
Rachid Echahed (Ed.): 6th International Workshop
on Computing with Terms and Graphs (TERMGRAPH 2011)
EPTCS 48, 2011, pp. 20–37, doi:10.4204/EPTCS.48.5

Rule-based transformations for geometric modelling

Thomas Bellet
University of Poitiers, XLIM-SIC CNRS, France

thomas.bellet@univ-poitiers.fr

Agnès Arnould
University of Poitiers, XLIM-SIC CNRS, France

agnes.arnould@univ-poitiers.fr

Pascale Le Gall
Ecole Centrale Paris, MAS, France

pascale.legall@ecp.fr

The context of this paper is the use of formal methods for topology-based geometric modelling.
Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually,
objects are defined by a graph-based topological data structure and by an embedding that associates
each topological element (vertex, edge, face, etc.) with relevant data as their geometric shape (po-
sition, curve, surface, etc.) or application dedicated data (e.g. molecule concentration level in a
biological context). We propose to define topology-based geometric objects as labelled graphs. The
arc labelling defines the topological structure of the object whose topological consistency is then
ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the
embedding. Labelling constraints ensure then that the embedding is consistent with the topological
structure. Thus, topology-based geometric objects constitute a particular subclass of a category of
labelled graphs in which nodes have multiple labels.

We previously introduced a formal approach of topological modelling based on graph transfor-
mation rules. Topological operations, that only modify the topological structure of objects, can be
defined such that the topological consistency of constructed objects is ensured with syntactic condi-
tions on rules. In this paper, we follow the same approach in order to deal with geometric operations,
that can modify both the topological structure and the embedding. Thus, we define syntactic condi-
tions on rules to ensure the consistency of the embedding during transformations.

Introduction

Topology-based geometric modelling deals with the manipulation (construction, modification, . . .) of
objects that are subdivided according to their topological structure. The topological structure is the
cell subdivision (vertices, edges, faces, volumes) of objects and the adjacency relations between these
cells. Among the existing topological models, we choose in this paper the model of generalized maps
[6, 8], also called G-maps. The topological structure of G-maps can be represented by a graph where
edges indicate which nodes are neighbours and where edge labels indicate what kind of neighbouring is
concerned (e.g. connection between faces or between volumes). This graph must satisfy some constraints
on the arc labelling to ensure the topological consistency of the topological structure. For example, while
their shapes are different, the three objects of Fig. 1 have the same topological structure: a closed face
that contains four edges and four vertices.

In addition to the topological structure, objects are defined by an embedding that includes all other
kinds of information attached to the topological cells of the object. An evident example of embedding is
given by the kinds of information needed to capture the shape of objects. For the objects of Fig. 1, we
assume that the associated embedding contains three elements:
• geometric points (defined by 2 dimension coordinates in the case of plane objects) that are attached

to topological vertices;

http://dx.doi.org/10.4204/EPTCS.48.5

T. Bellet, A. Arnould & P. Le Gall 21

F F Fu w u w
w

u

v v
v

x x x

A A AB B
B

C
C

CD
D D

Figure 1: Three objects with a same topological structure

• curves that are attached to edges;

• colors that are attached to faces.

While the topological structure is represented by the arc labels, the different elements of the object em-
bedding can be represented by node labels. Intuitively, a node is labelled by all the embedding elements
that are attached to its adjacent cells (vertex, edges, faces, volumes). Let us point out that while the
embedding generally contains classical geometric data describing the shape of the objects (e.g. points,
curves, surfaces, etc.), the embedding also contains specific data that depend on the targeted application
(e.g. molecule concentration for biology, rock density for geology, material for architecture, etc.). Actu-
ally, nodes have as many labels as there are different kinds of data in the application-oriented definition
of the embedding. This fact explains that in a first step, we provide in Section 1 a category of graphs
whose nodes can carry multiple labels. This category is defined as a direct extension of the category of
partially labelled graphs as defined in [4]. We then define in Section 2 our embedded topological model
as particular graphs of this category. Graphs that represent embedded G-maps have to satisfy constraints
to ensure both the topological consistency and the embedding consistency.

To define operations on objects represented as embedded G-maps, we choose the graph transfor-
mations and more precisely the so-called double-pushout approach [3]. In a previous work [10], we
defined a rule-based language dedicated to topology-based modelling. The first interest of this language
is that we defined syntactic conditions on rules to ensure by construction, that the application of a rule
to a G-map produces a G-map. In other words, objects resulting from applications of well-formed rules
on G-maps are systematically well-formed topological objects, that is objects satisfying the topological
consistency constraints. In this paper, we define a similar framework for geometric operations that can
modify both the topological structure and the embedding. As we need to change labels of nodes and
arcs during transformations, we based our work on rules of [4] that allow to rename labels. In Section 3,
similarly to the topological conditions introduced in [10], we define syntactic conditions on rules that
ensure the preservation of the embedding constraints when rules are applied to embedded G-maps. In
Section 4, we provide G-map rule schemes that allow to define generic geometric operations. Actually,
rule schemes contain expressions on variables to allow to compute the embedding of the resulting ob-
jects. Finally, we provide syntactic conditions on rule schemes to ensure the preservation of embedding
consistency by rule application.

1 Transformation rules for I-labelled graphs

1.1 Category of I-labelled graphs

In this section, we define the category of I-labelled graphs as an extension of the one of partially labelled
graphs defined in [4]. While in [4] nodes have at most one label, in our case, nodes can have at most |I|
labels where I is a chosen set of indexes.

22 Rule-based transformations for geometric modelling

Definition 1 (I-labelled graph) Let (CV,i)i∈I be a family of node label sets and CE be an arc label set.
A I-labelled graph GI = (V,E,s, t,(lV,i)i∈I, lE) upon (CV,i)i∈I and CE is defined as:

• a set V of nodes;

• a set E of arcs;

• two functions source s : E→V and target t : E→V . For e ∈ E, s(e) and t(e) are respectively the
source node and the target node of e;

• a family of partial functions1 (lV,i : V → CV,i)i∈I that label nodes. For v ∈V , when it exists, lV,i(v)
is called the i-label of v ;

• a partial function lE : E→ CE that labels arcs.

For a graph GI =(V,E,s, t,(lV,i)i∈I, lE), elements of the tuple can be indexed by G to make explicit the
graph name: VG for V for example. The above definition is a natural extension of partially labelled graphs
of [4]. Indeed, instead of a unique partial function lV that labels nodes, we consider an I-indexed family
(lV,i)i∈I of partial labelling functions2. By extending the definition given in [4] for a unique node labelling
function, an I-labelled morphism g : GI → G′I between I-labelled graphs GI and G′I is defined by two
functions gV : VG → VG′ and gE : EG → EG′ preserving sources, targets and labels : sG′ ◦ gE = gV ◦ sG,
tG′ ◦ gE = gV ◦ tG, for all x in Dom(lG,E) , lG′,E(gE(x)) = lG,E(x) and lastly, for all i in I, for all x in
Dom(lG,V,i), lG′,V,i(gV (x)) = lG,V,i(x). Thus, the only difference with [4] is that for I-labelled graphs,
I-labelled morphisms have more labels to preserve. An I-labelled morphism g : GI →G′I is an inclusion
if ∀x ∈ EG,gE(x) = x and ∀x ∈ VG,gV (x) = x. Such an inclusion is then denoted as g : GI ↪→ G′I . I-
labelled graphs and I-labelled morphisms constitute a category, where morphism composition is defined
componentwise as function composition.

For any partially labelled graph G = (V,E,s, t, lV , lE), we call the base of G the partially labelled
graph defined as (V,E,s, t,⊥, lE) whose node labelling is totally undefined and denote it by G⊥.

We say that two morphisms g : G→ G′ and h : H → H ′ between partially labelled graphs have the
same base if G⊥ = H⊥, G′⊥ = H ′⊥ and gV = hV , gE = hE . We note g⊥ : G⊥→ H⊥ the derived morphism
defined by g⊥E = gE and g⊥V = gV .

We respectively note G , G I and G ⊥ the category of partially labelled graphs (as defined in [4]), I-
labelled graphs and bases of partially labelled graphs (that is, graphs whose node labelling is the function
totally undefined).

For a I-labelled graph GI = (V,E,s, t,(lV,i)i∈I, lE), for an index i ∈ I, the projection pro ji(GI), also
called the i-component, is defined as the partially labelled graph (V,E,s, t, lV,i, lE) according to [4]. Sim-
ilarly, for an I-labelled morphism g : GI → G′I , we call pro ji(g) : pro ji(GI)→ pro ji(G′I) the graph
morphism that only consider the i-labels of the I-labelled graphs.

From an I-indexed family of partially labelled graphs Gi defined on a common base (V,E,s, t,⊥, lE)
with lV,i as node labelling function, we define by Prodi∈IGi the I-labelled graph (V,E,s, t,(lV,i)i∈I, lE).
Similarly, from an I-indexed family of graph morphisms gi : Gi → G′i sharing the same base, we can
define an I-labelled morphism Prodi∈Igi, from Prodi∈IGi to Prodi∈IG′i, that coincides with any gi on the

1Given X and Y two sets, a partial function f from X to Y is a total function f : X ′→ Y , from X ′ a subset of X . X ′ is called
the domain of f , and is denoted by Dom(f). For x ∈ X −Dom(f), we say that f (x) is undefined, and write f (x) =⊥. We also
note ⊥ : X → Y the function totally undefined, that is Dom(⊥) = /0.

2To better fit with the frame of [4], one would think to label nodes by a unique label made of a Cartesian product, instead
of having a family of labelling functions. But, such an approach would not allow us to have the possibility of labelling a node
simultaneously by a defined i-label and by an undefined i′-label for i and i′ indexes of I.

T. Bellet, A. Arnould & P. Le Gall 23

node set VG and the arc set EG. Obviously, we then get the identities: GI = Prodi∈I pro ji(GI) for G a
I-labelled graph and gI = Prodi∈I pro ji(gI) for gI an I-labelled morphism.

Since from any partially labelled graphs F , G, H, ... and from any morphisms on them f : F → G,
g : G→ H, h : F → H, we can derive their corresponding base form, respectively F⊥, G⊥, H⊥, ... f⊥ :
F⊥→ G⊥, g⊥ : G⊥→ H⊥, h⊥ : F⊥→ H⊥, and then for any diagram made of morphisms expressed on
partially labelled graphs, we can derive a similar diagram on their corresponding base. For example,

from the diagram F
f→ G

g→ H = F h→ H, we can derive the diagram F⊥
f⊥→ G⊥

g⊥→ H⊥ = F⊥
h⊥→ H⊥.

Lemma 1 For m = 1, 2, let us consider fm : Am → Bm and gm : Am → Cm two graph morphisms in G
such that gm is injective and for all x in VBm (resp. in EBm), {lBm,V (x)} ∪ lCm,V (gV m(fV−1

m (x))) (resp.
{lBm,E(x)}∪ lCm,E(gE m(fE

−1
m (x)))) contains at most one element, then there exists a graph Dm and graph

morphisms f ′m : Cm→ Dm and g′m : Bm→ Dm such that the following diagram is a pushout3

Am

gm

��

fm

// Bm

g′m
�� hm

��

Cm
f ′m //

km ++

Dm
xm

!!B
BB

BB
BB

B

Xm

Moreover, if both pushout diagrams have the same underlying base diagram, that is A1⊥ = A2⊥,
B1⊥ = B2⊥, C1⊥ =C2⊥, f1⊥ = f2⊥ and g1⊥ = g2⊥, then we get D1⊥ = D2⊥, f ′1⊥ = f ′2⊥ and g′1⊥ = g′2⊥.

Proof. The proof of the existence of pushout is given in [4].
The uniqueness of the base elements Dm⊥, f ′m⊥ and g′m⊥ comes from the fact that the proof in [4]

explicitly constructs the elements Dm⊥, f ′m⊥ and g′m⊥ in relation to the elements of the base diagram. �

For convenience issues, we note Bm +Am Cm the graph Dm, occurring in the pushout diagram.

Lemma 2 (Existence of pushouts) Let f I : AI → BI and gI : AI → CI be two I-labelled morphisms in
G I such that gI is injective and for all x in VB (resp. in EB), for all i in I, {lB,V,i(x)}∪ lC,V,i(gV,i(fV,i−1(x)))
(resp. {lB,E(x)}∪ lC,E(gE(fE

−1(x)))) contains at most one element, then there exists a I-labelled graph
DI and two I-labelled morphisms f ′I : CI → DI and g′I : BI → DI in G I such that the following diagram
is a pushout:

AI

gI

��

f I
// BI

g′I

�� hI

��

CI
f ′I //

kI
++

DI

xI

 A
AA

AA
AA

X I

Moreover DI can be defined as Prodi∈IDi with Di = pro ji(BI)+pro ji(AI) pro ji(CI)

Proof. By lemma 1, we know that (Di)i∈I have the same base because (pro ji(A))i∈I , (pro ji(B))i∈I and
(pro ji(C))i∈I have respectively the same base. Thus, Prodi∈IDi is a well defined I-labelled graph.

3A commutative diagram A
g→C

f ′→ D = A
f→ B

g′→ D is a pushout if and if for every graph X and all morphisms h : B→ X
and k : C→ X with k ◦g = h◦ f , there is an unique morphism x : D→ X with x◦g′ = h and x◦ f ′ = k.

24 Rule-based transformations for geometric modelling

Moreover, there exist I-labelled morphisms f ′I : CI → DI and g′I : BI → DI in G I ensuring that the
diagram is commutative. It suffices to choose : f ′I =Prodi∈I f ′i and g′I =Prodi∈I f ′i where f ′i : pro ji(B)→
Di and g′i : pro ji(C)→ Di are the underlying morphisms constituting the pushout construction : Di =
pro ji(B)+pro ji(A) pro ji(C).

Let us show the universal property : let us consider kI : CI → X I and hI : BI → X I two I-labelled
graphs with hI ◦ f I = kI ◦gI . By the universal property of Di, there exists a unique labelled morphism xi :
Di→ pro ji(X I) such that xi ◦ pro ji(f ′I) = xi ◦ pro ji(g′I). Then we can consider xI = Prodi∈Ixi : DI→ X I

verifying xI ◦ f ′I = xI ◦g′I . �

Thus, constructions holding on partially labelled graphs can be replicated at the level of I-labelled
graphs. It suffices to work with their i-components, index per index, using the pro ji application and to
reconstruct I-labelled graphs or morphisms by applying the Prodi∈I operator on objects sharing the same
base.

In the sequel, we take benefit of all results given in [4] : existence of pullbacks, characterisation of
natural pushouts4. For the purpose of simplicity, we give up the exponent I upon the I-labelled graph
(resp. morphism) names and we will use I-labelled inclusions to define rules.

Definition 2 (graph transformation rule) A graph transformation rule r : L←↩ K ↪→ R over G I consists
of two I-labelled graph inclusions K ↪→ L and K ↪→ R in G I such that:

1. for all node x ∈VL and all i ∈ I, lL,V,i(x) =⊥ implies x ∈VK and lR,V,i(x) =⊥; reciprocally, for all
node x ∈VR and all i ∈ I, lR,V,i(x) =⊥ implies x ∈VK and lL,V,i(x) =⊥;

2. for all arc x ∈ EL, lL,E(x) = ⊥ implies x ∈ EK and lR,E(x) = ⊥; reciprocally, for all arc x ∈ ER,
lR,E(x) =⊥ implies x ∈ EK and lL,E(x) =⊥;

Usually, L is called the left-hand side, R the right-hand side and K the kernel.

Definition 3 (direct transformation) Let r : L←↩ K ↪→ R be a graph transformation rule over G I and
G a I-labelled graph and m : L→ G an injective I-labelled morphism in G I called match morphism.

A direct transformation G
r,m⇒ H of G into H consists in the following natural double pushout defined

over G I : L oo ? _

m (1)
��

K � � //

(2)
��

R

��
G oo ? _D � � // H

Definition 4 (dangling condition) An I-labelled morphism m : L→ G satisfies the dangling condition
with respect to the inclusion K ↪→ L, if none node of m(L)\m(K) is source or target of an arc of G\m(L).

Theorem 1 (Existence and uniqueness of direct transformation) Let r : L←↩ K ↪→ R be a rule and
m : L→ G a match morphism in G I , the previous direct transformation G⇒r,m H exists if and only if m
satisfies the dangling condition. Moreover, in this case D and H are unique up to isomorphism.

As our framework of I-labelled graphs is a direct adaptation of partially labelled graphs as defined in
[4], this theorem is directly obtained by the application to I-labelled graphs and I-labelled morphisms of
the similar theorem of [4] that consider partially labelled graphs and graph morphisms. Finally, we also
inherited from [4] that for a derivation G

r,m⇒ H, H is totally labelled if and only if G is totally labelled
where a I-labelled graph is said to be totally labelled when each labelling function lV,i is totally labelled.
To sum up, graph transformations defined over G can be easily adapted for G I (thus for I-labelled graphs)
by preserving all constructions and results.

4A natural pushout is both a pushout and a pullback.

T. Bellet, A. Arnould & P. Le Gall 25

2 G-maps

In this section, we introduce the definition of our embedded topological structures as a particular class
of I-labelled graphs. First, we consider graphs without node labels to represent the topological structure.
Then, we define node labelling functions to represent the embedding. Thus, the topological structure is
encoded as the base of the I-labelled graph representing the embedded topological structure.

2.1 The topological graph V1 (A)

V2 (B) V3 (C)

V4 (D) V5 (E)

E1
F1

F2

E2

E3

E4 E5

E6

Figure 2: Embedded 2D object

As said in the introduction, we choose the topological model of gen-
eralized maps (or G-maps) [7]. This model is mathematically well
defined. Its first main advantage is the homogeneity in the handling
of dimensions: objects of any dimension can be represented in the
same manner as graphs. This allows us to use rules for denoting op-
erations defined on embedded G-maps, in an uniform way [11, 10].
The second advantage is that the G-map model comes with consis-
tency constraints. They express conditions to define a topologically
consistent object. Obviously, these constraints have to be maintained
when operations are applied.

The representation of an object as a G-map comes intuitively from its decomposition into topological
cells (vertices, edges, faces, volumes, etc.). For example, the decomposition of the 2D topological object
of Fig. 2 into a 2-dimensional G-map is shown on Fig. 3. The object is first decomposed into faces on
Fig. 3(a). These faces are linked along their common edge E3 with the relation α2. In the same way, faces
are split into edges connected with the relation α1 on Fig. 3(b). At last, the edges are split into vertices
by relation α0 to obtain the 2-G-map of Fig. 3(c). Split vertices obtained at the end of the process are
the nodes of the G-map graph and the αi relations are the arcs (For a 2-dimensional G-map, i belongs to
{0,1,2}). Hence, for n a dimension, n-G-maps are particular I-labelled graphs where the arc label set is
CE = {α0, . . . ,αn} and where arcs are totally labelled. In fact, G-maps are represented by non-oriented
graphs, that is, such that for each arc of source v, of target v′ and labelled by αi, there also exists an arc
of source v′, of target v′ and labelled by αi. As usual, double reversed arcs are represented on pictures
by a non oriented arc. Notice that in all figures given in the sequel, we will use the αi graphical codes of
Fig. 3(c) (simple line for α0, dashed line for α1 and double line for α2) in order to be more readable.

α2

α2α2

α2 α2

α2

(a)

α1

α1α1

α1

α1α1

α1

α2α2

α2

α2

α2

α2

α2

α2 α2

α2

α2 α2

(b)

d

b

c

a

m n
l

j

k

i
g h

e f

(c)

Figure 3: Cell decomposition of an object

26 Rule-based transformations for geometric modelling

d

b

c

a

m n
l

j

k

i
g h

e f
<α0α2>(e)

<α0α1>(e)

<α1α2>(e)

Figure 4: Reconstruction of adjacent cells of e

Topological cells are not explicitly represented in G-
maps but only implicitly defined as subgraphs. They can
be computed using traversal of nodes using a given set of
neighborhood arcs. For example, on Fig. 4, the e incident
0-cell (or object vertex) is the subgraph which contains
e, nodes reachable from e using arcs α1 and α2 labelled
(nodes c, e, g and i) and the arcs themselves. This sub-
graph is denoted by <α1α2> (e) and models the vertex
V2 of Fig. 2. On Fig. 4, the e incident 1-cell (or ob-
ject edge) is the subgraph <α0α2> (e) containing nodes
e, f ,g and h, and adjacent α0 and α2 arcs. It represents
the topological edge E3. Finally, the e incident 2-cell (or
object face) is the subgraph <α0α1> (e) and represents
the face F1. More generally, the notion of orbit may be
defined.

Definition 5 (n-topological graph and orbit) A I-labelled graph G is said to be an n-topological graph
if all arcs are labelled in CE = {α0, . . . ,αn}.

Let us consider o a subword5 of α0α1 . . .αn.
Let ≡G<o> be the equivalence orbit relation between G nodes defined as the reflexive, symmetric and

transitive closure built from arcs labelled by a label in o, i.e., ensuring that for each arc e of G labelled
in o, we have s(e)≡G<o> t(e).

For any node v of G, the <o>-orbit (also simply called orbit) of G adjacent to v is denoted by
G <o> (v) and is defined as the subgraph of G whose set of nodes is the equivalence class of v using
≡G<o>, whose set of arcs are those labelled on o between previous nodes, and such that source, target,
labelling functions are the restrictions of the corresponding functions on sets of nodes and arcs of the
equivalence class.

As G-maps are mathematically well defined, they come with consistency constraints.

Definition 6 (Generalised map) An n-dimension generalized map, or n-G-map, is a n-topological graph
G, that satisfies the following topological constraints :

• Non-orientation constraint: G is non-oriented, i.e. for each arc e of G, there exists a reversed
arc e′ of G, such as sG(e′) = tG(e), tG(e′) = sG(e), and lG,E(e′) = lG,E(e) ;

• Adjacent arc constraint: each node is the source node of exactly n+1 arcs respectively labelled
by α0 to αn;

• Cycle constraint: for every αi and α j verifying 0≤ i≤ i+2≤ j ≤ n, there exists a cycle6 labelled
by αiα jαiα j starting from each node.

These constraints ensure that objects represented by embedded G-maps are consistent manifolds
[8]. In particular, the cycle constraint ensures that in G-maps, two i-cells can only be adjacent along
(i−1)-cells. For instance, in the 2-G-map of Fig. 3(c), the α0α2α0α2 cycle implies that faces are stuck
along topological edges. Let us notice that thanks to loops (see α2-loops in Fig. 3(c)), these three con-
straints also hold at the border of objects.

5 αi1 . . .αik is a subword of α0α1 . . .αn if i1 . . . ik is a restricted increasing sequence of [0,n].
6A node v of a graph G has an adjacent cycle labelled l1 . . . lk if there is a path of arcs e1 . . .ek from v to v such e1, . . . , ek

are respectively labelled by l1, . . . , lk.

T. Bellet, A. Arnould & P. Le Gall 27

2.2 Embedded generalized maps

We started to define n-G-map as I-labelled graphs where the arc label set is CE = {α0, . . . ,αn}. We
now complete this definition with a family of node label sets to represent the embedding. Actually, as
sketched in the introduction, each kind of embedding label has its own type and is defined on a particular
kind of topological cell: for example, a point can be attached to a vertex, a color to a face. Thus, a node
labelling function lV,i composing the embedding will be equipped with two static pieces of information:
the kind of topological cells that is concerned by lV,i and the type of the data that are described by lV,i.
Based on algebraic specifications, a node labelling function is characterized by an embedding operation
π :<o>→ s where π is its operation name, s ∈ S is its type with S a given set of data types and <o>
is its domain given as an n-dimensional orbit type. Hence, for a G-map, the family of node label sets
(CV,π)π∈Π is defined by a set Π of embedding operations. For example, for the object of Fig. 2, the set of
embedding operations can be Π = {point :<α1α2>→ point type,color :<α0α1>→ color type} where
point type and color type are supposed to be appropriate data types. In particular, for an embedding
operation π :<o>→ s, CV,π will be a set of values of type s, according to some algebra interpreting all
the sorts involved by the embedding.

d

b

c

a

m n
l

j

k

i
g h

e f

B

B

B

B

C

C

C

C

A A

D

D E

E

Figure 5: Embedded 2-G-map

Moreover, as an embedding operation π :<o>→ s is characterized
by its domain cell, it is expected that on an embedded G-map, the
π-label, also called π-embedding (that is, the image by lV,π) is the
same for every node belonging to a common <o>-orbit. Hence, we
represent on Fig. 5 the embedded version of the object of Fig. 2. Let
us notice that this graphical representation is a simplification of the
full notation. For example, we only label a with its point label A
and color it with its color label instead of the full labelling (point :
A,color : dark grey). Hence, for the embedding operation point, a
and b are labelled by A, c,e,g and i by B, d, f ,h and j by C, k and m
by D, l and n are labelled by E. For the embedding operation color,
nodes a to f are labelled with dark grey and nodes g to n are labelled
with clear grey. Thus, on Fig. 5, for a domain <o>, every node of a
<o>-orbit has the same label. We express this property by embedding
constraints that embedded G-maps have to satisfy.

Definition 7 (Embedded generalised map) Let n be a dimension and Π a set of embedding operations.
An embedded n-dimentional generalised map on Π, or Π-embedded n-G-map, is an n-G-map G which
nodes are labelled by the family (CV,π)π∈Π, that satisfies the following embedding constraint :

Embedding constraint: for all embedding operations (π :<o>→ s) of Π, all nodes of a given
<o>-orbit of G are labelled with the same defined π-embedding i.e. for all nodes v and w of G, such
that v≡G<o> w then lV,π(w) 6=⊥ and lV,π(v) = lV,π(w).

Clearly, Π-embedded n-G-maps are Π-labelled graphs. To handle and compute data associated to
embedding operations, we define an algebra parameterised by a given Π-embedded n-G-map G. Let us
first note v.π the access to the π-label lG,V,π(v) of a node v of G. For example, on the embedded G-map
of Fig. 5, a.point is A and a.color is dark grey. Thanks to the topological adjacent arcs constraint, we can
also define link operations on G-map’s nodes that from a given node, give access to neighboring nodes.
So, for each node v of G and each arc label αi, v.αi is the only node v′ of G such that there exists an arc e
with sG(e) = v, tG(e) = v′ and lG,E(e) = αi. For example, on the embedded G-map of Fig. 5, a.α1 is the
b node, and a.α0.point is c.point i.e. B.

28 Rule-based transformations for geometric modelling

In the context of geometric modelling, it is common that operations collect all the π-embedding
values that are carried by nodes of a given cell. For example, the triangulation of a face collects all the
points associated to the face in order to compute the new point associated to the added center. Thus,
we consider the collection of a given embedding operation π carried by a given orbit <o> (v). The
notation π{<o> (v)} will denote the multiset of π-labels of all nodes of G <o> (v), that is, of the
<o>-orbit incident to node v of G. For example, on the embedded G-map of Fig. 5, point{<α0,α1,α2>
(a)} is the multiset {A,B,C,D,E} containing all points that correspond to point-labels of nodes of the
<α0,α1,α2>-orbit adjacent to the node a. Let us notice that our definition only keeps a point per
<α1,α2>-cell that intersects the initial cell, here the orbit <α0,α1,α2> (a). Thus, even if the point B
occurs four times as point-embedding of nodes of <α0,α1,α2> (a), that is for the nodes c, e, g and i,
there is an unique occurrence of the point B in point{<α0,α1,α2> (a)} since c, e, g and i belong to the
same 0-cell. To summarize, for an embedding operation π :<o′>→ s, the collect operation π{<o> (v)}
only keeps one π-embedding label per <o′>-orbit intersecting the <o>-orbit adjacent to v. Thus, the
collected multiset contains a π-label twice if two different <o′>-orbits have the same π-label. In our
example (cf. Fig. 5), each vertex has a different point-embedding and thus, each point appears only once
in the resulting multiset.

Definition 8 (Embedding expressions) Let Π be a set of embeddings for G-maps of dimension n.
An embedding signature ΣΠ = (SΠ,FΠ) is defined by:

• a set of embedding sorts SΠ which contains at least, the predefined sort Node, the sort s of each
embedding π :<o>→ s of Π and the associated sort Multi(s),

• a set of embedding operations FΠ such that each operation f ∈ FΠ is equipped with its profile in
S∗

Π
×SΠ denoted f : s1× ...× sn→ s. FΠ contains at least:
– access operation .π : Node→ s for each embedding π :<o>→ s of Π,
– link operation .αi : Node→ Node to any arc label αi,
– and collect operation π{< o′ > ()} : Node→Multi(s) for every embedding π :<o>→ s of

Π and any orbit type o′ of dimension n.

Let TΠ(V) be the set of embedding terms built on ΣΠ and a variable set V of sort Node.
Let G be a Π-embedded n-G-map. An embedding algebra AG is defined by:

• a set of values As for each sort s of SΠ, such that, ANode is the node set of G, and AMulti(s) is the
multiset of As values,

• a function f A : As1× ...×Asn → As for each operation f : s1× ...× sn→ s of FΠ, such that:
– .πA is defined on each node v of G by its π-label lG,V,π(v),
– .αA

i is defined on each node v of G by the target tG(e) of the only arc e of G such sG(e) = v
and lG,E(e) = αi,

– and π{< o′> ()}A is defined on each node v of G by the multiset7 {lV,π(w) |w∈W/≡G<o>}
where W is the node set of G < o′ > (v) and W/≡G<o> the quotient set.

The interpretation evalσ (t) of terms t of TΠ(V) using an assignment σ of variables V on G nodes, is
canonically defined with the interpretation functions of AG.

We suppose that usual data types as point type or color type are provided with usual operations as
the addition operation +, In the sequel, such operations are used without explicit definition. For
example, the operation mean computes the center of gravity of a multiset of points (type Multi(point)).

7Thanks to the embedding constraint verified by the embedded G-map G and equivalence relationship properties, this collect
interpretation is well defined.

T. Bellet, A. Arnould & P. Le Gall 29

3 G-maps rules

As G-maps are a particular class of Π-labelled graphs, we now investigate how operations can be defined
using graph transformation rules over G I (see Section 1). For example, the transformation of Fig. 6 adds
a new vertex to the central edge of the previous object. To be consistent, rules on embedded G-maps
need to preserve both the topological consistency and the embedding consistency. In this section, we
will give some conditions on rules to ensure the preservation of constraints in relation with topology
and embedding. In particular, this will allow us to state that the rule of Fig. 6 can be safely applied
to any embedded G-map, since the resulting graph is also an embedded G-map by construction. These
conditions will be extended in Section 4 to allow the user to use variables in order to handle rules that
are generic with respect to the embedding values.

(L)
g h

e f
B

B

C

C

(R)
g h

e f
B

B

C

C
q r

o p
F F

F F

(K)
g h

e f
B

B

C

C

d

b

c

a

m n
l

j

k

i
g h

e f

B

B

B

B

C

C

C

C

A A

D

D E

E

(G)

d

b

c

a

m n
l

j

k

i
g h

e f

B

B

B

B

C

C

C

C

A A

D

D E

E

(D)

d

b

c

a

m n
l

j

k

i
g h

e f

B

B

B

B

C

C

C

C

A A

D

D E

E

(H)

q r

o p
F F

F F

Figure 6: A simple G-map transformation

To ensure the topological consistency, we have defined in [9] the following syntactic conditions on
rules.

Definition 9 (Topological consistency preservation) For a rule r : L←↩K ↪→R over G ⊥, the conditions
of topological consistency preservation are:

• Non-orientation condition: both L, K and R are non-oriented graphs;

• Adjacent arcs condition:

– adjacent arcs of preserved nodes of K have the same labels on both the left-hand side and
right-hand side;

– removed nodes of L\K and added nodes of R\K must have exactly n+ 1 adjacent arcs re-
spectively labelled with α0 to αn;

30 Rule-based transformations for geometric modelling

• Cycles condition:

– an added node of R\K must have with all αiα jαiα j-labelled cycle for 0≤ i≤ i+2≤ j ≤ n;
– if a preserved node of K belongs to a αiα jαiα j-labelled cycle in L, it must belong to an

αiα jαiα j-labelled cycle in R;
– if a preserved node of K belongs to an incomplete αiα jαiα j-labelled cycle in L, then its αi

and α j-labelled arcs are preserved in R.

In the following, only rules that satisfy these topological conditions are considered. Below, we
introduce syntactic conditions that ensure the embedding consistency of constructed objects.

Theorem 2 (preservation of the embedding consistency) Let r : L←↩ K ↪→ R be a graph transforma-
tion rule over G I that satisfies conditions of topological consistency preservation, G a Π-embedded G-
map and m : L→ G a match morphism. The direct transformation G⇒r,m H produces an Π-embedded
G-map H if the following conditions of embedding consistency preservation are satisfied, for all embed-
ding π :<o>→ s ∈Π:

• All nodes of an <o>-orbit of R are labelled with the same π-embedding, defined or not - i.e. for
all nodes v and w of R such that v≡R<o> w, either lR,V,π(v) = lR,V,π(w) with lR,V,π(v) 6=⊥, or they
are both not labelled lR,V,π(v) =⊥ and lR,V,π(w) =⊥.

• If a node v of R is an added node of R\K or a preserved node of K such that its π-label is changed,
then R <o> (v) is a complete orbit - i.e. if v ∈ VR\VK or v ∈ VK with lL,V,π(v) 6= lR,V,π(v), then
every node of R <o> (v) is the source of exactly one arc labelled by αi for each label αi of o.

(L)
g h

e f
B

B

C

C

(R)
g h

e f
F

F

C

C

(K)
g h

e f
C

C

(a) Incomplete redefinition

(L)
g h

e f
B

B

C

C

(R)
g h

e f
B

B

C

C
q r

o p
F G

F G

(K)
g h

e f
B

B

C

C

(b) Non-consistent added vertex

Figure 7: Two non-consistent rules, not satisfying conditions of Th. 2.

These conditions prevent the partial redefinition of an embedding. For example, the rule of Fig. 7(a)
tries to redefine the point B by F . But the topological vertex (defined as a <: α1,α2 >-orbit) is not fully
matched by the rule (α1 is missing) and so it cannot be applied on the G-map of Fig. 5 without breaking
the embedding constraints. Indeed, if the rule was applied, node e and g would be labelled by point F
while c and i would still be labelled by point B. In the same way, the rule of Fig. 7(b) would add to the
G-map a non-consistent new vertex embedded with two different points F and G.
Proof. The proof of this theorem can be found in the technical report [1] which contains the full length
version of this paper. �

T. Bellet, A. Arnould & P. Le Gall 31

4 G-map rule schemes

Simple rules on G-maps are quite limited. Actually, in the general context of graph transformations,
rules without variables are sufficient if it is possible to write all possible transformations. In the context
of geometric modeling, both the topological graph structure and the embedding node labelling are not
predefined. The topological transformation depends on the original shape of the cell to transform (its
number of vertices, edges, etc.). This issue has been solved by [10, 9] with the introduction of rule
schemes based on topological variables. These variables allow us to represent both the matched topolog-
ical cells and their transformations. For example, a topological variable of type < α0,α1 > can represent
any arbitrary 2-cell such that the topological triangulation operation can be applied to a triangle, a square
or a pentagon. A topological rule scheme is then instantiated according to a substitution of the given
variable by a 2-cell of the G-map to be transformed. Such an instantiation builds a transformation rule
that meets the conditions of topological consistency preservation (provided that the scheme rule also
meets some conditions given in [10, 9]). In the same way, the embedding transformation depends on the
original embedding of the matched cell. For example, usually, when a face is triangulated, the central
position of the added vertex depends on the positions of existing vertices. With the simple framework of
Section 3, there should be as many rules as possible vertex positions. We introduce embedding variables
to get rule schemes that will be instantiated according to the different possible values associated to the
variables.

These variables are based on the notion of attributed variables introduced by [5]. The variables label
nodes of the left-hand side of rules in order to match the existing labels of the object. In the right-hand
side, new labels are defined as expressions upon these variables. These algebraic expressions are then
interpreted when rules are applied. For example in Fig. 8, the variables x and y of the left-hand side can
match any labels and the expression x+ y of the right-hand side should be evaluated according to the
values provided by the match morphism in order to define the label of the new node 4. To apply this rule
to an object, we instantiate the variables of the rule with the corresponding values of the matched object
to obtain a classical rule that is applied as a direct transformation.

(R)

1 4

a a

21 2

3

x ya x yx+y

(L) (K)

1 2

yx

Figure 8: A rule with attributed variables

As in our case, nodes have multiple labels, rules can have a variable per node and per embedding
operation to define transformations. To simplify computations on embedding values, we use embedding
expressions introduced in Section 2. For example, on Fig. 9(a), the rule translates by a vector ~P the points
associated to the nodes a and b. The color associated to node b is redefined while the color associated to
a is not matched by the rule and, as a consequence, not transformed. On Fig. 9(b) we use a simplified
notation. As there is no ambiguity on the type of the expressions, they are not explicitly typed. In the
same way, the unmatched color of a is not represented. Moreover, for lack of space, the expressions will
often be placed below the graph and referenced by a number. For example, the node a is labelled by the
number 1 that represents the expression a.point +

−→
P associated to (1).

Let us notice that in the example of Fig. 9, this notation allows us to not explicitly label both the
left-hand side and the kernel of the rule in order to match the embedding. Expressions on variable
names allow us to directly compute new labels in the right-hand side. For example, on Fig. 10(a), when

32 Rule-based transformations for geometric modelling

point:a.point+P
color:⊥

(R)
a

!
point:b.point+P

color:RED

b

!

(L)
ba

(K)
a b

(a) Full notation

(L)
ba

(K)
ba

(R)

ba
1,21

(1) a.point+P
(2) a.point+P (3) RED

!
!

(b) Simplified notation

Figure 9: Translation of an isolated vertex

the edge is split, the center is computed with the expression (e.point + f .point)/2 while the preserved
nodes keep their original embedding. In order to apply the rule of Fig. 10(a) to object of Fig. 5 along
the inclusion match morphism, the variables have to be instantiated and expressions computed. For
example on Fig. 10(b), e.color and g.color are respectively instantiated by dark grey and light grey
and the new point is computed as (B+C)/2. However, even with such evaluation and computation
mechanisms, the rule cannot be directly applied. The instantiation mechanism has also to complete the
orbits of redefined embedding values. Indeed, rule schemes describe the modification in a minimal way.
In particular, for an embedding operation π :<o>→ s, we have to deal with indirect modifications for
nodes belonging to an <o>-orbit of a node whose π-embedding is modified by the rule. For example,
as the color-embedding labels are redefined for the node e, f , g and h (in the present case they remain
the same), then, potentially, the color-embedding of all nodes that belong to an < α0,α1 >-orbit of one
of these nodes can be modified by the transformation rule application. For this reason, for a given match
morphism, the instantiation mechanism will both substitute the embedding variables and complete the
pattern under modification to include all possible indirect modifications (in Fig. 10(b), the completion
mechanism will consider the full triangle and the full square in order to redefine colors). The application
of the instantiated rule to the object is then the classical rule application (as described in Section 3).

The rule schemes allow us to compute new embedding values by using expressions introduced in
Section 2. For example, the rule scheme of Fig. 11(a) defines the triangulation of a triangle. A vertex
is added at the center of the face, and its associated point is defined by the expression mean(point{<
α0α1> (a)}) as the mean of the points of the face. This expression is interpreted by mean{A,B,C}
when rule is instantiated on Fig. 11(b) to be applied on object Fig. 2. Simultaneously, the colors of faces
created by triangulation are defined as the mean between the original face color and the color of their
respective adjacent faces. For example, the left/up side face color is defined as (a.color+a.α2.color)/2
where the expression a.α2 represents a node of the adjacent face (or the node itself if there is no adjacent
face). When this rule is instantiated on Fig. 11(b), a.α2.color is instantiated by the color of a, b.α2.color
by the color of b and e.α2.color by the color of g. Let us notice that for this instantiation, the face
is fully matched by the rule scheme and so the face orbit does not have to be completed to define the
color properly. At the opposite, the vertex orbits corresponding to the embedded points B and C are not
fully matched but they have to be completed with g, h, i and j by the instantiation mechanism since
point-embeddings are redefined for the nodes e and f .

T. Bellet, A. Arnould & P. Le Gall 33

(L)
g h g q r h

e f e fo p

(1) (e.point+f.point)/2
(2) e.color (3) g.color

(R)

(K)
g h

e f
2

3 3

21,2 1,2

1,31,3

(a) Rule scheme

d

b

c

a

m n
l

j

k

i
g h

e f
d

b

c

a

m n
l

j

k

i
g h

e f
d

b

c

a

m n
l

j

k

i
g h

e f

q r

o p

(Linst) (Kinst) (Rinst)

(1) (B+C)/2

1 1

11

(b) Instantiated rule

Figure 10: Edge splitting scheme

Definition 10 (Graph scheme) Let G be a Π-embedded n-G-map. Let us consider an embedding sig-
nature ΣΠ and its corresponding embedding algebra AG.

A graph scheme H on TΠ(V) is a Π-labelled graph on terms of TΠ(V).
Let σ : V → VG be an interpretation of the variables, the evaluation evalσ (H) of the graph H is the

Π-labelled graph that has the same base (evalσ (H)⊥ = H⊥) such as for each embedding operation π of
Π, levalσ (H),V,π = lH,V,π ◦ evalσ .

Definition 11 (Rule scheme) Let Π be a set of embedding operations of dimension n and ΣΠ an embed-
ding signature.

A rule scheme rT : LT ←↩ KT ↪→ RT on ΣΠ is defined by two inclusion morphisms KT ↪→ LT and
KT ↪→ RT between the graph schemes LT , KT and RT on TΠ(VL) such that:

• node labels of LT (and so, labels of KT) are undefined - i.e. LT = Ππ∈Π(pro jπ(LT)⊥);

• RT satisfies the embedding constraints of Definition 7.

The instantiation mechanism of a rule scheme is constructive and based on the match morphism
m : LT →G between the left-hand side of the scheme rule LT and the embedded G-map G on which the
rule schema is applied. The main underlying idea is basically to build from the considered pattern (LT ,
KT or RT) and from the match morphism m, a graph completed with all nodes (and arcs) belonging to
orbits whose embedding values can potentially be modified by the application of the rule. The resulting
graphs are respectively denoted as L[m], K[m] and R[m].

34 Rule-based transformations for geometric modelling

e f

d

b

c

a

g h

i j

k l
m n

o p
q r

(R)

(1) a.point (2) c.point
(3) d.point
(4) mean(point{<α0α1>(a)})
(5) (a.color+a.α2.color)/2
(6) (b.color+b.α2.color)/2
(7) (e.color+e.α2.color)/2

e f

d

b

c

a

(L)

2,7e f

d

b

c

a

(K)

2,5
2,6

4,5

4,5

1,5

1,5 1,6

1,6

4,6

4,6

3,7
3,6

3,7
3,8

4,74,7

2,7

(a) Rule scheme

e f

d

b

c

a

g h

i j

k l
m n

o p
q r

ji

g h

B

C

A A

C

C
C

C

C

B

B
B

BB

A A

1

1 1

1

11

(Rinst)

(1) mean({A,B,C})

e f

d

b

c

a

ji

g h

B

C

A A

C

C

C

B

B

B

(Linst)

e f

d

b

c

a

ji

g h

(Kinst)

(b) Instantiated rule

Figure 11: Triangulation scheme

• the left hand-side L[m] of the instantiated rule will consist of all matched nodes together with nodes
whose embedding values can be indirectly modified and of all associated embedding values.

• similarly, the kernel K[m] will be built following the same construction, but without node labels.

• the right hand-side R[m] will include K[m] and be completed with added parts and labels of RT

that are evaluated.

Definition 12 (Rule scheme instantiation) Let Π be a set of embedding of dimension n and ΣΠ an em-
bedding signature. Let rT : LT ←↩KT ↪→RT be a rule scheme on ΣΠ, m : LT →G be a match morphism
on a Π-embedded n-G-map G, and AG be a ΣΠ-embedding algebra.

The instantiated rule r[m] : L[m]←↩ K[m] ↪→ R[m] is defined by

• L[m] = LsatΠ×VKT
(LT),

• K[m] = KsatΠ×VKT
(KT),

• and R[m] = RsatΠ×VKT
(RT),

where the saturation operators Lsat, Ksat and Rsat are recursively defined on Π×VKT .
Let us define the saturation operators Lsat, Ksat and Rsat by the following induction principle over

the elements of the set Π×VKT :

T. Bellet, A. Arnould & P. Le Gall 35

• base case Π×VKT = /0.

Let σm : VLT →VG be the substitution that associates to each node v of LT its image m(v) along the
match morphism m.

Lsat /0(LT), Ksat /0(KT) and Rsat /0(RT) are the graphs respectively isomorphic to m(LT) (the node
images with all their embedding values and arcs issued from LT), Prodπ∈Π(pro jπ(m(KT))⊥) and
evalσm(RT) such that the following inclusions exist: Lsat /0(LT)←↩ Ksat /0(KT) ↪→ Rsat /0(RT).

Let hLsat /0 : LT → Lsat /0(LT) be the morphism that associates each node v of LT to the node of Lsat /0
isomorphic to m(v).

Let gLsat /0 : Lsat /0(LT)→G that associates each node of Lsat /0(LT) that is isomorphic to m(v) to m(v)
itself. In particular, for all node v of LT , gLsat /0(hLsat /0(v)) = m(v).

• induction step Π×VKT 6= /0

Let note a subset PV ⊂Π×VKT , a Π-labelled rule LsatPV (LT)←↩ KsatPV (KT) ↪→ RsatPV (RT), and
two morphisms hLsatPV : LT → LsatPV (LT) and gLsatPV : LsatPV (LT)→ G.

Let π :<o>→ s ∈Π and v ∈VKT with (π,v) 6∈ PV .

Let us construct Lsat{(π,v)}∪PV (LT) with the appropriate morphisms.

LsatPV (LT)<o> (hLsatPV (v))
b

uullllllllllllllll � w

a

**TTTTTTTTTTTTTTTT
LT

hLsatPV

yytttttttttt

(∗)
d

((RRRRRRRRRRRRRRR (1) LsatPV (LT)

c

uujjjjjjjjjjjjjjj gLsatPV

%%JJJJJJJJJJJ

Lsat{(π,v)}∪PV (LT) gLsat{(π,v)}∪PV

(2)
// G

where(∗)pro jπ(G¡o¿(m(v)))×Prodπ ′∈π\π pro jπ ′(G¡o¿(m(v)))⊥

Let us define the morphisms

• a : LsatPV (LT)<o> (hLsatPV (v)) ↪→ LsatPV (LT)

• and b : LsatPV (LT)<o> (hLsatPV (v))→ pro jπ(G¡o¿(m(v)))×Prodπ ′∈Π\π pro jπ ′(G¡o¿(m(v)))⊥
such that for all node or arc x of LsatPV (LT)<o> (hLsatPV (v)), b(x) = gLsatPV (x).

Let us define Lsat{(π,v)}∪PV (LT) as the pushout (1) of a and b defined by

• c : LsatPV (LT)→ Lsat{(π,v)}∪PV (LT)

• and d : pro jπ(G¡o¿(m(v)))×Prodπ ′∈Π\π pro jπ ′(G¡o¿(m(v)))⊥→ Lsat{(π,v)}∪PV (LT).

Let hLsat{(π,v)}∪PV = c◦hLsatPV .

And let gLsat{(π,v)}∪PV : Lsat{(π,v)}∪PV → G be the morphism such as diagram (2) is commutative and
gLsat{(π,v)}∪PV ◦d be the identity for all node or arc x of pro jπ(G¡o¿(m(v)))×Prodπ ′∈Π\π pro jπ ′(G¡o¿(m(v)))⊥
(that is always possible because (1) and (2) are commutative).

In particular, for all node v of LT , gLsat{(π,v)}∪PV (hLsat{(π,v)}∪PV (v)) = m(v) because (2) commutes and
the induction hypothesis on LsatPV and its associated morphism.

The construction of KsatΠ,VKT
(KT) and RsatΠ,VKT

(RT) is similar with a difference in the labelling
along b and d. For the kernel, as we want no label, we use Prodπ∈Π pro jπ(G¡o¿(m(v)))⊥ instead
of pro jπ(G¡o¿(m(v)))×Prodπ ′∈Π\π pro jπ ′(G¡o¿(m(v)))⊥. In the same way, for the right hand-side,

36 Rule-based transformations for geometric modelling

as we want expression interpretations as node labels, we use (pro jπ(G¡o¿(m(v))))evalσm(lRT ,V,π (v))×
Prodπ ′∈Π\π pro jπ ′(G¡o¿(m(v)))⊥ instead of pro jπ(G¡o¿(m(v)))×Prodπ ′∈Π\π pro jπ ′(G¡o¿(m(v)))⊥.
The following inclusions hold: Lsat{(π,v)}∪PV (LT)←↩ Ksat{(π,v)}∪PV (KT) ↪→ Rsat{(π,v)}∪PV (RT).
Finally, the result match morphism m∗ : L[m]→ G is m∗ = gLsatΠ×VKT

.

Let us note that the inclusion morphism a always exists, by definition of orbits. For the left-hand and
kernel parts, it is clear that b exists, since all added graphs during saturation are included in G. For the
right-hand part, existence of b depends on the condition imposed on RT by the rule scheme definition.
Thus, the saturation with (π,v) and (π,w) for two nodes that belong to the same orbit (ie v ≡RT <o> w
where <o> is the domain of π) adds the same graph. Especially, lRT ,V,π(v) = lRT ,V,π(w), and thus
pro jπ(G¡o¿(m(v)))evalσm(lRT ,V,π (v)) = pro jπ(G¡o¿(m(w)))evalσm(lRT ,V,π (w)).

At each saturation step, graphs added to the left-hand side, to the kernel, and to the right-hand side
have the same base. Thus, the double inclusion always exists with an adequate choice of node names and
arc names.

The saturation order of (π,v) couples does not matter, because the construction of the morphism b
guarantees an unique addition of nodes and arcs of G (or their isomorphisms) to the instantiated rule.

Theorem 3 (preservation of embedded G-map’s consistency) Let Π be a set of embedding of dimen-
sion n, rT : LT ←↩ KT ↪→ RT be a rule scheme and m : LT →G be a match morphism on a Π-embedded
n-G-map G. If rT satisfies the conditions of topological consistency preservation for m, the direct trans-
formation G⇒r[m],m∗ H with the instantiated rule r[m] exists and produces a Π-embedded n-G-map H.

Proof. The proof of this theorem can be found in the technical report [1]. �

Conclusion

In this article, in the context of topology-based geometric modelling, we have proposed a representation
of embedded n-dimensional objects as a particular class of I-labelled graphs. Nodes have as many labels
as there are different kinds of data to represent the geometric embedding. The category of I-labelled
graphs is defined as a natural extension of the partially labelled graphs defined in [4]. Considering the
modelling operations, we extend a rule-based language [10] used to define topological operations. We
introduce embedding variables and expressions on rule node labels to deal with the computation of the
embedding of constructed objects. The resulting language allows to define geometric operations in an
easy and safe way, as constraints on rules ensure both topological and geometric consistency.

Moreover, we have already designed a first prototype of a topology-based geometric modeler, but
only for pure topological operations described with rule schemes based on topological variables [9]. As
previously mentioned, these variables allow us to define topological operations independently from the
size of cells, that is, from the number of nodes constituting the cell to be filtered. For example, it allows
us to define the topological triangulation of a triangle, a square, or any face with a single generic rule.
The tool can be seen as a rule-application engine dedicated to our topological transformation rules [2].
It allows us to quickly design and implement a modeler by specifying both its topological dimension
and its set of application dedicated rules. For usual topological operations, the prototype efficiency is
comparable to other topology-based geometric modelers based on G-maps. An unquestionable benefit of
our approach is that topological operations can be quickly designed and implemented and that prototyped
modelers are easily and safely extensible [2]. We are now extending this first prototype with embedding
variables to deals with geometric operations. The combination of the two kind of variables has still to be
formalized but the first developments attest of their compatibility.

T. Bellet, A. Arnould & P. Le Gall 37

References
[1] T. Bellet, A. Arnould & P. Le Gall (2011): Rule-based transformations for geometric modeling. Research

Notes 2011-1, XLIM-SIC, UMR CNRS 6172, University of Poitiers.
[2] T. Bellet, M. Poudret, A. Arnould, L. Fuchs & P. Le Gall (2010): Designing a topological modeler kernel: a

rule-based approach. In: Shape Modeling International (SMI’10) Shape Modeling International (SMI’10).
Aix-en-Provence, France.

[3] H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006): Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science. An EATCS Series). Springer-Verlag New York, Inc. Secau-
cus, NJ, USA.

[4] A. Habel & D. Plump (2002): Relabelling in Graph Transformation. In: Graph Transformation, First Inter-
national Conference, ICGT. Lecture Notes in Computer Science 2505, Springer, pp. 135–147.

[5] B. Hoffmann (2005): Graph transformation with variables. Formal Methods in Software and System Mod-
eling 3393, pp. 101–115.

[6] P. Lienhardt (1989): Subdivision of n-dimensional spaces and n-dimensional generalized maps. In: Annual
Symposium on Computational Geometry SCG’89. ACM Press, Saarbruchen, Germany, pp. 228–236.

[7] P. Lienhardt (1991): Topological models for boundary representation: a comparison with n-dimensional
generalized maps. Computer-Aided Design 23(1), pp. 59–82.

[8] P. Lienhardt (1994): N-dimensional generalised combinatorial maps and cellular quasimanifolds. Interna-
tional Journal on Computational Geometry and Applications (IJCGA) (3), pp. 275–324.

[9] M. Poudret (2009): Transformations de graphes pour les opérations topologiques en modélisation
géométrique, Application à l’étude de la dynamique de l’appareil de Golgi. Thèse, Université d’Évry val
d’Essonne, Programme Epigénomique.

[10] M. Poudret, A. Arnould, J.-P. Comet & P. Le Gall (2008): Graph Transformation for Topology Modelling. In:
4th International Conference on Graph Transformation (ICGT’08). LNCS 5214, Springer, Leicester, United
Kingdom, pp. 147–161.

[11] M. Poudret, J.-P. Comet, P. Le Gall, A. Arnould & P. Meseure (2007): Topology-based Geometric Modelling
for Biological Cellular Processes. In: 1st International Conference on Language and Automata Theory and
Applications (LATA 2007). Tarragona, Spain. Http://grammars.grlmc.com/LATA2007/proc.html.

	1 Transformation rules for I-labelled graphs
	1.1 Category of I-labelled graphs

	2 G-maps
	2.1 The topological graph
	2.2 Embedded generalized maps

	3 G-maps rules
	4 G-map rule schemes

