Automatic Function Annotations for Hoare Logic

Daniel Matichuk

NICTA
Sydney, Australia

daniel.matichuk@nicta.com.au

In systems verification we are often concerned with mulfippieer-dependent properties that a pro-
gram must satisfy. To prove that a program satisfies a givepauty, the correctness of intermediate
states of the program must be characterized. However, ritésniediate reasoning is not always
phrased such that it can be easily re-used in the proofs afesuient properties. We introduce a
function annotation logic that extends Hoare logic in twgartant ways: (1) when proving that a

function satisfies a Hoare triple, intermediate reasorsr@uitomatically stored as function annota-
tions, and (2) these function annotations can be exploitédture Hoare logic proofs. This reduces
duplication of reasoning between the proofs of differemparties, whilst serving as a drop-in re-
placement for traditional Hoare logic to avoid the costlpgess of proof refactoring. We explain

how this was implemented in Isabelle/HOL and applied to greemental branch of the seL4 mi-

crokernel to significantly reduce the size and complexitgxaéting proofs.

1 Introduction

It is not always apparent what properties need to be provesnvibrmally verifying real software.
Clearly a program should maintain the consistency of ite détuctures, but it may be less obvious
to show that, for example, a scheduling policy is fair. As sute a verified system will inevitably be
reasoned about multiple times while considering diffeqgmiperties. This will involve characterizing
the correctness of intermediate states of a program witfert$o each of these properties. Likely these
properties will have some inter-dependencies, e.g. we nbnreason that a scheduling policy is fair
if the scheduler queues are valid. In these cases, the pobdifiese properties will depend on results
previously shown. This inter-dependence of reasoning deirates a necessity to structure theories and
lemmas in such a way that maximizes their re-use.

The selL4 microkernel is to our knowledge the most extensigedevel verification ever performed
of a general-purpose operating system kernel. The C impl&tien is shown to formallyefine an
abstract specification of its behaviour [4], which is protermpreserve a set of kernel invariants. These
invariants describe the correctness of all kernel strestusaying, for example, that distinct objects in
memory do not overlap. In the subsequent proofs of securdpesties, namely integrity and authority
confinement([7], the existing lemmas shown during the imvdrproofs were heavily used.

The proofs of these properties were done using a monadiantasf Hoare logic([1] , which is used
to reason about pre and post conditions of functions. Wheimamiant is temporarily violated, such
as during the creation of new kernel objects, care must lentakdescribe this intermediate state, so it
can be reasoned that further operations re-establishnilasiant. In traditional Hoare logic, correctness
of this intermediate state cannot easily be expressed. isie to re-establish this temporary invariant
violation in subsequent proofs, we will be forced to perfdha same reasoning required in the original
proof. With powerful vcgs (verification condition genenatpand automated reasoning inside a theorem
prover, the impact of this duplicated reasoning can be nahitdowever, for a sufficiently complex func-
tion with corresponding complex intermediate states,i@@mt manual effort is required to prove any

F. Cassez, R. Huuck, G. Klein and B. Schlich (eds.):
Systems Software Verification Conference 2012 (SSV 2012)
EPTCS 102, 2012, pp. 46356, d0i:10.4204/EPTCS.1.02.6

http://dx.doi.org/10.4204/EPTCS.102.6

D. Matichuk 47

new-tcb p = do create-tcb p = do
i « alloc; tcb « return empty-tcb;
teh « create-tcb p; return (tcb(priority := p)))
init-tcb tcb i; od
enqueue-tcb i p; o .
return i init-tcb tcb i = do
od tcbs<«— gets tcbs;
set-tcbs (tcbgi — tch))
alloc = do od
ids « gets ids; _
i « select ids; enqueue-tcb i p = do
set-ids (ids — {i}); gs < gets queues;
return i g < return (gs p);
od set-queues (q(p:=i-q))
od

Figure 1: A specification for an example tcb allocation fimrct

given property. Re-establishing the correctness of thesemediate states can then result in significant
portions of duplicated proof, which become difficult andtbot maintain as a project evolves.

In this paper, we present a function annotation logic, whitdws the correctness of these intermedi-
ate states to be shown as function annotations. Propertesrpabout these intermediate states can then
be used in future proofs without any redundant reasoningsé@lannotations do not need to be explicitly
defined, but can be generated as a consequence of an existing ldgic proof.

Function annotations are not novel, in [3] Hoare advocatesipg the correctness of assertions so
they may be assumed in further proofs. Traditionally, havepre and post conditions are favoured
over manually annotating entire functions. In existingfieation frameworks, such as VCCI[2], anno-
tations are defined alongside the code and a function recaigingle set of annotations. The primary
contribution of this paper is the automatic extraction ofi@ations from existing Hoare logic proofs.
Additionally, multiple sets of annotations can be defineddishogonal properties about a function.

2 An example specification

To illustrate function annotations, we introduce a monagecification for a simple function that might
be used in an operating system. An imperative program mayéeified as a nondeterministic state
monad [[1] by defining a record containing a field for each dlalaaiable in the program, in addition
to relevant pieces of global state. The program is then fizethas a function that takes a state record
as an input and yields an updated record, representing Igiobdifications, and a return value. Non-
deterministic computations yield a set of return values state pairs, indicating all possible ways the
function could resolve its nondeterminism. We use “do-tioté to phrase these monadic specifications
in an imperative style.

Shown i Figure fhew-tcb creates and enqueues a new tcb (thread control block) kefjesdt. First,
in alloc, an identifier is allocated by selecting one out of the fred jpds, removing it from the pool and
then returning. Nexfsreate-tcb creates a tcb with the appropriate priorityit-tcb then associates this
new tcb with the previously allocated identifier in ttebs partial map. Finallyenqueue-tcb adds the
identifier to the head of the appropriate priority queu@inues. Hence there are 3 pieces of state that
are relevant to the behaviour eéw-tcb: ids, tcbs andqueues. These are represented as fields in a state
record, wheregets x returns thex field of the state andet-x sets that field.return simply returns the

48 Annotations

valid-id i s = i€idss<— i ¢ dom (tcbss)
valid-free s = Vid. valid-id id s
valid-free-except i s = Vid. (id # i — valid-id id s) Ai ¢ dom (tcbs s) Ai ¢ ids s

Figure 2: Describing a valid set of free identifiers.

given expression, leaving the state unmodified. Given &sseilect S nondeterministically selects a
value fromS.

To verify this function, we may wish to first reason thatv-tcb preserves the validity of the pool of
free identifiersids with respect tacbs. We introduce an invariantalid-free, defined irf Figure]2, which
states that an identifier is free iff it is not in the domairtdfs. In other words, no element afs points
to a tcb and all free identifiers are necessarilydin

We describe the preservation of this invariant as the fallgwHoare triple:

{valid-free} new-tcb p {A-. valid-free|} Q)

It states that if, beforeew-tcb runs, the pool of identifiers is valid then it remains valiteafvards. Here
A-. binds the return value in the post condition to a dummy végiadffectively ignoring it. To prove
this triple, it is sufficient to show that the operationsnefv-tcb satisfy a collection of Hoare triples that
can be composed together.

{valid-free} alloc {Ai s. valid-free-except i S|}
{valid-free-except i} create-tcb p {A-. valid-free-except i}
{valid-free-except if} init-tcb obj i {A-. valid-free}

{valid-free} enqueue-tcb i p {A-. valid-free}

(2)

This demonstrates a temporary violationwafid-free between the allocation and initialization of an
identifieri, which is characterized byalid-free-except i.

In this small example it's clear that re-establishingjd-free-except i just prior toinit-tcb in a future
proof would be a trivial application of existing Hoare tegl In the context of real software verification,
where preconditions become large collections of propertie-establishing the correctness of these in-
termediate states can result in large pieces of duplicateof.pMoreover, for large functions it is not
practical to write an individual lemma establishing thessdates for every point in the function. Ad-
ditionally there is no established mechanism in Hoare l&@iphrasing such a lemma without manually
adding assertions to the program text. In the next sectiowill@lemonstrate how we can generate a
function annotation from this proof which establishes ¢hiesermediate properties, making them avail-
able for re-use during later proofs over the same function.

Monadic Hoare Logic
Formally, a Hoare triple over a nondeterministic state ndasalefined as follows:
{P} f{Q} =Vs Ps— (V(r,s)efs. Qrs) (3)

This states that a functiohsatisfies a Hoare triple if, from all statesatisfyingP s we have that all
possible computation paths béatisfyQ r s/, wherer is the return value of

To combine the results inl(2) we use thalit rule, which states that the precondition of a function
can be used as the postcondition of the previous function.

D. Matichuk 49

new-tcb-valid-free-ann p = doA
i < {valid-free]} alloc;
tch + {valid-free-except if} create-tcb p;
{valid-free-except if} init-tcb tcb i;
{valid-free} enqueue-tcb i p;
{valid-free}} return i

odA

Figure 3: An annotation afew-tcb created during the proof aklid-free.

vx. {B x} g x{C} {A} f {B}
{A} do x+f; gxod{C}
Whereg is quantified over possible return values.of

WP-SPLIT

3 Using Annotations

The function annotation framework is designed to be effettitransparent with respect to Hoare logic,
which enables the re-use of these intermediate propertide wequiring minimal changes to existing
proofs. The goal annotatiomew-tcb-valid-free-ann is shown ir{ Figure[3. The first step is to re-phrase
the top level Hoare triple as amnotator

{valid-free} new-tcb p {A-. valid-free} (new-tcb-valid-free-ann p) 4)

Which states that, in addition to satisfyingl (I)ew-tcb adheres to the annotations given in
new-tcb-valid-free-ann given valid-free as a precondition. The additional proof obligations, smgwi
that these annotations are satisfied, are trivially showanrasult of the existing proof. An existing proof
of (@) can therefore be modified to instead show this resulinieghanically exchanging Hoare logic
rules for analogous annotator rules[In Sectibn 4 we willlsee these annotations can be automatically
created by Isabelle, rather than having to be explicitlcsjzal.

The annotation itself is a monad which tracks an additioredgof state: a boolean which indicates
annotation failure. The annotation is checked at every atépe computation, but does not affect the
behaviour of the underlying function. This annotation dagréfore be reasoned against as if it were the
function it annotates. Additionally, assuming some preiition, if we can show that no annotation will
fail then we may assume the properties stated in the anootati

To reason about an annotation we introduceuanotated triple

IP|| F ||Q|| = Vs. — afails (Fs) — P s— (V(r, s')edropAFs. Qrs)

Here,F is an annotation likaew-tcb-valid-free-ann andP andQ are pre and post conditions respectively.
dropA F is the underlying function thd annotates anaffails (F s) is true wheneveF has an annotation
that is not satisfied when proceeding frenThis is similar to a standard Hoare triple, with the excapti
that it may take non-failure of the annotation for grantechc®an annotation is shown to be satisfied
(using an annotator as ih](4)) we can carry a result from aotated triple over it to the underlying
function. Proving an annotated triple over an annotationgsessarily more straightforward than a
standard Hoare triple, because all the individual assesteEbout the intermediate states may now be
assumed to hold.

To see how annotations are used, we introduce another amvazilid-queues shown in[Figure 4.
It states that, for every scheduler queue, all the idergifierthat queue correspond to a tcb with the

50 Annotations

valid-queues s
tch-at-prioip s

Vp. Viequeues S p. tcb-at-prioi p s
i € dom (tcbs S) A priority (the (tcbs si)) =p

Figure 4: Describing the correctness of scheduler queues.

appropriate priority. We can see that we will requisdid-free as a precondition ifiew-tcb is to preserve
valid-queues, otherwisealloc could select an identifier that is already enqueued. We axefibre make
use of the annotationew-tcb-valid-free-ann shown previously. The goal Hoare triple is as follows:
{valid-queues andvalid-free} new-tcb p {A-. valid-queues}

However, as a result of(4) which shows thatv-tcb satisfies annotations relatedwalid-free, we can
instead prove this annotated tridﬂe:

||valid-queues andvalid-free|| new-tcb-valid-free-ann p ||A-. valid-queues||
We prove these sorts of annotated triples by decomposimg ¥ith an analogous rule tP-sPLIT and
then converting them into ordinary Hoare triples. The aatioh on a function{P} f can be read as
f, given P”. The following rule allows such an annotationan annotated triple to be assumed as a
precondition, while converting into a standard Hoare ¢ripl

{Rand A f {Q}
IRIF{P £ 11Q

This allows a standard Hoare triple to be applied as if that@ndition was established in a traditional
Hoare logic proof.

A strong splitting rule, which combines the annotated ¢rigplitting rule and[(5), can be directly
applied to decompose an annotated triple into a collectiatamdard Hoare triples that are strengthened
with annotations.

(5)

vx. ||BX|| G x||C]|| {Aand B f {B}
A doA x <« {P}f; GxodA|C|
To show thathew-tcb preservesalid-queues we first establish the precondition femqueue-tcb to pre-
servevalid-queues:

{valid-queues andtcb-at-prio i p|} enqueue-tcb i p {A-. valid-queues}]

We can then demonstrate thait-tcb preservesalid-queues assuming the identifier being initialized is
not already enqueued:
{valid-queues and not-queued if} init-tcb obj i {A-. valid-queues]}

wherenot-queued i S = Vp. i ¢ queues s p If applied directly, this will require additional reasogi
that create-tcb preserves the fact that the identifier is not enqueued arichifba selects an identifier
that is not enqueued. Recall, however, that this proof is ameannotated function, and at this point
we have thatalid-free-except i holds. wP-STRONG-SPLIT therefore will have addedalid-free-except
i to the precondition fotreate-tcb. Using the implicatiorvalid-queues s A valid-free-except i S —
not-queued i S we may strengthen the precondition to instead assui free-except i:

{valid-queues andvalid-free-except i} init-tcb tcb i {A-. valid-queues]}

This uses the annotation granted frarn-STRONG-SPLIT, therefore the only precondition that needs
to be propagated i&lid-queues, and we no longer have to reason ahiaudt being enqueued. In alarger
function this could potentially avoid propagating this gwadition up through several operations and
duplicating a significant amount of existing reasoning.

WP-STRONG-SPLIT

IThis is formally justified by the rulé{6) introduced latefSection &

D. Matichuk 51

new-tch-valid-queues-ann p = doA
i < {valid-queues] alloc;
tch + {valid-queues]} create-tcb p;
{valid-queues and not-queued i and (A-. priority tcb = p)}
init-tch tch i;
{valid-queues andtcb-at-prio i p} enqueue-tcb i p;
{valid-queues} return i

odA

Figure 5: Annotations fonew-tcb from the proof ofvalid-queues.

new-tch-valid-free-ann p bt new-tcb-valid-queues-ann p = doA
i «+ {valid-free andvalid-queues} alloc;
tch < {valid-free-except i andvalid-queues|} create-tcb p;
{valid-free-except i and valid-queues andnot-queued i and
(A-. priority tch= p)|}
init-tcb tcb i;
{valid-free andvalid-queues andtcb-at-prio i p} enqueue-tcb i p;
{valid-free andvalid-queues]} return i
odA

Figure 6: A combination of two annotations fio#w-tcb.

Similar to the proof forvalid-free we can create annotations regardingid-queues as shown in
[Figure 5. Note that only properties specifically relatesdtid-queues are used as annotations. To com-
bine two annotated functions we define a merge operatiowhich produces a new annotated function
that is simply the conjunction of both annotations, and camused whenever both their preconditions
are established. The result of merging both of the previonstations fomew-tcb is shown irf Figure|6.

4 Creating Annotations

In this section we describe how function annotations wemaébized using Isabelle and how they were
incorporated into an existing Hoare logic vcg to allow therbe seamlessly integrated with existing
proofs. Additionally we show how function annotations carelasily generated by Isabelle and exported
by using schematic lemmas.

Function annotations are implemented by creating a newtitmahich, effectively, has an assertion
between every operation. To demonstrate that an annotiatialid (i.e. create an annotator like (4)) it
is sufficient to show that none of these assertions will failer a given precondition. An extra flag is
tracked, in addition to the global state record, which iathks failure of an annotation. An annotation,
therefore, simply evaluates the function as normal but tsts annotations.

{P} f=(As. (fs,—~P9)

To evaluate the composition of two annotated functions wepmmse their inner functions and then set
the failure flag if any possible nondeterministic branchafighe composition can fail. The definition
is given in[Figure |7 with relevant lemmas to charactetizepA andafails. can-fail-from F G srunsG
against all possible results Bffrom s and then tests annotation failure on all possible outcomes.

A function is said to satisfy an annotation under some préitiom if, by asserting that precondition

52 Annotations

at the beginning of the function, no assertions will fail. féamalize this, we define a partial ordering
on annotated functions that can be described by the strefgjle annotations:

F C G=Vs. (— afails (F s) — dropA F s=dropA G s) A (afails (G s) — afails (F s))

which states that the annotatibris stronger thag if, under non-failure, they annotate the same function
and failure ofG always implies failure oF. It is best characterized by the following rule:

Vs.Ps— Qs
{PHfC{Q}f
Hencef satisfies some annotatidh underP if {P} f C F. When a function satisfies an annotation,

one can reason about the function by reasoning about theadimmovia an annotated triple, which only
evaluates under non-failure and thus all annotations magsbemed.

{PHfCF lIPIFIQI
{Plf {Qk

To prove adherence to an annotation we use an annotatomptysstates that, in addition to satisfying
the given Hoare triple, the function adheres to the giverotation.

{Phf{Ql (F) ={P}f{Q} A {PLTCF (7)

There are two motivations for proving annotation adherghiteway. As will be explained in the next
section, this approach allows the annotation to be “cal#cby Isabelle rather than provided explicitly
by the user. Additionally it provides a clear notion ofiaput function that is being proved against and
anoutputannotation that is being produced/satisfied. In the gemmas® the function may itself already
have annotations; by phrasing the triple in this way we catirdjuish annotations we may use during
the proof of the Hoare triple and annotations that we areymiogy/satisfying. To illustrate this, recall
the proof thathew-tcb preservewalid-queues. While using the annotation created during the proof of
valid-free we also want to produce an annotation fatid-queues. This can be phrased with a strong
annotator, which has an analogous definition to the one gjivén):

(6)

|lvalid-queues|| new-tcb-valid-free-ann p ||A-. valid-queues|| (new-tcb-valid-queues-ann p)

Once this proof is complete, we now have thaw-tcb, in addition to satisfyinghew-tcb-valid-free-ann
undervalid-free, satisfiesnew-tcb-valid-queues-ann undervalid-queues and valid-free. To merge two
annotations, as seen previously in Figure 6, we simply tagelisjunction of their failure flags:

doA = As ((do
X<+ F; X < dropA F;
G x dropA (G X)
odA od)
S,

can-fail-from F G sV afails (F s))
can-fail-from F G s True € afails* (A(X,y). Gxy) " dropAFs

dropA {P} f = f
afails ({P}} fs) = -Ps

Figure 7: Composing annotated functions.

D. Matichuk 53

doA DI doA = doA
x+ {PJ} f; x+ {Q}f; X+ {Pand @ f;
G x G’'x G xpa G'Xx

odA odA odA

Figure 8: Distributing an annotation merge across funetion

F 1 G = As. (dropA F s, afails (F s) V afails (G s))
Note that only one of the functionB is actually evaluated. This is simply because merging iy onl
sensible between two annotations over the same functieghsadropA F s = dropA G sis implicitly
assumed. We show 8 that this merge operation laliss across function composition, so
merging two annotations annotates the individual opematid his can be repeatedly applied to show the
result i Figure Bnew-tcb can then be shown to satisfy this merged annotation usinfplioeving rule:
{PHfEF {Q}fCF
{Pand @ f CFxxF’
This states that a function satisfies the merge of two arinpotatinder the conjunction of their precondi-
tions.

Automatic Annotations

Significant amounts of a Hoare logic proof can be automatezivmg. At the core of any Hoare logic vcg
is a collection of rules that decompose a Hoare triple intoliection of Hoare triples over the individual
steps of a function. In Isabelle, the weakest preconditicopwp processes a function bottom-up, com-
puting the precondition necessary for the last operatioestablish the postcondition. This computed
precondition then becomes the postcondition for the nexaiion, and so on. This is accomplished by
repeated applications of the split rikeP-SPLIT.

To madify the vcg to work with annotators, we introduce anlegaus split rule which additionally
saves the computed precondition as an annotatidén of

vx. {Bx} g x{C} (G x) {A} f {B}
{A} do x<+f; gxod{C} (doA x<«+ {A}f; G xodA)

(8)

Note that, after this rule is applied, only a standard Hoapéetis required to be shown ¢f Repeated
applications of this rule, combined with some additiondésufor control flow, result in a collection of
Hoare triples as proof obligations. When solved, the prditimms for these Hoare triples are stored in
the function annotations.

To avoid ever explicitly stating the definition of an annatatwe can use Isabellei&chematic lemma
feature, which allows terms in a lemma statement to be ledfpecified and instantiated during the proof.
The bind rule given in[(8) will, after applied over the entfigction, instantiate such a term to the
computed function annotation.

For example, we rephrase an existing Hoare triple proof asaotator, leaving the annotation as a
schematic variable.

{even i} double-plusi {A-. eveni} (?L)
After the proof is finished, the schematic has been instautito a function annotation.
{even i} double-plusi {A-. even i} (doA {evenilfi++; {oddi}i++ odA)

54 Annotations

Complex Annotations

Function annotations defined in this way are simply extarsiof existing functions, which track an
additional boolean across all possible nondeterministant¢hes. Due to this construction, they are
necessarily as expressive as the underlying monadic faatiah. In particular one can annotate a
recursive function (creating a recursive annotation) orap raver an inductive datatype. This would
serve to simplify induction hypotheses while reasoningualthese functions as necessary correctness
invariants could be assumed across all iterations of thetifum These annotations could still be collected
automatically from existing proofs, although the processil be slightly more involved. The use of
function annotations in this context seems promising, lastmot been fully explored and has been left
for future work.

5 Case Study: seL4

Interesting properties cannot always be expressed in Hogie In the ongoing proof of confidentiality
for the seL4 microkernel[6], a proof calculus was used tonfalize an upper bound on the information
that a function can read. This involves reasoning aboutiptelexecutions of a function, which cannot
be easily expressed in Hoare logic. Function annotationstithbe used when proving such a property
by explicitly turning annotations into assertions, effesly converting back into a standard function
while retaining some information from the annotations. Bltendard confidentiality calculus![6] can
then be applied and make use of the assertions.

The confidentiality proof for seL4 builds on previous inzent proofs in addition to proofs of in-
tegrity and authority confinemerit![7]. In general, for a fiime to be confidentiality-preserving it must
be well-behaved, which requires reasoning about it in thegaice of invariants. These invariants are then
required as preconditions for confidentiality and we mustdfore demonstrate that certain invariants
are preserved at intermediate points of a function. In thpnty of cases there are sufficient existing
lemmas to easily re-play this reasoning, however some iumethave behaviours which are difficult to
characterize. Such a functioniisvoke-untyped, which changes the type of kernel objects in a region
of memory. The proof thanvoke-untyped preserves the invariants is 300 lines of Isabelle proopscri
Some manual effort was involved to re-phrase the top-lexestgndition (approximately 5 lines of Is-
abelle) in order to produce a function annotation from tm@op Additionally, the generated annotation
needed to be manually modified in order to remove extranemgedies. Ultimately a single line was
added to the script with 40 lines of manual annotation maatibnis. When this annotation was applied
to the proofs of integrity and authority confinement, the benof lines of proof script was reduced from
192 to 56. This produced another annotation which, whereg o the proof of confidentiality, reduced
the lines of proof script from 215 to to 39. In this case it isaslthat most of the logic in these proofs was
simply re-proving the preservation of the invariants. Sonanual effort is still required to effectively
use these annotations, so they are currently in an expdairtananch of the selL4 proof. There has been
some development in adding more automation to this probess, is still ongoing.

6 Related and Future Work

Similar to our use of nondeterministic state monads [1]e8ger et al.[[B] formalize Hoare logic over
state monads in the verification of a security protocol. T¢ieylarly use a shallow embedding to exploit
the significant amount of proof automation already presefgabelle/HOL.

D. Matichuk 55

Swierstra[[9] encodes the correctness of a specificatiots itype, creating atrong specification
The construction of the specification itself guaranteesectmess, with respect to a given property. In
our logic, the relationship between a function and its aatians is analogous to the relationship between
a specification and its strong specification.

Function annotations are merely one approach to solvinggémeral problem of reusing results
about the intermediate states of a function. Alternativalysertions could be explicitly provided as
part of the specification, as done by Mossakowski et al. [Shir formalization of Hoare logic on
monads. Although this approach is more general, it intredusarriers to splitting up the same proof
among multiple persons|[1]. Additionally, extending the@ssertions to include further properties may
incur significant proof maintenance overhead. In cont@stformalization produces annotations as an
orthogonal artifact to the specification itself.

Another approach would be to have intermediate statesaithplabelled and assertions made against
those labels. This would enable the ad-hoc collection difabout intermediate states, as is done by
using function annotations. Rather than constructing redesnotated versions of a function, the user
would instead be creating an assertion cache for the intBatgestates. Such an approach would allow
for more dynamic use of assertions, as the user would not teagtecide at the start of a proof which
annotation sets he wished to use. The cost, however, corttesiimitial overhead of defining these labels.
The most straightforward approach would be to modify the adoformalization to label intermediate
states, which would incur an initial overhead for any ergtproofs. In the case of a large proof effort
like seL4 this could potentially affect hundreds of thoudsof lines of proof script. The advantage of
function annotations is their low overhead, as they do ngtire any modification to the underlying
formalization.

Function annotations as presented here have been showrrkkonet) in practice, however some
manual mechanical effort is still required to make use ofrthin future work we plan to make function
annotations more opaque to the end user. Ideally, rathefthiag explicitly exported through schematic
lemmas, they could implicitly be generated as part of stahHare logic proofs. During further proofs
over the same function, annotations could then implici#yused by the vcg, or asserted if explicit rea-
soning needs to be done against them. Additionally, pragsecould be tagged as “annotation-worthy”
and will otherwise not be pushed into automatic annotatiemegation. With these improvements, the
user would not need to be aware that they are using functinatations, but could transparently exploit
previously established reasoning with a collection ofitacand through the vcg.

7 Conclusion

In this paper we have presented a function annotation logiclwcan be used to prove properties about
intermediate points of functions. It is designed to gemeeainotations from existing Hoare logic proofs
with minimal modifications to these proofs, allowing theseaing within those proofs to be easily re-
used. Annotations can be used to prove additional, stroageotations and unrelated annotations can
be merged together as a conjunction of their individualdisses. They are useful when a function is too
complex for a vcg alone and re-using the reasoning of previimoofs can save significant effort. The
selL4 proofs for two properties of a single function were tlifrom 407 lines of proof script to 95 by
using function annotations. This resulted in more compnsitde proofs that better captured the logic
of the properties being shown. By extending the use of foncsinnotations to additional functions of
similar complexity, we expect to see comparable improvemnexisting and future proofs.

56 Annotations

Acknowledgements

Thanks to Toby Murray and Gerwin Klein for valuable feedbackearlier drafts of this paper.

References

[1] David Cock, Gerwin Klein & Thomas Sewell (2008%ecure Microkernels, State Monads and Scalable Re-
finement In Otmane Ait Mohamed, César Mufioz & Sofiene Tahar, eslit@1st TPHOLs LNCS 5170,
Springer-Verlag, Montreal, Canada, pp. 167-182.

[2] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk beinbach, Michat Moskal, Thomas Santen, Wolfram
Schulte & Stephan Tobies (2009JCC: A Practical System for Verifying Concurrent [Stefan Berghofer,
Tobias Nipkow, Christian Urban & Markus Wenzel, edito&2nd TPHOLsLNCS 5674, Springer-Verlag,
Munich, Germany, pp. 23-42.

[3] C. A. R. Hoare (1983)An axiomatic basis for computer programminGommun. ACM26(1), pp. 53-56,
doi:10.1145/357980.358001.

[4] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, Juneddonick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norti$homas Sewell, Harvey Tuch & Simon Winwood
(2009):seL4: Formal Verification of an OS Kerndh: 22nd SOSPACM, Big Sky, MT, USA, pp. 207-220.

[5] Till Mossakowski, Lutz Schrder & Sergey Goncharov (2D08 Generic Complete Dynamic Logic for Rea-
soning About Purity and Effectsin Jos Fiadeiro & Paola Inverardi, editor§undamental Approaches to
Software Engineerind-ecture Notes in Computer Scien4®61, Springer Berlin / Heidelberg, pp. 199-214,
doi:10.1007/978-3-540-78743-3_15.

[6] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter@aie & Gerwin Klein (2012)Noninterference for
Operating System Kernelin: 2nd Int. Conf. Certified Programs & Prooffo appear.

[71 Thomas Sewell, Simon Winwood, Peter Gammie, Toby Muyrdane Andronick & Gerwin Klein (2011):
selL4 Enforces Integrityln Marko C. J. D. van Eekelen, Herman Geuvers, Julien SdamiafFreek Wiedijk,
editors: 2nd ITP LNCS 6898, Springer-Verlag, Nijmegen, The Netherlands, pp—328, doi10.1007/
978-3-642-22863-6_24.

[8] Christoph Sprenger & David Basin (2007 Monad-Based Modeling and Verification Toolbox with Appli-
cation to Security Protocolsin Klaus Schneider & Jens Brandt, editoi&eorem Proving in Higher Order
Logics Lecture Notes in Computer Sciend@32, Springer Berlin / Heidelberg, pp. 302—-318, tl0i;1007/
978-3-540-74591-4_23.

[9] Wouter Swierstra (2009)A Hoare Logic for the State Monadh Stefan Berghofer, Tobias Nipkow, Christian
Urban & Makarius Wenzel, editorsTheorem Proving in Higher Order Logickecture Notes in Computer
Scienceé674, Springer Berlin / Heidelberg, pp. 440-451, tl0i:1007/978-3-642-03359-9_30.

http://dx.doi.org/10.1145/357980.358001
http://dx.doi.org/10.1007/978-3-540-78743-3_15
http://dx.doi.org/10.1007/978-3-642-22863-6_24
http://dx.doi.org/10.1007/978-3-642-22863-6_24
http://dx.doi.org/10.1007/978-3-540-74591-4_23
http://dx.doi.org/10.1007/978-3-540-74591-4_23
http://dx.doi.org/10.1007/978-3-642-03359-9_30

	1 Introduction
	2 An example specification
	3 Using Annotations
	4 Creating Annotations
	5 Case Study: seL4
	6 Related and Future Work
	7 Conclusion

