. For everyaΓ ∈ ActΓ, we defineh(aΓ) as the uniqueai ∈ Acti such thatM,o(w0,aΓ) |= ai .
The identityo′(w,a) = o(w0,h(a)) determineso′. Now a direct check shows thatM,w |= 〈i ⊑ Γ〉ϕ .

Hence, the existence of a modelM which satisfiest(ϕ) and (3) at some state is equivalent to the
satisfaction ofϕ at the given statew of the givenM. Since satisfiability of formulas such ast(ϕ) and (3)
is solvable, this entails the solvability of model-checking 〈.⊑ .〉-formulas.

The case ofm> 1 To keep notation simple, letm= 2, i.e., consider formulas of the form〈1⊑ Γ1〉〈2⊑
Γ2〉ϕ . Biggerm are handled analogously. We first revise condition (2), withrespect to formulas〈〈∆〉〉 ◦
χ ∈ Subf(ϕ) in which ∆ ⊆ Σ′, Σ′ = Σ\{1,2}∪Γ1 ∪Γ2. Them= 2-form of (2) is about sets ofpairs of
actions, for 1 and 2, respectively. Given a fixeda∆\(Γ1∪Γ2), (2) assumes the form

〈h1(a∆∩Γ1 ·bΓ1\∆),h2(a∆∩Γ2 ·bΓ2\∆)〉 ∈

{〈a1,a2〉 ∈ Act1×Act2 : ∀cΣ\(∆∪{1,2})M,o(w,a1 ·a2 ·a∆\(Γ1∪Γ2) ·cΣ\(∆∪{1,2}) |= χ}
We denote the subset ofAct1×Act2 above byA1,2,a∆\(Γ1∪Γ2)

,w,χ . The ability of∆ to achieveχ in one step
from w is equivalent to the ability of each of∆∩Γ1 and∆∩Γ2 to enforce actionsa1 anda2 on behalf
of 1 and 2, respectively, so that〈a1,a2〉 ∈ A1,2,a∆\(Γ1∪Γ2)

,w,χ for some appopriatea∆\(Γ1∪Γ2). Therefore we
definet(〈〈∆〉〉 ◦χ) as

∨

a∆\(Γ1∪Γ2)
∈Act∆\(Γ1∪Γ2)

∨

A1×A2⊆A1,2,a∆\(Γ1∪Γ2)
,w,χ

〈〈∆∩Γ1〉〉 ◦
∨

a1∈A1

a1∧〈〈∆∩Γ2〉〉 ◦
∨

a2∈A2

a2.
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Formulas obtained by the〈1⊑ Γ1〉〈2⊑ Γ2〉-form of t are boolean combinations of formulas of the form
〈〈∆〉〉 ◦χ where∆ ⊆ Γk andχ is a disjunction of members ofActk, for k being either 1 or 2. In the single
〈.⊑ .〉 case we are interested in the existence of a satisfying modelM for t(ϕ) as the transitin functiono
of such a model can be used to determine the homomorphismh we need. For the case ofm= 2, the part
of M is played by a pair of modelsMk = 〈Actk∪{w0,k}

︸ ︷︷ ︸

=Wk

,〈Actk, j : j ∈ Γk〉,ok,Vk〉 to represent the ability

of coalitions withingΓk to enforce actions with some desired effect on behalf of agent k, k= 1,2. We are
interested in the satisfiability oft-translations at pairs of such models in the following sense. Consider
a 〈〈∆〉〉 ◦ χ ∈ Subf(t(ϕ)) with either∆ ⊆ Γ1 andχ a boolean combination of atomic propositions from
AP1 = Act1, or ∆ ⊆ Γ2 andχ a boolean combination of atomic propositions fromAP2 = Act2. We define
M1,M2,w0,1,w0,2 |= 〈〈∆〉〉 ◦χ asMk,w0,k |= 〈〈∆〉〉 ◦χ for ψ being〈〈∆〉〉 ◦χ with ∆ ⊆ Γk andχ written in
terms ofActk, k= 1,2. The clauses for⊥ and for formulas built using⇒ are as usual.

Satisfiability at pair of models of the special type of formulas above straightforwardly reduces to the
usual satisfiability at single models oncet(ϕ) is given a disjunctive normal form: at(ϕ) of this form
is satisfiable iff some of its disjunctive members is, and each disjunctive member can be viewed as a
conjunction of two formulasψk, ψk being a conjunction of formulas of the form〈〈∆〉〉 ◦ χ with ∆ ⊆ Γk

and χ written in terms ofAPk, k = 1,2. The satisfiability ofψ1 ∧ψ2 is obviously equivalent to the
satisfiability of bothψ1 andψ2 in the usual sense, at a model of the type ofMk.

Formulas (1) with arbitrary 〈. ⊑ .〉-free ϕ Removing the restriction onϕs to be in the flat〈〈.〉〉◦-
subset of ATL makes it necessary to synthesise anM′ and the respectiveh with conditions such as (the
many-dimensional form of) (2) associated with not just one but all the statesw of M. To enable this, we
first elimitate the use of(.U.) in ϕ using that|W| is known.1 Assuming thatϕ is (.U.)-free, and that
m= 1 again, for the sake of simplicity, we consider assignments‖.‖ : Subf(ϕ)→ 2W. We are interested
in the existence of an assignment‖.‖ such that anM′ that admits aΓ-to-i homomorphismh to M exists
in which ϕ holds at the given statew and{w′ : M′,w′ |= ψ} = ‖ψ‖ for all ψ ∈ Subf(ϕ). For ψ being
somep∈ AP the latter condition holds iff‖p‖ is as detemined from the valuationV of M. For ψ being
either⊥, or with ⇒ as the main connective, or of the form〈〈∆〉〉 ◦ψ ′ where∆∩Γ = /0, ‖ψ‖ is similarly
unambiguously determined by the identities‖⊥‖ = /0, ‖ψ ′ ⇒ ψ ′′‖ = ‖ψ ′‖ ⇒ ‖ψ ′′‖ and‖〈〈∆〉〉 ◦ψ ′‖ =
{w′ ∈W : M,w′ |= 〈〈∆〉〉◦ψ ′}. The latter set can be computed using just ATL model-checking. Similarly,
‖〈〈∆〉〉 ◦ ψ ′‖ = {w′ ∈ W : M,w′ |= 〈〈(∆ \ Γ)∪ {i}〉〉 ◦ψ ′} in case∆ ⊇ Γ. Therefore every acceptable
assignment is determined unambiguously as soon as its values ‖〈〈∆〉〉 ◦ψ‖ for 〈〈∆〉〉 ◦ψ ∈ Subf(ϕ) such
that /0 6= ∆∩Γ 6= Γ are specified, and the latter values satisfy the inclusions

{w′ ∈W : M,w′ |= 〈〈(∆\Γ)〉〉 ◦ψ ′} ⊆ ‖〈〈∆〉〉 ◦ψ‖ ⊆ {w′ ∈W : M,w′ |= 〈〈(∆\Γ)∪{i}〉〉 ◦ψ ′}.

Assuming an assignment‖.‖ of the above form, the existence of the requiredo′ andh which link M′ to
M depends on the satisfiability of the conjunction

∧

〈〈∆〉〉◦ψ∈Subf(ϕ)
/0 6=∆∩Γ6=Γ

∧

w′∈‖〈〈∆〉〉◦ψ‖

∨

a∆\Γ∈Act∆\Γ

〈〈∆∩Γ〉〉 ◦
∨

ai∈Ai,a∆\Γ,w,‖ψ‖

ai

at a model of the type ofM already introduced above. As expected, hereAi,a∆\Γ,w,‖ψ‖ = {ai ∈ Acti :
∀cΣ\(∆∪{i})(o(w,a∆\Γ ·ai ·cΣ\(∆∪{i})) ∈ X)}.

Obviously the algorithm implied by the above argument is only good to conclude decidability in
principle because of the forbidding number of‖.‖s to be considered.

1This can cause anO(|W|)-blowup in the number of the subformulas of the givenϕ, making it clear that we are after nothing
more than decidability in principle.
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4 Concluding Remarks

Related Work There is an analogy between our〈. ⊑ .〉 and the refinement quantifier ofRefinement
Modal Logic [BvDF+12] and its extensions to special classes of multimodal frames [HFD12]. For-
mal studies focusing on controlling the decisions of self-interested delegates can be found in [KW12,
EPW13]. A notion ofrefinementof alternating transition systems, ATL’s original type of models from
[AHK97], allowing, unlike [AHKV98], the powers of different setsof agents to be related, was studied
in [RS01]. The approach of [RS01] suggests considering a refinement modality of the form〈∆ ⊑ Γ〉
with |∆| ≥ 1. The authors of [RS01] stopped short of extending ATLsyntaxby such an operator. Our
model-checking algorithm extends to the case of non-singleton coalition-to-coalition refinement as in our
CGM-based setting in a straightforward way. Abstraction techniques with the agents being justknowers
were studied in [ED07, CDLR09]. Abstraction involving over- and under-approximation of coalitions
to contain model size was proposed in [KL11]. A formalization of teaming sub-agents under a sched-
uler as turn-based simulation was proposed in [GF10, GPS13]. Modelling varying the considered set of
agents is addressed inmodular interpreted systems[JÅ07, JMS13]. Distinctively, our setting is about
varying the set of agents in a system by just redistributing strategic ability, with the overall activities
which the system can accommodate unchanged. In CGMs, the effect of actions is defined by means of
the transition function. Considering actions which are complete with a description of their effect and an
additional parameter to the co-operation modality meant tospecify the availability of actions to agents
as in [HLW13, Her14] enables specifying delegation too, by varying availability of actions to express
their changing hands with their effect on system state beingtransferred too. This form of delegation is,
broadly speaking, complementary to our work as we propose reasoning about migrating the ability to
enforce temporal conditions, andsynthesizingimplementations in terms of actions through satisfiability
checking.

Some Work in Progress 〈.⊑ .〉 admits a definition with no reference toΓ-to-i homomorphisms, which
enables translating the〈〈.〉〉◦-subset of ATL⊑ into a promising looking subset of many-sorted predicate
logic or, similarly, into 〈〈.〉〉◦-subsets of explicit strategy languages such as strategy logics [CHP07,
MMV10]. Exploring the tractability of the translated formulas is one way of addressing satisfiability in
ATL⊑, which is yet to be done. The translation gives rise to a companion operator, which holds some
promise as the means for indirect axiomatization. Regarding direct axiomatization, for any fixedi andΓ,
〈i ⊑ Γ〉 is aKD - and, with some adjustment to compensate for switching to the local agent vocabulary
Σ \ {i} ∪ Γ, also aT-modality. We have also established some non-trivial specific basic equivalences
leading to a normal form, and a conventional-looking rule for introducing negative occurrences of〈.⊑ .〉,
but still lack sufficiently strong axioms for the positive occurrences.
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