
R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 41–55, doi:10.4204/EPTCS.110.6

Evaluating functions as processes

Beniamino Accattoli
Carnegie Mellon University - Pittsburgh, PA, US

A famous result by Milner is that theλ -calculus can be simulated inside theπ-calculus. This simu-
lation, however, holds only modulo strong bisimilarity on processes, i.e. there is a slight mismatch
betweenβ -reduction and how it is simulated in theπ-calculus. The idea is that evaluating aλ -term in
theπ-calculus is like running an environment-based abstract machine, rather than applying ordinary
β -reduction. In this paper we show that such an abstract-machine evaluation corresponds to linear
weak head reduction, a strategy arising from the representation of λ -terms as linear logic proof nets,
and that the relation between the two is as tight as it can be. The study is also smoothly rephrased in
the call-by-value case, introducing a call-by-value analogous of linear weak head reduction.

Introduction

A key result about the expressiveness of theπ-calculus is that it can represent theλ -calculus, as it has
been showed by Robin Milner [33]. During the nineties the relationship between the two systems has
been explored in-depth, mostly by Davide Sangiorgi [36, 37]and Gérard Boudol [14, 13]. Nowadays,
it takes a relevant part in the standard reference for theπ-calculus [38], and in any introductory course
about it. From the process calculus point of view, it helps ingetting deeper insights into its theory,
especially because theπ-calculus is far less canonical then theλ -calculus. From theλ -calculus point of
view, it provides new tools to analyze the behavior ofλ -terms and the dynamics ofβ -reduction.

The idea is that theπ-calculus can be considered as a sort of flexible abstract machine to which the
λ -calculus can be compiled in various ways. There are in fact various encodings, each one corresponding
to a particular evaluation strategy in theλ -calculus. In particular, Milner showed that Plotkin’s call-by-
name and call-by-value strategies [35] can be both faithfully represented.

The way in which the representation isfaithful, however, is quite subtle. It is looser than what one
might expect, as the diagram in Figure 1.adoes not hold. It is only possible to get the diagram in
Figure 1.b:Pt , the process representingt, does not reduce toPs, but to a processQ which is strongly
bisimilar to Ps. One might think that a better encoding could solve this problem, but this is a naı̈ve
expectation: the two systems compute in radically different ways, the mismatch is inherent. In Milner’s
resultPs andQ are strongly bisimilar, which means that they behave the same externally, i.e. in their

a)

t s

Pt Ps

β

*
π

c)

t s

Pt

⇒

t s

Pt Psπ

b)

t

Pt Q∼ Ps

s
β

*
π

d)

t

Pt Psπ

⇒∃ss.t.

t

Pt Ps

s

π

Figure 1: Diagrams describing the relationship between terms and processes.

http://dx.doi.org/10.4204/EPTCS.110.6

42 Evaluating functions as processes

interactions with every possible environment. However, the two processes behave in a quite different
way internally, i.e. with respect to reductions. The discrepancy concerns the granularity of evaluation:
λ -calculus uses a coarse, big-step substitution rule, whiletheπ-calculus evaluates in small, fine-grained
steps, as an abstract machine. Nonetheless, the evaluationof t terminates if and only if the evaluation of
the corresponding processPt terminates. In this sense, the representation is sometimessaid to be sound
and complete.

This paper refines the relationship between theλ -calculus and theπ-calculus by extending the former
with explicit substitutions—which may be considered as an alternative to abstract machines—in order to
get a closer match of reduction steps. In the call-by-name case we show that the strategy corresponding to
the evaluation in theπ-calculus is exactlylinear weak head reduction⊸, the small-step head strategy of
linear logic proof nets [29, 3]. This notion of evaluation has connections with Krivine’s abstract machine
[20], Bohm’s separation theorem [29], computational complexity [9], the geometry of interaction [19],
game semantics [18, 17], and the differentialλ -calculus [24]. The relationship shown here is extremely
strong. It is represented in the diagrams in Figure 1.c-d, which hold modulo structural equivalence only.
They express the fact that the translation is a strong bisimulation with respect to reduction(note thatone
step maps toonestep, and vice-versa).

The relationship between theπ-calculus and linear logic has been analyzed from various points of
view [31, 1, 12, 11, 27, 23, 15]. Our study essentially refinesthe work of Caires, Pfenning, and Toninho
in [39], where the encodings of theλ -calculus in theπ-calculus are re-understood as the encodings of
λ -calculus into linear logic (due to Girard [26], see also [28]). The refinement consists in looking to
such encodings via linear logic proof nets, but replacing the explicit use of proof nets with the lighter and
equivalent reformulations as calculi of explicit substitutionsat a distance, developed in [7, 8, 2, 10, 3, 5].

Contributions. In some sense there is not much original content in this paper. Damiano Mazza’s
master thesis [30] (in French and unpublished) already developed the connection with linear weak head
reduction. Similar ideas are sketched by Boudol in the introduction of [13]. Also, Milner’s seminal
paper already suggested to use some environment device to refine the encodings, an idea that has then
been explored by Vasconcelos [40] and recently by Cimini, Sacerdoti Coen, and Sangiorgi [16].

What is original here is the presentation. Our approach provides a remarkably compact develop-
ment, confirming the relevance of explicit substitutionsat a distanceas a very flexible syntactical tool.
Our presentation simplifies in the extreme Mazza’s study, byexploiting the simpler and more manage-
able reformulation of weak linear head reduction in thelinear substitution calculus[9, 3]. In addition,
by clarifying the connection with a crucial concept in the theory of linear logic, we get an important
corollary for free. In [9] it is proven that linear head reduction is at most quadratically longer than head
reduction, and this result holds also with respect to the weak (i.e. not under lambdas) variants of these
reductions1. Plotkin’s call-by-name strategy is the same thing as weak head reduction. Consequently, we
get a quadratic relation between the call-by-name strategyand the evaluation in theπ-calculus, which is
a non-trivial quantitative refinement of Milner’s result.

However, our contribution is not only about the presentation. The study of call-by-name is comple-
mented by the study of a call-by-value encoding, from which we extract a call-by-value⊸v analogous
of linear weak head reduction, which has never been considered before. We also show that this new
strategy enjoys the analogous of thesubterm property[9] of linear weak head reduction, which is the
basic property for complexity analysis. Last but not least,we give a presentationat a distanceof the

1The upper bound in [9] is exact, and it is based on a trasformation of reductions which applies to arbitrary reduction
sequences, in particular even to non-terminating terms. For instance, the quadratic bound is reached by the evaluationof
(λx.xx)λx.xx, which is weak.

B. Accattoli 43

rewriting rules of theπ-calculus which is a contribution of independent interest.
Despite the compactness of the presentation, the details turned out to be quite delicate. The use

of distance rules, which are rewriting rules involving contexts (i.e. terms with holes), is crucial. They
reflect on terms the local rules of linear logic proof nets, and they are essential in order to get a strong
bisimulation of reductions. These contexts can capture variables and names, a fact which requires a
very careful analysis of the translations. This is why we present the proofs of the translation in details,
almost certifying the result. Moreover, we use colors to ease the reading, so we suggest to read the paper
simultaneously on paper and on a computer screen.

The relationship with proof nets. Proof nets do not appear in this paper, we limit ourselves tothe
equivalent formulations as calculi at a distance. However,for the call-by-value calculus the detailed
correspondence between terms and proof nets can be found in [5] (which uses big-step rules, while here
we use small-step rules), for call-by-name the interested reader may have a look to [7, 2] (that do employ
small-step rules, but in a slightly different way). On proofnets, linear head reduction is the small step
strategy which reduces only the cuts at level 0 which do not involve the auxiliary conclusions of !-boxes.
The weak variant can be defined in exactly the same way if boxesare also used for̀ (which in this
context rather corresponds to the right rule for linear implication in intuitionistic linear logic, and not to
the` of classical linear logic). Using boxes for linear implication is lessad-hocthan it may seem at first
sight; a technical discussion of this issue is in Section 6 of[5]. This paper provides another justification
for such boxes: they are needed to properly reflect evaluation in theπ-calculus.

Plan of the paper.Section 1 introduces the linear substitution calculus, andSection 2 introduces the
presentation of theπ-calculus that we use. Sections 3 and 4 study the call-by-name and the call-by-value
encodings, respectively.

Acknowledgements.To Frank Pfenning, for having encouraged me to work out the details of this
work, and to Damiano Mazza, for inspiration and comments on an early draft. This work was partially
supported by the Qatar National Research Fund under grant NPRP 09-1107-1-168.

1 The linear substitution calculus

The language of thelinear substitution calculusλlsub is given by the following grammar for terms:

t,s,u, r ::= x | λx.t | ts | t[x/s]

The constructort[x/s] is called anexplicit substitution(of s for x in t, the usual (implicit) substitution is
instead notedt{x/s}). Both λx.t andt[x/s] bind x in t. We are not going to define the full calculus (for
which we refer to [9, 3]), but only linear weak head reduction. However, let us point out that the linear
substitution calculus is a variation over a calculus of explicit substitutions introduced by Robin Milner
in [34], to analyze the translation ofλ -calculus to Bigraphs.

We shall use contexts extensively, so we define them formally. In particular, we need to specify the
set∆ of variables captured by a given context. A weak head context, or simply anevaluation context, is
a term of the following grammar (to ease the reading on screenall contexts will be in blue):

E/0 ::= L · M | E/0t E∆⊎{x} ::= E∆[x/t] | E∆⊎{x}t

A special case of evaluation context is given bysubstitution contexts, notedL∆ and defined by:

L /0 ::= L · M L∆⊎{x} ::= L∆[x/t]

Definition 1. Linear weak head reduction⊸ is defined as the union of⊸dB and⊸ls, which are given
by the closure by evaluation contexts (i.e.⊸dB:= E∆[7→dB] and⊸ls:= E∆[7→ls]) of the rules7→dB and
7→ls defined as:

44 Evaluating functions as processes

L∆Lλx.tMs 7→dB L∆Lt[x/s]M E∆LxM[x/s] 7→ls E∆LsM[x/s] with x /∈ ∆

The rule 7→ls implicitly assumes the side-conditionfv(s)∩∆ = /0. The assumption is implicit be-
cause it can always be guaranteed byα-conversion: ifu= E∆LxM[x/s] andfv(s)∩∆ 6= /0 then there exist
a set of variablesΣ and an evaluation contextFΣ s.t. u=α FΣLxM[x/s] andfv(s)∩Σ = /0.

These rule areat a distance, because their definition involves contexts, which is how locality on proof
nets is reflected on terms. In Milner’s calculus the first ruledoes not useL∆L · M. This is not a detail: the
results in this paper would not hold with respect to Milner’soriginal presentation.

It is natural to wonder in which sense the linear substitution calculus islinear. In contrast to other
linear calculi, variables may have multiple occurrences, and arguments are not forced to be used only
once. A first superficial linear aspect of the calculus is thatvariable occurrences are substituted one at the
time. A second much deeper aspect is that its head strategy—characterized by a factorization theorem
in the same way as head reduction inλ -calculus [3]—islinear head reduction, whose main feature is
thesubterm property(namely: any subtermu which is duplicated at any point of a reductiont ⊸k s is a
subterm oft, whose size then does not depend onk) which implies that the implementation cost ofevery
step is linear (in the size oft, the parameter for complexity). This is a fundamental property, not enjoyed
by any strategy inλ -calculus (for which the cost of one step is not even polynomial in the size oft),
and which opens the way to the study of computational complexity [9]. Here we deal with linearweak
head reduction, which forbids reduction under abstractions. The restriction does not affect the subterm
property.

2 The π-calculus

The fragment of theπ-calculus we use here is essentially the asynchronous calculus in [21] with both
unary and binary inputs and outputs, morally correspondingto the exponential and the multiplicative con-
nectives of linear logic (in the typed case of [21]) and without sums (which correspond to the additives).
The only change is that we do not use their forwarding processes2. The grammar is:

P,Q,R ::= 0
∣

∣ x〈y〉
∣

∣ x〈y,z〉
∣

∣ νxP
∣

∣ x(y,z).P
∣

∣!x(y).P
∣

∣ P | Q

We need a notion of context also for processes. Anon-blocking context is given by:

N /0 ::= L · M
∣

∣ N /0 | Q
∣

∣ P | N /0 N∆⊎x ::= νxN∆
∣

∣ N /0LN∆⊎xM

The language is considered modulostructural congruence, i.e. the minimum equivalence relation gen-
erated by the following rules and closed by non-blocking contexts:

P | 0≡ P P | (Q | R)≡ (P | Q) | R P | Q≡ Q | P

νx0≡ 0
x /∈ fn(P)

P | νxQ≡ νx.(P | Q)
νxνyP≡ νyνxP

In order to prove the simulation theorems we will use the following three properties of≡, proved by
easy inductions onN∆, P, andN∆, respectively (the set of free variables of a context is defined as for
processes but usingfn(L · M) = /0).

Lemma 2. Let ∆ be a set of variables,N∆ a non-blocking context, P a process s.t.fn(P)∩∆ = /0, and
x,y /∈ ∆. Then:

2Forwarding processes correspond to axioms in linear logic.In terms of proof nets, avoiding forwarding processes corre-
spond to use an interaction nets presentation,i.e. to work modulo cut-elimination on axioms.

B. Accattoli 45

1. N∆LQM | P≡ N∆LQ | PM.

2. If x /∈ fn(P) thenνxP≡ P.

3. If x /∈ fn(N∆) thenνxN∆LPM ≡ N∆LνxPM.

The rewriting rules are the following:

x〈y,z〉 | x(y′,z′).Q →⊗ Q{y′/y}{z′/z} x〈y〉 | !x(z).Q →! Q{z/y} | !x(z).Q

as usual they are both closed by non-blocking contexts and considered modulo≡. The second rule puts
together replication and unary communication as in [39, 21].

π-calculus, at a distance.In order to simplify the proof of the bisimulation, we are going to use an
alternative but equivalent definition of reduction in theπ-calculus. Essentially, we have to reformulate the
π-calculusat a distance. The use of the structural equivalence in the definition of the rewriting relation
of theπ-calculus induces some annoying complications when one tries to reflect process reductions on
terms. We are going to reformulate the reduction rules via non-blocking contexts, and get rid of structural
equivalence.

The rewriting rules⇒⊗ and⇒! are given by the closure by non-blocking contexts (but are not closed
by structural congruence) of the following relations: ifx /∈ ∆∪Γ then

N∆Lx〈y,z〉M | MΓLx(y′,z′).PM 7→⊗ MΓLN∆LP{y′/y}{z′/z}MM
N∆Lx〈y〉M | MΓL!x(z).PM 7→! MΓLN∆LP{z/y} | !x(z).PMM

Actually, one should ask three futher conditions on variables: 1) ∆ ∩ Γ = /0; 2) ∆ ∩ fv(P) = /0; 3)
fv(N∆)∩Γ = /0. It is easily seen, however, that these conditions can always be satisfied by choosing
anα-equivalent term, as it is the case for the7→ls rule of λlsub. Essentially, these rules re-formulate as
reduction rules theτ-transitions of the alternative presentation of theπ-calculus as a labeled transition
system, which is used to study the interaction of a process with its environment. Here, the new rules
are more convenient than labeled transitions, because onλ -terms there is no analogous of the transitions
whose label is notτ (andτ-transitions are defined using the non-τ transitions). This reformulation is
justified by the following lemma, whose proof is along the oneof the harmony lemma in [38] (p. 51).

Lemma 3.

1. ≡ is a strong bisimulation with respect to ⇒: P≡⇒⊗ Q iff P⇒⊗≡Q, and P≡⇒! Q iff P⇒!≡Q.

2. Harmony of ⇒ and →π : P →⊗ Q iff P⇒⊗≡ Q, and P→! Q iff P⇒!≡ Q.

Curiously, the first formulation of theπ-calculus was as a labeled transition system; the notions of
reduction and structural congruence were introduced by Milner only later on, to study the relationship
with theλ -calculus [33]. Our formulation at a distance of theπ-calculus—motivated in exactly the same
way—is a contribution of independent interest, probably the main one from theπ-calculus point of view.
It also shows that distance rules are a general syntactic principle whose relevance extends beyond explicit
substitutions.

3 The call-by-name encoding

As for the ordinaryλ -calculus, the translation fromλlsub to theπ-calculus is parametrized by a special
channel namea. Actually, we assume that thesespecial channel namesare taken from a setA which is
disjoint from the set of variable names, and whose elements are denoteda,b,c,d,

The translation is given by (on screen it is in red):

46 Evaluating functions as processes

JxKa := x〈a〉 JtsKa := νbνx(JtKb | b〈x,a〉 | !x(c).JsKc) x is fresh
Jλx.tKa := a(x,b).JtKb Jt[x/s]Ka := νx(JtKa | !x(b).JsKb)

Modulo minor details, this is the original call-by-name encoding given by Milner. With respect to the
relation with linear logic developed in [21], special namescorrespond exactly to multiplicative formulas,
while variable names correspond to exponential formulas.

An easy induction on the translation shows:

Lemma 4. Let t be a term. Thenfn(JtKa) = fv(t)⊎{a}.

To relate terms and processes we need to prove a property of the translation, concerning its action on
contexts: it maps evaluation contexts to non-guarding contexts of a special form.

Lemma 5 (RelatingE andN via J·Ka). Let ∆ be a set of variable names,E∆ an evaluation context, and
a a special name. There exist a set of namesΓ (possibly containing both variables and special names), a
non-blocking contextN∆⊎Γ and a special nameb s.t. JE∆LtMKa = N∆⊎ΓLJtKbM andΓ∩fv(t) = /0 for every
term t. Moreover, ifE∆ is a substitution contextL∆ thena= b, Γ = /0, andN∆ does not depend ona.

Proof. By induction onE∆. The base case is given by the empty contextE/0 = L · M, and it is trivial, just
takeΓ := /0, N /0 := L · M, andb= a. The inductive cases:

• Left of an application, E∆ = F∆s: if x is a fresh variable name:

JE∆LtMKa = JF∆LtMsKa = νdνx(JF∆LtMKd | d〈x,a〉 | !x(c).JsKc)

=i.h. νdνx(M∆⊎ΣLJtKbM | d〈x,a〉 | !x(c).JsKc) = N∆⊎Σ⊎{d,x}LJtKbM

By i.h. we get thatΣ∩fv(t) = /0. By definition of the translationx is fresh, sox /∈ fv(t). We then
conclude by takingΓ := Σ⊎{d,x}.

• Left of a substitution, E∆⊎{x} = F∆[x/s]:

JE∆⊎{x}LtMKa = JF∆LtM[x/s]Ka = νx(JF∆LtMKa | !x(c).JsKc)

=i.h. νx(M∆⊎ΓLJtKbM | !x(c).JsKc) = N∆⊎{x}⊎ΓLJtKbM

and thei.h. also givesΓ∩fv(t) = /0.

Now suppose thatE∆⊎{x} (and thusF∆) is a substitution contextL∆. Then byi.h. we getM∆ not
depending ona s.t.:

JE∆⊎{x}LtMKa = JF∆LtM[x/s]Ka = νx(JF∆LtMKa | !x(c).JsKc)

=i.h. νx(M∆LJtKaM | !x(c).JsKc) = N∆⊎{x}LJtKaM

Where clearlyN∆⊎{x} does not depend ona.

We can now proceed with the simulation.

Theorem 6(→π strongly simulates⊸ via J·Ka).

1. t ⊸dB s impliesJtKa ⇒⊗≡ JsKa.

2. t ⊸ls s impliesJtKa ⇒!≡ JsKa.

Proof. 1. Two cases:

• Root rewriting step: first withoutL∆L · M: (λx.M)N 7→dB M[x/N]

B. Accattoli 47

J(λx.t)sKa = νbνy(Jλx.tKb | b〈y,a〉 | !y(c).JsKc) = νbνy(b(x,e).JtKe | b〈y,a〉 | !y(c).JsKc)
⇒⊗ νbνy(JtKa{x/y} | !y(c).JsKc) =α νbνx(JtKa | !x(c).JsKc)
= νbJt[x/s]Ka ≡ Jt[x/s]Ka

The=α -step is justified by the fact thaty is introduced fresh in the first line. The≡ step is justified
by Lemma 4, for which the only free special name occurring inJtKa is a, and by Lemma 2.2, which
allow us to remove the uselessνb.

Now, if L∆Lλx.tMs 7→dB L∆Lt[x/s]M we get (some explanations follow):

JL∆Lλx.tMsKa = νbνy(JL∆Lλx.tMKb | b〈y,a〉 | !y(c).JsKc)

=Lem.5 νbνy(N∆LJλx.tKbM | b〈y,a〉 | !y(c).JsKc)

= νbνy(N∆Lb(x,e).JtKeM | b〈y,a〉 | !y(c).JsKc)
⇒⊗ νbνy(N∆LJtKa{x/y}{e/a}M | !y(c).JsKc)
=α νbνx(N∆LJtKaM | !x(c).JsKc)

≡Lem.2.1&Lem.2.3 νbN∆Lνx(JtKa | !x(c).JsKc)M
= νbN∆LJt[x/s]KaM

=Lem.5 νbJL∆[t[x/s]]Ka

≡Lem.4&Lem.2.2 JL∆[t[x/s]]Ka

The=α -step and the last step are justified as before. In the first application of ≡ we can apply
Lemma 2.1 because by hypothesisx /∈ ∆ andfv(s)∩∆ = /0, and Lemma 2.3 becausex /∈ fn(N∆).
The two applications of Lemma 5 are with respect to differentspecial namesa andb, but this is
sound: themoreoverpart of Lemma 5 guarantees that in the case of a substitution contextL∆ the
corresponding contextN∆ does not depend on the name.

• Inductive step: E∆LtM→dB E∆LsM becauset 7→dB s. Let us recall that by definitions reductions in the
π-calculus are closed by non-blocking contexts. Then:

JE∆LtMKa =Lem.5 N∆⊎ΓLJtKbM ⇒⊗ N∆⊎ΓLJsKbM =Lem.5 JE∆LsMKa

2. For→ls the inductive case is as for→dB. The base case isE∆LxM[x/s]⊸ls E∆LsM[x/s] with x /∈ ∆:

JE∆LxM[x/s]Ka = νx(JE∆LxMKa | !x(b).JsKb) =Lem.5 νx(N∆⊎ΓLJxKcM | !x(b).JsKb)
= νx(N∆⊎ΓLx〈c〉M | !x(b).JsKb) ⇒! νxN∆⊎ΓLJsKc | !x(b).JsKbM
≡Lem.2.1 νx(N∆⊎ΓLJsKcM | !x(b).JsKb) =Lem.5 νx(JE∆LsMKa | !x(b).JsKb)
= JE∆LsM[x/s]Ka

where the≡-step is justified by the fact that by hypothesis and by Lemma 5(x /∈ Γ) we get that(fv(s)⊎
{x,b})∩ (∆⊎Γ) = /0, and so we can apply Lemma 2.1.

The converse relation. To simulate process reductions onλ -terms we need a lemma, which is a con-
verse to Lemma 5.

Lemma 7. Let∆ andΓ be a set of variable names and a set of special names, respectively.

1. If JtKa = N∆⊎ΓLa(y,b).PM with a /∈ Γ thenΓ = /0 and exist s andL∆ s.t. P= JsKb and t= L∆Lλy.sM.

2. If JtKa = N∆⊎ΓLx〈c〉M with x /∈ ∆ then existΣ ⊆ ∆ andEΣ s.t. t= EΣLxM (and x/∈ Σ).

Proof. Both points are by induction ont:

• Variable:

48 Evaluating functions as processes

1. The hypothesis is false and there is nothing to prove.
2. By definition ofJ·Ka, taking the empty context (and∆ = /0).

• Abstraction:

1. By definition ofJ·Ka, taking the empty context (and∆ = /0).
2. The hypothesis is false and there is nothing to prove.

• Application: if t = ur thenJurKa = νbνz(JuKb | b〈z,a〉 | !z(c).JrKc) with z fresh.

1. By Lemma 4a /∈ fn(JuKb), and so there is no contextN∆⊎Γ s. t. JtKa = N∆⊎ΓLa(y,b).PM,
hence the hypothesis is false and there is nothing to prove.

2. It must be thatJuKa = M∆′⊎Γ′Lx〈c〉M with ∆ = ∆′⊎{z} andΓ = Γ′⊎{a}. Then byi.h. there
existΣ ⊆ ∆′ andFΣ s.t. u= FΣLxM. We conclude takingEΣ := FΣr.

• Substitution: if t = u[z/r] thenJu[z/r]Ka = νz(JuKa | !z(b).JrKb).

1. If JtKa = N∆⊎ΓLa(y,b).PM then it must be that existsM∆′⊎ΓL · M with ∆ = ∆′⊎{z} s.t. JuKb =
M∆′⊎ΓLa(y,b).PM andN∆⊎Γ = νz(M∆′⊎Γ | !z(b).JrKb). By i.h. we getΓ = /0, u= L′

∆′Lλy.sM,
andP= JsKb. We conclude takingL∆ := L′

∆′[z/r].
2. It must be thatJuKa = M∆′⊎Γ′Lx〈c〉M with ∆ = ∆′⊎{z} andΓ = Γ′⊎{a}. Then byi.h. there

existΣ′ ⊆ ∆′ andFΣ′ s.t.u=FΣ′LxM. We conclude takingΣ := Σ′⊎{z} andEΣ := FΣ′ [z/r].

Now, we can prove that any process reduction fromJtKa can be simulated byt.

Theorem 8(⊸ strongly simulates⇒ via J·Ka).

1. If JtKa ⇒⊗ Q then exists s s.t. t⊸dB s andJsKa ≡ Q.

2. If JtKa ⇒! Q then exists s s.t. t⊸ls s andJsKa ≡ Q.

Proof. Both points are by induction ont. Cases:

• Values: if t = x or t = λx.u thenJtKa cannot reduce.

• Application: if t = ur thenJtKa = νbνx(JuKb | b〈x,a〉 | !x(c).JrKc) with x fresh. Then:

1. Multiplicative reduction. Cases ofJtKa ⇒⊗ Q:
– Root: JuKb = N∆⊎ΓLb(y,d).PM with b /∈ (∆⊎Γ) and the process reduction is a⇒⊗ inter-

action withb〈x,a〉 onb. By Lemma 7.1 we get thatΓ = /0, u= L∆Lλy.u′M, andP= Ju′Kd.
Sot = L∆Lλy.u′Mr and thus it has a⊸dB-redex ony, which maps to the⇒⊗ communi-
cation onb exactly as in the proof of Theorem 6.1.

– Inductive: because ofJuKb ⇒⊗ R. Then byi.h. existsu′ s.t. u→dB u′ andJu′Kb ≡ R. We
conclude by takings := u′r.

2. Exponential reduction. JtKa ⇒! Q can only happen if reduction takes place inJuKb, because
x is fresh by hypothesis. In such a case we conclude using thei.h., as in the first sub-case of
the previous point.

• Substitution: if t = u[x/r] thenJtKa = νx(JuKa | !x(b).JrKb). We have:

1. Multiplicative reduction. JtKa ⇒⊗ Q can only happen if reduction takes place inJuKa, and we
conclude using thei.h..

2. Exponential reduction. If JtKa ⇒! Q because reduction takes place inJuKa we use thei.h..
Otherwise,JuKa = N∆⊎ΓLx〈c〉M with x /∈ ∆⊎Γ and the process reduction is a⇒! interaction
with !x(b).JrKb on x. By Lemma 7.2 there existΣ andEΣ s.t. u= EΣLxM. Sot = EΣLxM[x/r]
has a⊸ls redex onx, which maps to the⇒! communication onx exactly as in the proof of
Theorem 6.2.

B. Accattoli 49

According to the two theorems of this section, the relationship between the call-by-name strategy on
the ordinaryλ -calculus and the evaluation in theπ-calculus is the same as the relationship between the
call-by-name strategy and linear weak head reduction. In the strong case (i.e.when (head) reduction can
go under lambdas), it is known that the latter can be at most quadratically longer than the former [9].
The analysis in [9] does not depend on being weak or strong. Itfollows that the same upper bound holds
between the call-by-name strategy and its evaluation in theπ-calculus.

Last, it is easy to see that linear weak head reduction isdeterministic: every term has at most one⊸
redex, since every redex writes asE∆LvM (wherev is a value,i.e. a variable or an abstraction) and such a
decomposition is unique. This property accounts for what Milner callsdeterminacyof JtKa in [33].

4 The call-by-value encoding

We now show that the same exact relationship can be obtained with respect to call-by-value (CBV). The
CBV calculus in use here is not Plotkin’s calculusλβv. In [10] the author and Paolini introduced the
value substitution calculusλvsub, which is a CBV calculus with explicit substitutions containing λβv as a
sub-calculus and behaving better thanλβv with respect to the semantical notion ofsolvability. In [4, 5]
we showed thatλvsubhas a sub-calculus, thevalue substitution kernelλvker, which has two key properties:

1. Observational equivalence[4]: there is a translation·◦ : λvsub→ λvker s.t. t andt◦ are equivalent
with respect to observing any termination property.

2. Language for proof nets[5]: λvker is an algebraic reformulation of the proof nets corresponding to
the CBV translation ofλ -calculus into linear logic. Namely, there is a translation· : λvker → PN
which is a strong bisimulation.

Here, we are going to show a further property: there are a CBV analogous⊸v of linear weak head
reduction⊸ and a translation{|·|}x from λvker to the π-calculus which is a strong bisimulation with
respect to⊸v and⇒. Let us point out that in the untyped case there is a strong mismatch between
Plotkin’s calculusλβv and the evaluation in proof nets (see [4]), thus the results of this section do not
hold with respect toλβv (nor with any of its refinements with explicit substitutionswhereβ -redexes are
constrained to fire on values).

Thevalue substitution kernel λvker is given by the following grammar:

t,s,u, r ::= v | vt | t[x/s] v ::= x | λx.t

Please note that the left sub-term of an application can onlybe a value (see [4, 5] for more details).
Substitution contextsL∆ are defined as before. Instead, the language ofevaluation contextschanges:

E/0 ::= L · M | vE/0 | t[x/E/0] E∆⊎{x} ::= E∆[x/t] | vE∆⊎{x} | t[y/E∆⊎{x}]

Next, we defineapplicative contextsasA∆L · M ::= E∆LL · MtM. As for CBN, we do not define the full
calculus, but only the evaluation strategy.Linear weak applicative reduction, noted⊸v, is given by
the rewriting rules⊸vdB and⊸vls defined as the closure by evaluation contexts of the following rules:

(λx.t)s 7→dB t[x/s] A∆LxM[x/LΣLvM] 7→lsv LΣLA∆LvM[x/v]M x /∈ ∆

Note that the argument of aβ -redex is not required to be a value, while the substitution rule can fire only
in presence of a value (in a substitution context). As it was the case for the call-by-name calculus and
for theπ-calculus, one should also ask thatfv(v)∩∆ = /0, fv(A∆LxM)∩Σ = /0, and∆∩Σ = /0, but these
side-conditions can always be satisfied by taking anα-equivalent term, and so in the following they will
be taken for granted. Note thatx[x/y] 67→lsv y but(xz)[x/y] 7→lsv yz, because substitution has to take place

50 Evaluating functions as processes

in an applicative context. This applicative restriction isa sort of converse to the head restriction used in
the case of call-by-name evaluation. In terms of proof nets both these restrictions correspond to forbid
reduction of cuts involving links in some !-boxes (with respect to the respective encodings of CBV and
CBN), while theweakrequirement correspond to the analogous constraint with respect to thè -boxes
mentioned in the introduction. The applicative restriction is somehow a surprise, which is justified by
the fact that it matches what happens in theπ-calculus. It is a quite reasonable restriction: there is no
point in substituting a value if it cannot be used in some application.

Linear weak applicative reduction enjoys a property which is the CBV analogous of the subterm
porperty (deifned at the end of Section 1). Let us call av-subterma subterm which is a value.

Lemma 9 (v-subterm property). If t ⊸k
v

s and v is a v-subterm of s then v is a v-subterm of t.

Proof. By induction onk. Fork= 0 it is trivial, for k> 0 consider the termu s.t. u⊸v s. The⊸vdB rule
does not create new values. The⊸vls rule duplicates a v-subterm ofu, which byi.h. is a v-subterm oft,
and it does not substitute into v-subterms. So, any v-subterm of s is a v-subterm oft.

Differently from linear weak head reduction, linear weak applicative reduction is anon-deterministic
stretegy: just considert = ((λx.x)(yy))[y/z], which has two redexes. However, a simple induction shows
that reduction is confluent: there is no need to use parallel reductions or other sophisticated techniques
because no redex can duplicate/erase other redexes. In fact, it is easily seen that linear weak applicative
reduction enjoys the diamond property. This fact corresponds to what Milner callsdeterminacyof the
CBV encoding.

The translation. Similarly to the CBV translation of theλ -calculus to linear logic, the CBV transla-
tion to theπ-calculus uses an auxiliary function. The main translationfunction{|t|}x is parametrized by a
variable namex /∈ fv(t) (and not by a special name) and the auxiliary function is noted {|·|}a, i.e. we use
the same symbol but now the parameter is a special namea:

{|v|}x ::= !x(a).{|v|}a {|vs|}x ::= νbνy({|v|}b | b〈y,x〉 | {|s|}y) y is fresh
{|y|}a ::= y〈a〉 {|s[y/u]|}x ::= νy({|s|}x | {|u|}y)

{|λy.s|}a ::= a(y,z).{|s|}z

Note that the application case uses the auxiliary function on v. Note also the difference with the call-by-
name case: applications and explicit substitutions do not use replication, which is instead associated to
values, with the important exception of applied values. Theapplicativerestriction on the strategy⊸v

comes from this exception: the impossibility of interacting under replication in theπ-calculus reflects on
terms as the fact that one can substitute only on variables inapplicative contexts, because the others are
under a replication prefix. Last, this encoding is a minor variation over the CBV one in [39], which is
not Milner’s original CBV encoding.

Lemma 10. Let t∈ λvker. Thenfn({|t |}x) = fv(t)⊎{x} andfn({|t|}a) = fv(t)⊎{a}.

Proof. By mutual induction on{|t |}x and{|t |}a.

The following lemma is the call-by-value analogous of Lemma5.

Lemma 11(RelatingE andN via {|·|}x). Let ∆ be a set of variable names, x a variable name andE∆ an
evaluation context. There exist a set of namesΓ (possibly containing both variables and special names),
a non-blocking contextN∆⊎Γ, and a variable name z s.t.{|E∆LtM|}x = N∆⊎ΓL{|t|}zM and Γ∩ fv(t) = /0 for
every term t. Moreover, ifE∆ is a substitution contextL∆ then x= z, Γ = /0, andN∆ does not depend on
x.

B. Accattoli 51

Proof. By induction onE∆. The base case is given by the empty contextE/0 = L · M, and it is trivial, just
takeΓ := /0, N /0 := L · M, andz := x. The inductive cases:

• Right of an application, E∆ = vF∆:

{|E∆LtM|}x = {|vF∆LtM|}x = νbνy({|v|}b | b〈y,x〉 | {|F∆LtM|}y)

=i.h. νbνy({|v|}b | b〈y,x〉 | M∆⊎ΣL{|t |}zM) = N∆⊎Σ⊎{y,b}L{|t|}
zM

The i.h. also givesΣ∩ fv(t) = /0. Sinceb,y /∈ fv(t) it follows that Γ := Σ⊎{y,b} satisfiesΓ∩
fv(t) = /0.

• Right of a substitution, E∆ = s[y/F∆]:

{|E∆LtM|}x = {|s[y/F∆LtM]|}x = νy({|s|}x | {|F∆LtM|}y)
=i.h. νy({|s|}x | M∆⊎ΣL{|t|}zM) = N∆⊎Σ⊎{y}L{|t|}

zM

Thei.h. also givesΣ∩fv(t) = /0. Sincey /∈ fv(t) it follows thatΓ := Σ⊎{y} satisfiesΓ∩fv(t) = /0.

• Left of a substitution, E∆⊎{z} = F∆[y/u]. Then:

{|E∆⊎{y}LtM|}
x = {|F∆LtM[y/u]|}x = νy({|F∆LtM|}x | {|u|}y)

=i.h. νy(M∆⊎ΓL{|t|}zM | {|u|}y) = N∆⊎{y}⊎ΓL{|t|}zM

The i.h. also givesΓ∩fv(t) = /0. Now, suppose thatE∆⊎{y} (and thusF∆) is a substitution context
L∆. Then byi.h. we getM∆ not depending onx s.t.:

{|E∆⊎{y}LtM|}
x = {|F∆LtM[y/u]|}x = νy({|F∆LtM|}x | {|u|}y)

=i.h. νy(M∆L{|t|}xM | {|u|}y) = N∆⊎{y}L{|t|}
xM

where clearlyN∆⊎{y} does not depend onx.

Theorem 12(→π strongly simulates⊸v).
1. t ⊸vdB s implies{|t|}x ⇒⊗≡ {|s|}x.

2. t ⊸vls s implies{|t|}x ⇒!≡ {|s|}x.

Proof. We show the base cases, the inductive ones are as in the call-by-name case, using Lemma 11.
1. If (λy.t)s⊸vdB t[y/s] then:

{|(λy.t)s|}x = νbνz({|λy.t |}b | b〈z,x〉 | {|s|}z) = νbνy(b(y,w).{|t |}w | b〈z,x〉 | {|s|}z)
⇒⊗ νbνy({|t |}w{w/x}{y/z} | {|s|}z) =α νbνy({|t |}x | {|s|}y)
= νb{|t[x/s]|}x ≡Lem.10 {|t[x/s]|}x

2. If A∆LyM[y/LΣLvM] 7→lsv LΣLA∆LvM[y/v]M andA∆L · M = E∆LL · MsM then:

{|A∆LyM[y/LΣLvM]|}x = νy({|E∆LysM|}x | {|LΣLvM|}y)
=Lem.11 νy(N∆⊎ΓL{|ys|}zM | MΣL{|v|}yM)
= νy(N∆⊎ΓL{|ys|}zM | MΣL!y(a).{|v|}aM)

= νy(N∆⊎ΓLνbνw({|y|}b | b〈w,z〉 | {|s|}w)M | MΣL!y(a).{|v|}aM)

= νy(N∆⊎ΓLνbνw(y〈b〉 | b〈w,z〉 | {|s|}w)M | MΣL!y(a).{|v|}aM)

⇒! νyMΣLN∆⊎ΓLνbνw({|v|}b | !y(a).{|v|}a | b〈w,z〉 | {|s|}w)MM

≡Lem.2.1 νyMΣLN∆⊎ΓLνbνw({|v|}b | b〈w,z〉 | {|s|}w)M | !y(a).{|v|}aM
= νyMΣLN∆⊎ΓL{|vs|}zM | !y(a).{|v|}aM
= νyMΣL{|E∆LvsM|}x | !y(a).{|v|}aM
≡Lem.2.3 MΣLνy({|E∆LvsM|}x | !y(a).{|v|}a)M
= MΣL{|E∆LvsM[y/v]|}xM
=Lem.11 {|LΣLE∆LvsM[y/v]M|}x

= {|LΣLA∆LvM[y/v]M|}x

52 Evaluating functions as processes

The ≡ step after the reduction is justified by the fact thatb, w, and all the variables inΓ are
introduced fresh and so do not belong tofv(v). Moreover,∆∩fv(v) = /0 by hypothesis,and so we
can apply Lemma 2.1.

The converse relation. As for call-by-name, we show that linear weak applicative reduction reflects
exactly evaluation in theπ-calculus.

Lemma 13. Let ∆ andΓ be a set of variable names and a set of special names, respectively. Then:

1. If {|t|}x = N∆⊎ΓL!x(a).PM with x /∈ ∆ thenΓ = /0 and exist v andL∆ s.t. P= {|v|}a and t= L∆LvM.

2. If {|t|}x = N∆⊎ΓLy〈a〉M with y /∈ ∆ then existΣ ⊆ ∆ andAΣ s.t. t= AΣLyM.

Proof. Both points are by induction ont:

• Value: if t = v′ then{|t|}x =!x(a).{|v′|}a.

1. ClearlyΓ = ∆ = /0, v is v′, andL∆ is the empty context.

2. The hypothesis is false, and so there is nothing to prove.

• Application: if t = v′s then{|v′s|}x = νbνz({|v′|}b | b〈z,x〉 | {|s|}z) with zandb are fresh.

1. By definition of the translationx /∈ fv(v′s) and so by Lemma 10x /∈ fn({|v′|}b)∪ fn({|s|}z).
Consequently, there is no contextN∆⊎Γ s. t.{|t|}x = N∆⊎ΓL!x(a).PM, so the hypothesis is false
and there is nothing to prove.

2. Two cases:
(a) {|v′|}b = y〈a〉 andN∆⊎Γ = νbνz(L · M | b〈z,x〉 | {|s|}z), which implyv′ = y, a= b, ∆ = {z},

andΓ = {b}. We conclude takingΣ := /0 andA/0 := L · Ms.
(b) The context holeL ·M is in {|s|}z. Let ∆′ := ∆\{z} andΓ′ := Γ\{b}. If {|t |}x = N∆⊎ΓLz〈a〉M

then{|s|}x = M∆′⊎Γ′Lz〈a〉M for some contextM∆′⊎Γ′ . Thei.h. givesΣ ⊆ ∆′ and an applica-
tive contextBΣ s.t. s= BΣLyM. We conclude takingAΣ := v′BΣ.

• Substitution: if t = s[z/u] then{|t|}x = νz({|s|}x | {|u|}z).

1. By definition of the translationx /∈ fv(s[z/u]) and so by Lemma 10x ∈ fn({|s|}x) andx /∈
fn({|u|}z). Consequently, the context holeL ·M is in {|s|}x, which then writes asM∆′⊎ΓL!x(a).PM,
with ∆ = ∆′ ⊎ {z} for some contextM∆′⊎Γ. By i.h. we get that there existv and L′

∆′ s.t.
P= {|v|}a ands= L′

∆′LvM. We conclude takingL∆ := L′
∆′[z/u].

2. Two cases:
(a) The context holeL · M is in {|s|}x. Let ∆′ := ∆ \ {z}. If {|t|}x = N∆⊎ΓLz〈a〉M then{|s|}x =

M∆′⊎ΓLz〈a〉M for some contextM∆′⊎Γ. The i.h. givesΣ′ ⊆ ∆′ and an applicative context
BΣ′ s.t. s= BΣ′LyM. We conclude takingΣ := Σ′⊎{z} andAΣ := BΣ′ [z/u].

(b) The context hole is in{|u|}z. Analogous to the previous case (except thatΣ = Σ′).

Theorem 14(⊸v strongly simulates⇒ via {|·|}a).

1. If {|t|}x ⇒⊗ Q then exists r s.t. t⊸vdB r and{|r |}x ≡ Q.

2. If {|t|}x ⇒! Q then exists r s.t. t⊸vls r and{|r |}x ≡ Q.

Proof. By induction ont. Cases:

• Values: if t is a value then{|t|}x cannot reduce.

• Application: if t = vsthen{|vs|}x = νbνy({|v|}b | b〈y,x〉 | {|s|}y) with y andb fresh. Then:

B. Accattoli 53

1. Multiplicative reduction. Cases ofJtKx ⇒⊗ Q:
– Root: {|v|}b = b(z,w).P interacts withb〈y,x〉 on b. Clearly,v is an abstractionλz.u with

{|u|}w = P, andt = (λz.u)shas a root⊸vdB redex. Then,t and{|t|}x are related exactly as
in the proof of Theorem 12.1. Note thatb /∈ fn({|s|}y) by Lemma 10, and so there cannot
be any multiplicative root interaction involving{|s|}y.

– Inductive: {|t|}x ⇒⊗ Q because{|s|}y ⇒⊗ P. By i.h. we get that there existsr ′ s.t. s→dB r ′

and{|r ′|}y ≡ P. SincevL · M is an evaluation contexts, takingr := vr′ we gett →dB r and
{|r |}x ≡ P.

2. Exponential reduction. The inductive case (i.e. {|t|}x ⇒! Q because{|s|}y ⇒⊗ P) follows by
the i.h. as in the inductive case for multiplicative reductions. In the root case there cannot be
any root exponential reduction. Indeed,{|v|}b would have to bez〈b〉 and{|s|}y should have a
!z(c).P sub-process. This second requirement is only possible ifs contains a valuev which
in {|s|}y is translated with respect toz, so that{|v|}z =!z(c).P. But this is impossible becausey
is fresh (and soy 6= z) and any variable name which is used as a parameter in the translation
of a subterm ofs is eithery or it is introduced fresh (and so cannot be equal toz).

• Substitution: if t = {|s[y/u]|}x then{|t|}x = νy({|s|}x | {|u|}y)

1. Multiplicative reduction. If the reduction takes place in{|s|}x or {|u|}y we use thei.h. as in the
previous inductive cases. And there cannot be any root multiplicative reduction. Indeed, it
should be along a special namea free in both{|s|}x and{|u|}y, but by Lemma 10{|s|}x and{|u|}y

have no free special name.
2. Exponential reduction. If the reduction takes place in{|s|}x or {|u|}y we use thei.h. as in the

previous inductive cases.
Otherwise, an exponential reduction can only be along a variable namezwhich is free in both
{|s|}x and{|u|}y. Thenz 6= x, becausex /∈ fn({|u|}y). Another requirement is thatz has to be
used as the parameter of the translation of a valuev, which is the only way to get a replicated
input. The only possibility then is thatz= y, because all variable parameter names used in
the translation and different fromx andy are fresh and cannot be in both{|s|}x and{|u|}y.
Now, {|s|}x has to be of the formN∆⊎ΓLy〈a〉M and{|u|}y has to be of the formM∆′⊎Γ′L!y(b).PM,
for some sets of variable names∆ and∆′ and some sets of special namesΓ andΓ′, and with
y /∈ ∆∪∆′. By Lemma 13 we getΓ′ = /0 and that existv, L∆′, Σ ⊂ ∆, andAΣ s.t. P= {|v|}b,
u= L∆′LvM, ands= AΣLyM. Summing up,t = AΣLyM[y/L∆′LvM] and it has a⊸vls redex which
maps onJtKx ⇒! Q exactly as in the proof of Theorem 12.2.

Conclusions

We have shown how to refine the relation between theλ -calculus and theπ-calculus, getting a perfect
match of reductions steps in both call-by-name and call-by-value. The refinements crucially exploits
rewriting rules at a distance, and unveil that theπ-calculus evaluatesλ -terms exactly as linear logic
proof nets. A natural continuation would be to extend these relations to calculi with multiplicities [14],
which are related to the study of observational equivalence. It would also be interesting to investigate
linear weak applicative reduction, in particular in relation with complexity [9] or with Taylor-Ehrhard
expansion [22]. Finally, given the compactness of the results and the involved reasoning about bound,
free, and fresh variables, it would be interesting to try to formalize this work in Abella [25], which is a
proof assistant provided with a nominal quantifier precisely developed to cope with theπ-calculus [32]
and where reasoning about untyped calculi with binders is very close to pen-and-paper reasoning [6].

54 Evaluating functions as processes

References

[1] Samson Abramsky (1993):Computational Interpretations of Linear Logic. Theor. Comput. Sci.111(1&2),
pp. 3–57. Available athttp://dx.doi.org/10.1016/0304-3975(93)90181-R.

[2] Beniamino Accattoli (2011):Jumping around the box: graphical and operational studies on λ -calculus and
Linear Logic. PhD thesis,La SapienzaUniversity of Rome.

[3] Beniamino Accattoli (2012):An Abstract Factorization Theorem for Explicit Substitutions. In: RTA, pp.
6–21. Available athttp://dx.doi.org/10.4230/LIPIcs.RTA.2012.6.

[4] Beniamino Accattoli (2012):A linear analysis of call-by-valueλ -calculus. Available at the address
https://sites.google.com/site/beniaminoaccattoli/Accattoli-Alinearanalysisofcall-by-valuelambdacalc

[5] Beniamino Accattoli (2012):Proof nets and the call-by-valueλ -calculus. LSFA 2012. Available at the ad-
dresshttps://sites.google.com/site/beniaminoaccattoli/Accattoli-Proofnetsandthecallbyvaluelambdacalc

[6] Beniamino Accattoli (2012):Proof Pearl: Abella Formalization ofλ -Calculus Cube Property. In: CPP, pp.
173–187. Available athttp://dx.doi.org/10.1007/978-3-642-35308-6_15.

[7] Beniamino Accattoli & Stefano Guerrini (2009):Jumping Boxes. In: CSL, pp. 55–70. Available at
http://dx.doi.org/10.1007/978-3-642-04027-6_7.

[8] Beniamino Accattoli & Delia Kesner (2010):The Structuralλ -Calculus. In: CSL, pp. 381–395. Available
athttp://dx.doi.org/10.1007/978-3-642-15205-4_30.

[9] Beniamino Accattoli & Ugo Dal Lago (2012):On the Invariance of the Unitary Cost Model for Head Reduc-
tion. In: RTA, pp. 22–37. Available athttp://dx.doi.org/10.4230/LIPIcs.RTA.2012.22.

[10] Beniamino Accattoli & Luca Paolini (2012):Call-by-Value Solvability, revisited. In: FLOPS, pp. 4–16.
Available athttp://dx.doi.org/10.1007/978-3-642-29822-6_4.

[11] Emmanuel Beffara (2006):A Concurrent Model for Linear Logic. Electr. Notes Theor. Comput. Sci.155,
pp. 147–168. Available athttp://dx.doi.org/10.1016/j.entcs.2005.11.055.

[12] Gianluigi Bellin & Philip J. Scott (1994):On the pi-Calculus and Linear Logic. Theor. Comput. Sci.135(1),
pp. 11–65. Available athttp://dx.doi.org/10.1016/0304-3975(94)00104-9.

[13] Gérard Boudol (1998):Theπ-Calculus in Direct Style. Higher-Order and Symbolic Computation11(2), pp.
177–208. Available athttp://dx.doi.org/10.1023/A:1010064516533.

[14] Gérard Boudol & Cosimo Laneve (1996): The Discriminating Power of Multiplic-
ities in the Lambda-Calculus. Inf. Comput. 126(1), pp. 83–102. Available at
http://dx.doi.org/10.1006/inco.1996.0037.

[15] Luı́s Caires & Frank Pfenning (2010):Session Types as Intuitionistic Linear Propositions. In: CONCUR,
pp. 222–236. Available athttp://dx.doi.org/10.1007/978-3-642-15375-4_16.

[16] Matteo Cimini, Claudio Sacerdoti Coen & Davide Sangiorgi (2010): Functions as Pro-
cesses: Termination and theλ µµ̃-Calculus. In: TGC, pp. 73–86. Available at
http://dx.doi.org/10.1007/978-3-642-15640-3_5.

[17] Pierre Clairambault (2011):Estimation of the Length of Interactions in Arena Game Semantics. In: FOS-
SACS, pp. 335–349. Available athttp://dx.doi.org/10.1007/978-3-642-19805-2_23.

[18] Vincent Danos, Hugo Herbelin & Laurent Regnier (1996):Game Semantics & Abstract Machines. In: LICS,
pp. 394–405. Available athttp://doi.ieeecomputersociety.org/10.1109/LICS.1996.561456.

[19] Vincent Danos & Laurent Regnier (1999): Reversible, Irreversible and Opti-
mal lambda-Machines. Theor. Comput. Sci. 227(1-2), pp. 79–97. Available at
http://dx.doi.org/10.1016/S0304-3975(99)00049-3.

[20] Vincent Danos & Laurent Regnier (2004):Head Linear Reduction. Technical Report.

[21] Henry DeYoung, Luı́s Caires, Frank Pfenning & BernardoToninho (2012): Cut Reduction in Lin-
ear Logic as Asynchronous Session-Typed Communication. In: CSL, pp. 228–242. Available at
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228.

http://dx.doi.org/10.1016/0304-3975(93)90181-R
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.6
https://sites.google.com/site/beniaminoaccattoli/Accattoli-Alinearanalysisofcall-by-valuelambdacalculus.pdf?attredirects=0
https://sites.google.com/site/beniaminoaccattoli/Accattoli-Proofnetsandthecallbyvaluelambdacalculus.pdf?attredirects=0
http://dx.doi.org/10.1007/978-3-642-35308-6_15
http://dx.doi.org/10.1007/978-3-642-04027-6_7
http://dx.doi.org/10.1007/978-3-642-15205-4_30
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.22
http://dx.doi.org/10.1007/978-3-642-29822-6_4
http://dx.doi.org/10.1016/j.entcs.2005.11.055
http://dx.doi.org/10.1016/0304-3975(94)00104-9
http://dx.doi.org/10.1023/A:1010064516533
http://dx.doi.org/10.1006/inco.1996.0037
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-642-15640-3_5
http://dx.doi.org/10.1007/978-3-642-19805-2_23
http://doi.ieeecomputersociety.org/10.1109/LICS.1996.561456
http://dx.doi.org/10.1016/S0304-3975(99)00049-3
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228

B. Accattoli 55

[22] Thomas Ehrhard (2012):Collapsing non-idempotent intersection types. In: CSL, pp. 259–273. Available at
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.259.

[23] Thomas Ehrhard & Olivier Laurent (2010):Interpreting a finitary pi-calculus in differential interaction nets.
Inf. Comput.208(6), pp. 606–633. Available athttp://dx.doi.org/10.1016/j.ic.2009.06.005.

[24] Thomas Ehrhard & Laurent Regnier (2006):Böhm Trees, Krivine’s Machine and the Taylor Expansion of
Lambda-Terms. In: CiE, pp. 186–197. Available athttp://dx.doi.org/10.1007/11780342_20.

[25] Andrew Gacek (2008):The Abella Interactive Theorem Prover (System Description). In: IJCAR, pp. 154–
161. Available athttp://dx.doi.org/10.1007/978-3-540-71070-7_13.

[26] Jean-Yves Girard (1987):Linear Logic. Theoretical Computer Science50, pp. 1–102. Available at
http://dx.doi.org/10.1016/0304-3975(87)90045-4.

[27] Kohei Honda & Olivier Laurent (2010): An exact correspondence between a typed pi-calculus
and polarised proof-nets. Theor. Comput. Sci.411(22-24), pp. 2223–2238. Available at
http://dx.doi.org/10.1016/j.tcs.2010.01.028.

[28] John Maraist, Martin Odersky, David N. Turner & Philip Wadler (1999): Call-by-name, Call-by-value,
Call-by-need and the Linear lambda Calculus. Theor. Comput. Sci.228(1-2), pp. 175–210. Available at
http://dx.doi.org/10.1016/S0304-3975(98)00358-2.

[29] Gianfranco Mascari & Marco Pedicini (1994):Head Linear Reduction and Pure Proof Net Extraction. Theor.
Comput. Sci.135(1), pp. 111–137. Available athttp://dx.doi.org/10.1016/0304-3975(94)90263-1.

[30] Damiano Mazza (2003):Pi et Lambda. Unéetude sur la traduction des lambda-termes dans le pi-calcul.
Memoire de DEA (in french).

[31] Dale Miller (1992):The pi-Calculus as a Theory in Linear Logic: Preliminary Results. In: ELP, pp. 242–264.
Available athttp://dx.doi.org/10.1007/3-540-56454-3_13.

[32] Dale Miller & Alwen Tiu (2010): Proof search specifications of bisimulation and
modal logics for the π-calculus. ACM Trans. Comput. Log. 11(2). Available at
http://doi.acm.org/10.1145/1656242.1656248.

[33] Robin Milner (1992):Functions as Processes. Math. Str. in Comput. Sci.2(2), pp. 119–141. Available at
http://dx.doi.org/10.1017/S0960129500001407.

[34] Robin Milner (2007):Local Bigraphs and Confluence: Two Conjectures. Electr. Notes Theor. Comput. Sci.
175(3), pp. 65–73. Available athttp://dx.doi.org/10.1016/j.entcs.2006.07.035.

[35] Gordon D. Plotkin (1975):Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci.1(2),
pp. 125–159. Available athttp://dx.doi.org/10.1016/0304-3975(75)90017-1.

[36] Davide Sangiorgi (1994):The Lazy Lambda Calculus in a Concurrency Scenario. Inf. Comput.111(1), pp.
120–153. Available athttp://dx.doi.org/10.1006/inco.1994.1042.

[37] Davide Sangiorgi (1999):From lambda to pi; or, Rediscovering continuations. Math. Str. in Comput. Sci.
9(4), pp. 367–401. Available athttp://dx.doi.org/10.1017/S0960129599002881.

[38] Davide Sangiorgi & David Walker (2001):The Pi-Calculus - a theory of mobile processes. Cambridge
University Press.

[39] Bernardo Toninho, Luı́s Caires & Frank Pfenning (2012): Functions as Session-Typed Processes. In: FoS-
SaCS, pp. 346–360. Available athttp://dx.doi.org/10.1007/978-3-642-28729-9_23.

[40] Vasco Thudichum Vasconcelos (2005):Lambda and pi calculi, CAM and SECD machines. J. Funct. Program.
15(1), pp. 101–127. Available athttp://dx.doi.org/10.1017/S0956796804005386.

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.259
http://dx.doi.org/10.1016/j.ic.2009.06.005
http://dx.doi.org/10.1007/11780342_20
http://dx.doi.org/10.1007/978-3-540-71070-7_13
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/j.tcs.2010.01.028
http://dx.doi.org/10.1016/S0304-3975(98)00358-2
http://dx.doi.org/10.1016/0304-3975(94)90263-1
http://dx.doi.org/10.1007/3-540-56454-3_13
http://doi.acm.org/10.1145/1656242.1656248
http://dx.doi.org/10.1017/S0960129500001407
http://dx.doi.org/10.1016/j.entcs.2006.07.035
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1006/inco.1994.1042
http://dx.doi.org/10.1017/S0960129599002881
http://dx.doi.org/10.1007/978-3-642-28729-9_23
http://dx.doi.org/10.1017/S0956796804005386

	1 The linear substitution calculus
	2 The pi-calculus
	3 The call-by-name encoding
	4 The call-by-value encoding

