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A famous result by Milner is that th®-calculus can be simulated inside tirecalculus. This simu-
lation, however, holds only modulo strong bisimilarity oropesses, i.e. there is a slight mismatch
betweerB-reduction and how it is simulated in tiecalculus. The idea is that evaluating @erm in
the r-calculus is like running an environment-based abstracting, rather than applying ordinary
B-reduction. In this paper we show that such an abstract-ma@valuation corresponds to linear
weak head reduction, a strategy arising from the repreentaf A -terms as linear logic proof nets,
and that the relation between the two is as tight as it can be.study is also smoothly rephrased in
the call-by-value case, introducing a call-by-value agalss of linear weak head reduction.

Introduction

A key result about the expressiveness of thealculus is that it can represent thecalculus, as it has
been showed by Robin Milnelr [33]. During the nineties thatiehship between the two systems has
been explored in-depth, mostly by Davide Sangiadrgi [36,87] Gérard Boudol [14, 13]. Nowadays,
it takes a relevant part in the standard reference fortealculus [38], and in any introductory course
about it. From the process calculus point of view, it helpg@tting deeper insights into its theory,
especially because threcalculus is far less canonical then thecalculus. From thad -calculus point of
view, it provides new tools to analyze the behavioAetierms and the dynamics @freduction.

The idea is that ther-calculus can be considered as a sort of flexible abstradhimato which the
A-calculus can be compiled in various ways. There are in fagbus encodings, each one corresponding
to a particular evaluation strategy in thecalculus. In particular, Milner showed that Plotkin’s lday-
name and call-by-value strategies|[35] can be both faithfepresented.

The way in which the representationfathful, however, is quite subtle. It is looser than what one
might expect, as the diagram in Figure Ha@es not hold It is only possible to get the diagram in
Figure[1.b: R, the process representingdoes not reduce tBs, but to a proces® which is strongly
bisimilar to Ps. One might think that a better encoding could solve this @l but this is a naive
expectation: the two systems compute in radically differesys, the mismatch is inherent. In Milner’s
resultPs and Q are strongly bisimilar, which means that they behave theesatternally i.e. in their
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Figure 1: Diagrams describing the relationship betweemdeand processes.
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interactions with every possible environment. Howeveg, lio processes behave in a quite different
way internally, i.e. with respect to reductions. The discrepancy concerns theutarity of evaluation:
A-calculus uses a coarse, big-step substitution rule, whider-calculus evaluates in small, fine-grained
steps, as an abstract machine. Nonetheless, the evalo&titerminates if and only if the evaluation of
the corresponding proceBsterminates. In this sense, the representation is somesaidgo be sound
and complete.

This paper refines the relationship betweenithealculus and ther-calculus by extending the former
with explicit substitutions—which may be considered aslter@ative to abstract machines—in order to
get a closer match of reduction steps. In the call-by-naree a& show that the strategy corresponding to
the evaluation in ther-calculus is exactlyinear weak head reductiore, the small-step head strategy of
linear logic proof nets [29,3]. This notion of evaluatiorsl@nnections with Krivine's abstract machine
[20], Bohm’s separation theorern [29], computational caripy [9], the geometry of interaction [19],
game semantics [18, 117], and the differenfiatalculus [24]. The relationship shown here is extremely
strong. It is represented in the diagrams in Fidgure 1.c-d¢hvhold modulo structural equivalence only.
They express the fact that the translation is a strong bisiton with respect to reductiofnote thatone
step maps tenestep, and vice-versa).

The relationship between thecalculus and linear logic has been analyzed from varioustpof
view [31,[1,12[ 11), 27, 23, 15]. Our study essentially refiteswork of Caires, Pfenning, and Toninho
in [39], where the encodings of the-calculus in ther-calculus are re-understood as the encodings of
A-calculus into linear logic (due to Girard [26], see also]}28The refinement consists in looking to
such encodings via linear logic proof nets, but replacimgekplicit use of proof nets with the lighter and
equivalent reformulations as calculi of explicit subgtdns at a distancedeveloped in[[7,18,/12, 10/ 3] 5].

Contributions In some sense there is not much original content in this rpapamiano Mazza'’s
master thesis [30] (in French and unpublished) alreadyldpgd the connection with linear weak head
reduction. Similar ideas are sketched by Boudol in the duobion of [13]. Also, Milner's seminal
paper already suggested to use some environment devicéne tige encodings, an idea that has then
been explored by Vasconcelas [40] and recently by Cimince&#oti Coen, and Sangior@i [16].

What is original here is the presentation. Our approachigesva remarkably compact develop-
ment, confirming the relevance of explicit substituti@isa distanceas a very flexible syntactical tool.
Our presentation simplifies in the extreme Mazza’s studygiploiting the simpler and more manage-
able reformulation of weak linear head reduction in linear substitution calculug9, (3]. In addition,
by clarifying the connection with a crucial concept in thedhy of linear logic, we get an important
corollaryfor free In [9] it is proven that linear head reduction is at most qa#idally longer than head
reduction, and this result holds also with respect to thekwiea. not under lambdas) variants of these
reductiond. Plotkin’s call-by-name strategy is the same thing as wealdlieduction. Consequently, we
get a quadratic relation between the call-by-name straaegythe evaluation in tha-calculus, which is
a non-trivial quantitative refinement of Milner’s result.

However, our contribution is not only about the presentatithe study of call-by-name is comple-
mented by the study of a call-by-value encoding, from whichextract a call-by-value-, analogous
of linear weak head reduction, which has never been corsideefore. We also show that this new
strategy enjoys the analogous of thabterm propertyf9] of linear weak head reduction, which is the
basic property for complexity analysis. Last but not least,give a presentatioat a distanceof the

1The upper bound if[9] is exact, and it is based on a trasféematf reductions which applies to arbitrary reduction
sequences, in particular even to non-terminating termg. ifsance, the quadratic bound is reached by the evaluafion
(AXXX)AX.xx, which is weak.
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rewriting rules of therr-calculus which is a contribution of independent interest.

Despite the compactness of the presentation, the detafilsdwut to be quite delicate. The use
of distance ruleswhich are rewriting rules involving contextsd. terms with holes), is crucial. They
reflect on terms the local rules of linear logic proof nets] #rey are essential in order to get a strong
bisimulation of reductions. These contexts can captur@bims and names, a fact which requires a
very careful analysis of the translations. This is why wesprd the proofs of the translation in details,
almost certifying the result. Moreover, we use colors tedhs reading, so we suggest to read the paper
simultaneously on paper and on a computer screen.

The relationship with proof netsProof nets do not appear in this paper, we limit ourselvethdo
equivalent formulations as calculi at a distance. Howef@rthe call-by-value calculus the detailed
correspondence between terms and proof nets can be fouH(imtich uses big-step rules, while here
we use small-step rules), for call-by-name the interestader may have a look tal[7, 2] (that do employ
small-step rules, but in a slightly different way). On prawts, linear head reduction is the small step
strategy which reduces only the cuts at level 0 which do nathife the auxiliary conclusions of !-boxes.
The weak variant can be defined in exactly the same way if baresilso used fof? (which in this
context rather corresponds to the right rule for linear ingtlon in intuitionistic linear logic, and not to
the? of classical linear logic). Using boxes for linear implicet is lessad-hocthan it may seem at first
sight; a technical discussion of this issue is in Section [BpfThis paper provides another justification
for such boxes: they are needed to properly reflect evaluatithe r-calculus.

Plan of the paperSectior1 introduces the linear substitution calculus, &&ctiorf 2 introduces the
presentation of the-calculus that we use. Sectidds 3 and 4 study the call-byersmd the call-by-value
encodings, respectively.

AcknowledgementsTo Frank Pfenning, for having encouraged me to work out thaildeof this
work, and to Damiano Mazza, for inspiration and commentsroealy draft. This work was partially
supported by the Qatar National Research Fund under graRPNIR-1107-1-168.

1 The linear substitution calculus

The language of thinear substitution calculug sy is given by the following grammar for terms:
t,sur = X|Axt|ts|t[x/g

The constructot[x/g] is called arexplicit substitution(of s for xin t, the usual (implicit) substitution is
instead noted{x/s}). Both Ax.t andt[x/s| bind x in t. We are not going to define the full calculus (for
which we refer to[[9, 3]), but only linear weak head reductibtowever, let us point out that the linear
substitution calculus is a variation over a calculus of expsubstitutions introduced by Robin Milner
in [34], to analyze the translation @fcalculus to Bigraphs.

We shall use contexts extensively, so we define them formilparticular, we need to specify the
setA of variables captured by a given context. A weak head conbexdimply anevaluation context is
a term of the following grammar (to ease the reading on sca#@ontexts will be in blue):

Eo = (-)|Eqt Eaupyy = Ealx/t] | Eaypat
A special case of evaluation context is givendmjpstitution contexts notedL, and defined by:
Lo == () Lawpg == La[x/t]

Definition 1. Linear weak head reduction— is defined as the union efogg and—o, 5, which are given
by the closure by evaluation context®e(—ogp:= Ea[—>4p] and—o15:= Ea[+15]) Of the rules— 45 and
15 defined as:



44 Evaluating functions as processes

La(Axt)s as  La(t[x/s]) En(X[x/s 15 Ea(s)[x/g  withx¢ A

The rule—, < implicitly assumes the side-conditidiv(s) NA = 0. The assumption is implicit be-
cause it can always be guaranteedobgonversion: ifu = Ex(X)[x/s] andfv(s) NA # 0 then there exist
a set of variable& and an evaluation contekt s.t.u=4 Fx(X)[x/s andfv(s)NZ = 0.

These rule arat a distancebecause their definition involves contexts, which is howality on proof
nets is reflected on terms. In Milner’s calculus the first does not usé,(-|). This is not a detail: the
results in this paper would not hold with respect to Milnergginal presentation.

It is natural to wonder in which sense the linear substitutialculus idinear. In contrast to other
linear calculi, variables may have multiple occurrences] arguments are not forced to be used only
once. Afirst superficial linear aspect of the calculus is Waaiable occurrences are substituted one at the
time. A second much deeper aspect is that its head stratdggraaterized by a factorization theorem
in the same way as head reductiontircalculus [3]—islinear head reductionwhose main feature is
the subterm propertynamely: any subterra which is duplicated at any point of a reductibr<X sis a
subterm oft, whose size then does not dependpwhich implies that the implementation costedfery
step is linear (in the size of the parameter for complexity). This is a fundamental priypaot enjoyed
by any strategy im -calculus (for which the cost of one step is not even polymbrim the size oft),
and which opens the way to the study of computational conitgl¢X]. Here we deal with lineaweak
head reduction, which forbids reduction under abstrastidrhe restriction does not affect the subterm

property.

2 The rr-calculus

The fragment of ther-calculus we use here is essentially the asynchronouslgalou[21] with both
unary and binary inputs and outputs, morally corresponttirije exponential and the multiplicative con-
nectives of linear logic (in the typed case [of[21]) and withsums (which correspond to the additives).
The only change is that we do not use their forwarding prca@séfhe grammar is:

PQR = 0[X(y)[X(y,2) | vxP|x(y,2).P |'x(y).P|P|Q
We need a notion of context also for processesioA-blocking contextis given by:
No = (-)|No|Q|P|Ng Nasx == VXNa | No(Nawx)

The language is considered modstouctural congruence i.e. the minimum equivalence relation gen-
erated by the following rules and closed by non-blockingtexis:

P[0=P P[Q[R=(P|QIR P[Q=Q[P
x ¢ fn(P)
P|lvxQ=vx.(P| Q)
In order to prove the simulation theorems we will use theofeihg three properties cf, proved by

easy inductions ofla, P, andNp, respectively (the set of free variables of a context is @efias for
processes but usintn((-))) = 0).

vx0=0 VXVyP = vyvxP

Lemma 2. LetA be a set of variabled\lx a non-blocking context, P a process £h(P)NA =0, and
Xy ¢ A. Then:

2Forwarding processes correspond to axioms in linear Idgiterms of proof nets, avoiding forwarding processes corre
spond to use an interaction nets presentatiento work modulo cut-elimination on axioms.
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1. Na(Q) [P=Na(Q|P).

2. Ifx¢ fn(P) thenvxP=P.

3. Ifx¢ £fn(Np) thenvxNa(P) = Na(vxP).
The rewriting rules are the following:

X(y,2) [x(Y,2).Q —e Qy/yHZ/Z Xy) ['x(2.Q — Q{z/y} |'x(2).Q

as usual they are both closed by non-blocking contexts ansidered modules. The second rule puts
together replication and unary communication as in[39, 21]

n-calculus, at a distanceln order to simplify the proof of the bisimulation, we are ggito use an
alternative but equivalent definition of reduction in tinealculus. Essentially, we have to reformulate the
n-calculusat a distance The use of the structural equivalence in the definition efréwriting relation
of the r-calculus induces some annoying complications when oas ta reflect process reductions on
terms. We are going to reformulate the reduction rules vialocking contexts, and get rid of structural
equivalence.

The rewriting rules=-, and=, are given by the closure by non-blocking contexts (but atelosed
by structural congruence) of the following relationsx g AUT then

Na(X(y;2) | Mr(x(y',Z).P) e  Mr(Na(P{y'/y}{Z/z}))

Na(x(y)) [ Mr (x(2).P) =1 Mr(Na(P{z/y} | X(2).P))
Actually, one should ask three futher conditions on vagabl1)ANT = 0; 2) Anfv(P) = 0; 3)
fv(Na) NI = 0. Itis easily seen, however, that these conditions caayasvbe satisfied by choosing
an a-equivalent term, as it is the case for the s rule of Agyp. Essentially, these rules re-formulate as
reduction rules the-transitions of the alternative presentation of tirealculus as a labeled transition
system, which is used to study the interaction of a proce#s itg environment. Here, the new rules
are more convenient than labeled transitions, becaudeterms there is no analogous of the transitions
whose label is not (and t-transitions are defined using the nonransitions). This reformulation is
justified by the following lemma, whose proof is along the ofithe harmony lemma in [38] (p. 51).

Lemma 3.
1. =isastrong bismulation withrespectto =: P==43 Qiff P=¢=Q, and P== Qiff P=1=Q.
2. Harmonyof = and —;: P =3 Qiff P=3=Q, and P—, Q iff P=,= Q.

Curiously, the first formulation of the-calculus was as a labeled transition system; the notions of
reduction and structural congruence were introduced byéibnly later on, to study the relationship
with the A -calculus[[33]. Our formulation at a distance of tlrealculus—motivated in exactly the same
way—is a contribution of independent interest, probabéyrtiain one from ther-calculus point of view.

It also shows that distance rules are a general syntacticiplé whose relevance extends beyond explicit
substitutions.

3 The call-by-name encoding

As for the ordinaryA -calculus, the translation frorg, to the rr-calculus is parametrized by a special
channel name. Actually, we assume that thespecial channel namesare taken from a sét which is
disjoint from the set of variable names, and whose elemeatdenoted, b, c.d,....

The translation is given by (on screen itis in red):
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Xla = X@a) Itsla = vbvx([t]s | b(x,a) | 'x(c).[s]c) xis fresh
[Axt]la = axb).[t]p [tix/9]a = vx([t]a|'x(b).[s]p)
Modulo minor details, this is the original call-by-name eding given by Milner. With respect to the
relation with linear logic developed ih [21], special namesrespond exactly to multiplicative formulas,
while variable names correspond to exponential formulas.
An easy induction on the translation shows:

Lemma 4. Lett be aterm. Thefin([t]a) = fv(t) w{a}.

To relate terms and processes we need to prove a property tétislation, concerning its action on
contexts: it maps evaluation contexts to non-guardingecdastof a special form.

Lemma 5 (RelatingE andN via [-].). LetA be a set of variable nameE, an evaluation context, and

a a special name. There exist a set of namépossibly containing both variables and special names), a
non-blocking contextia.r and a special namb s.t. [Ea(t)]a = Nawr ([t]p) and Nfv(t) = O for every
term t. Moreover, i, is a substitution contexta thena=b, I = 0, andNx does not depend om

Proof. By induction onEx. The base case is given by the empty congxt (- ), and it is trivial, just
takel := 0, Np := (-|), andb = a. The inductive cases:

e Left of an applicationEx = Fas: if Xis a fresh variable name:

[Ea(t)]a = [Falths]a = vdvx([Fa(t)]q | d{xa) | x(c).[s]c)
=ih. VAVX(Mauz([t]e) [ d(x,2) | 'X(c).[s]c) = Nauzwgax ([t

By i.h. we get tha N £fv(t) = 0. By definition of the translatior is fresh, so« ¢ £v(t). We then
conclude by taking := Zw {d,x}.

o Left of a substitutionEn., = Fa[X/9:
[EaspgWla = [Falthix/slla = vx([Falth]a | x(c).[s]c)
=ih. VX(Maur ([t]o) [ 'x(c).[s]c) = Nawgxpur ([tl)
and thei.h. also gived Nfv(t) =0.

Now suppose thaExy (and thusF,) is a substitution context,. Then byi.h. we getM, not
depending o s.t.:

[Eawpg e = [Falhx/sla = vx([Fa(t)]a | 'x(c).[S]c)
=ih. VX(Ma([tla) [ 'x(c).[s]e) = Nawpq ([ta)

Where clearlyN,.xy does not depend om O
We can now proceed with the simulation.
Theorem 6 (— 5 strongly simulates— via [-] ).
1. t—ogg s implies|t]s == [I)a

2. t—o5 simplies[t]s == [g]a.

Proof. 1. Two cases:

e Root rewriting stepfirst withoutLa(-): (AX-M)N 4z M[X/N]



B. Accattoli

[(Axt)s]a =

= Vb[tx/s]]a

vbvy([Axt]s | bly,a) [ !y(c).[s|c) =
=e  Vbvy([t]a{x/y} [ y(c).[s]c)

47

vbvy(b(x,e).[t[e | b(y,a) | ly(c).[s]c)
a  Vbux([t]a | 'x(c).[s]c)
[t[x/s]]a

The=,-step is justified by the fact thgtis introduced fresh in the first line. The step is justified
by Lemmd. 4, for which the only free special name occurrinfifinis a, and by LemmalP]2, which

allow us to remove the useless.

Now, if La(AXx.t)s—as La(t[x/s]) we get (some explanations follow):

[La(AX.t)S]a =
:LenE
=

=a

ELen{Zm& Lenm

=Lemd
=Lemik Lem2I2

vbvy([La(Axt)]o [ b(y,a) | ty(c).[s]c)
vbvy(Na([Axt]p) | b{y,a) | ty(c).[s]c)
vbvy(Na(b(x,e).[t]e) | by, a) | ly(c).[s]c)
vbvy(Na([t[a{x/y}{e/a}) | 'y(c).[s]c)
vbvx(Na([t]a) | 'x(c).[s]c)

VBN (vX([t]a | 'x(c).[s]c))

VBN ([t[x/5]]a)

Vb[La[t[x/s]]]a

[Laltx/s]]]a

The =4-step and the last step are justified as before. In the firdicagipn of = we can apply
Lemmd&Z]l because by hypothesi¢ A andfv(s) NA = 0, and Lemma&al2]l3 becauset £n(Na).

The two applications of Lemnid 5 are with respect to diffegecial names andb, but this is
sound: themoreoverpart of Lemmdb guarantees that in the case of a substitutiotextL the

corresponding conteX does not depend on the name.

e Inductive stepEx(t) —4p Ea(S) becauseé —4p S. Let us recall that by definitions reductions in the
rt-calculus are closed by non-blocking contexts. Then:

[Ealt)la =iemg Nawr([tlh) = Naer([slb) =ieng [Ea(dla
2. For— the inductive case is as fergp. The base case By (X)[x/s] —o15 Ea(9)[x/5] with x ¢ A:

[Ea(x)[x/9]]a

[Eals)x/9]]a

VX([Ea(®)]a | 'x(D).[s]b)
VX(Nawr (X(c)]) | Ix

LenZ  VX(Nawr ([S]c) [ 'X(P).[S]o)

=ten5 VX(Nawr ([X]c) | x(b).[s]b)
= VXNawr ([s]c | 'x(b).[s]n)
=Lenfs VX([Ea(s)]a | 'X(b).[s]b)

(b).s]b)

where the=-step is justified by the fact that by hypothesis and by LemrfagsIn) we get thatfv(s) W
{x,b})N(AWTl) =0, and so we can apply Lemm&R.1. O

The converse relation. To simulate process reductions Arterms we need a lemma, which is a con-

verse to LemmRgl5.

Lemma 7. LetA and[l” be a set of variable names and a set of special names, respgcti
1. If [t]a = Nawr (a(y,b).P) witha ¢ I thenl" = 0 and exist s andl.x s.t. P= [s] and t=La(Ay.S).
2. If [t]a = Nawr (X(c)) with x¢ A then exis& C A andEs s.t. t=Ez(X) (and x¢ Z).

Proof. Both points are by induction an
e Variable
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1. The hypothesis is false and there is nothing to prove.
2. By definition of[-], taking the empty context (ankl= 0).

e Abstraction

1. By definition of[-],, taking the empty context (arti= 0).

2. The hypothesis is false and there is nothing to prove.

e Application if t = ur then[ur], = vbvz([u]y | b(z,a) | 'z(c).[r]c) with zfresh.

1. By Lemmd#a ¢ £n([u]p), and so there is no contelipa.r S. t. [[t]a = Nawr (a(y,b).P),
hence the hypothesis is false and there is nothing to prove.

2. It must be thafu], = Mawr (X(c)) with A = A'w{z} andl =" w{a}. Then byi.h. there
existZ C A andFs s.t.u= Fs(X). We conclude takings := Fsr.

e Substitutionif t = u[z/r] then[u[z/r]]a = vz([u]a | '2z(b).[r]p)-

1. If [t]a = Nawr(a(y,b).P) then it must be that existélywr (- ) with A =A"w{z} s.t. [u], =
Marwr (a(y,b).P) andNawr = vz(Mawr | 12(b).[r]p). By i.h. we getlr =0, u=L'x(Ay.9),
andP = [s],. We conclude takinga := L'n[2/r].

2. It must be thafu], = Mawr (X(c)) with A = A'w{z} andl =" w{a}. Then byi.h. there
existZ' C A" andFy s.t.u=Fy (x). We conclude taking := ¥'w{z} andEs :=Fx[z/r]. O

Now, we can prove that any process reduction fiiofa can be simulated bty

Theorem 8(—o strongly simulates= via [-] ).
1. If [t]a =& Q then exists s s.t.togg s and[s|a = Q.
2. If [t]a =1 Q then exists s s.t.-to15 s and|[s]a = Q.

Proof. Both points are by induction an Cases:
e Values if t =xort = Ax.u then[t], cannot reduce.
e Application if t = ur then[t], = vovx([u], | b(x,a) | !x(c).[r]¢) with x fresh. Then:

1. Multiplicative reduction Cases oft], =« Q:

— Root [u]lp = Nawr (b(y,d).P) with b ¢ (AwT) and the process reduction is=g;, inter-
action withb(x, a) onb. By Lemm&ILlL we get théit = 0, u= La(Ay.U), andP = [u'],.
Sot = La(Ay.U)r and thus it has a-g4g-redex ony, which maps to the=,, communi-
cation onb exactly as in the proof of Theordni6.1.

— Inductive because ofu], = R. Then byi.h. existsu’ s.t.u —4p U and[u'lp = R. We
conclude by taking := u'r.

2. Exponential reduction|t], = Q can only happen if reduction takes place|ify,, because
x is fresh by hypothesis. In such a case we conclude usinghthas in the first sub-case of
the previous point.

e Substitution if t = u[x/r] then[t], = vx([u]a | Ix(b).[r]p). We have:

1. Multiplicative reduction [t], = Q can only happen if reduction takes placdr,, and we
conclude using theh..

2. Exponential reductionIf [t], =1 Q because reduction takes place[uj, we use the.h..
Otherwise,[Ju]a = Nawr (X(c)) with x ¢ AwWT and the process reduction is=a interaction
with Ix(b).[r]p onx. By Lemm&.2 there exi& andEs s.t. u= Es(x). Sot = Ex(X)[x/r]
has a—; redex onx, which maps to thesy communication orx exactly as in the proof of
Theoreni &.2. O
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According to the two theorems of this section, the relatijmbetween the call-by-name strategy on
the ordinaryA-calculus and the evaluation in thecalculus is the same as the relationship between the
call-by-name strategy and linear weak head reduction.drstfong casd.€. when (head) reduction can
go under lambdas), it is known that the latter can be at mostirgically longer than the former![9].
The analysis in[[9] does not depend on being weak or stroriglldtvs that the same upper bound holds
between the call-by-name strategy and its evaluation intthalculus.

Last, it is easy to see that linear weak head reductigieisrministic every term has at most ore
redex, since every redex writesBg(v) (wherev is a valuej.e. a variable or an abstraction) and such a
decomposition is unique. This property accounts for whah&ficallsdeterminacyof [t], in [33].

4 The call-by-value encoding

We now show that the same exact relationship can be obtaiitedegpect to call-by-value (CBV). The
CBV calculus in use here is not Plotkin’s calculdlg,. In [10] the author and Paolini introduced the
value substitution calculu,syp Which is a CBV calculus with explicit substitutions comtiaig Ag, as a
sub-calculus and behaving better thiegy with respect to the semantical notionsaflvability. In [4, 5]
we showed thak,syphas a sub-calculus, thvalue substitution kernéler, Which has two key properties:

1. Observational equivalendd]: there is a translatior : Aysup— Avker S.1. t @andt® are equivalent
with respect to observing any termination property.

2. Language for proof netf§]: Aker is an algebraic reformulation of the proof nets correspagdd
the CBV translation ofA-calculus into linear logic. Namely, there is a translatioxer — PN
which is a strong bisimulation.

Here, we are going to show a further property: there are a CBlogous—o, of linear weak head
reduction— and a translation-}* from Ayer to the r-calculus which is a strong bisimulation with
respect to—, and=-. Let us point out that in the untyped case there is a strongnatch between
Plotkin's calculusAg, and the evaluation in proof nets (see [4]), thus the resiilthi® section do not
hold with respect ta\g, (nor with any of its refinements with explicit substitutionbere3-redexes are
constrained to fire on values).

Thevalue substitution kernel Ayker is given by the following grammar:

t,sur = v|vt|t[x/g v = X|Axt

Please note that the left sub-term of an application can baln value (see [4,] 5] for more details).
Substitution contextka are defined as before. Instead, the languagevaluation contextschanges:

Eo = (-)|VEo|t[x/E Enopg 7= EalX/t] | VEnupe | tY/Enupy]

Next, we defineapplicative contextsasAn(-) ::= Ea((-)t). As for CBN, we do not define the full
calculus, but only the evaluation stratedynear weak applicative reduction, noted—o,, is given by
the rewriting rules—, 4z and—o,;5 defined as the closure by evaluation contexts of the follgwiries:

(Axt)s —ap t[x/9 A /L] —1sv Le(An(MX/MVD) - x¢A

Note that the argument off&redex is not required to be a value, while the substitutide can fire only

in presence of a value (in a substitution context). As it wesdase for the call-by-name calculus and
for the m-calculus, one should also ask tifatv) NA =0, fv(Ax(X)) NZ =0, andAN X = 0, but these
side-conditions can always be satisfied by takingraequivalent term, and so in the following they will
be taken for granted. Note thdk/y] /415, Y but (x2)[X/y] —1sv YZ because substitution has to take place
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in an applicative context. This applicative restrictioraisort of converse to the head restriction used in
the case of call-by-name evaluation. In terms of proof netk these restrictions correspond to forbid
reduction of cuts involving links in some !-boxes (with respto the respective encodings of CBV and
CBN), while theweakrequirement correspond to the analogous constraint wipee to the’y-boxes
mentioned in the introduction. The applicative restrigtie somehow a surprise, which is justified by
the fact that it matches what happens in tirealculus. It is a quite reasonable restriction: there is no
point in substituting a value if it cannot be used in some iappbn.

Linear weak applicative reduction enjoys a property whigtthe CBV analogous of the subterm
porperty (deifned at the end of Sectidn 1). Let us caflsaibterma subterm which is a value.

Lemma 9 (v-subterm property)Ift —K s and v is a v-subterm of s then v is a v-subterm of t.

Proof. By induction onk. Fork = 0 it is trivial, for k > 0 consider the term s.t. u —o, S. The—o45 rule
does not create new values. The,; rule duplicates a v-subterm af which byi.h. is a v-subterm of,
and it does not substitute into v-subterms. So, any v-subtdis is a v-subterm of. O

Differently from linear weak head reduction, linear weaklagative reduction is aon-deterministic
stretegy: just consider= ((Ax.x)(yy))[y/2], which has two redexes. However, a simple induction shows
that reduction is confluent: there is no need to use paratkiations or other sophisticated techniques
because no redex can duplicate/erase other redexes. it facasily seen that linear weak applicative
reduction enjoys the diamond property. This fact corredpdie what Milner callgdleterminacyof the
CBYV encoding.

The translation. Similarly to the CBV translation of th&-calculus to linear logic, the CBV transla-
tion to therr-calculus uses an auxiliary function. The main translatiorction {t}* is parametrized by a
variable namex ¢ fv(t) (and not by a special name) and the auxiliary function isch@tg?, i.e. we use
the same symbol but now the parameter is a special mame

{vp* == Ix(a).{v}? {vs}* = vbvy({v}® | bly,x) | {s}¥) yis fresh
{yb* == ¥(a) {sly/ul == vy({s}* | {u}Y)
{Ays? = a(y,2).{s}*

Note that the application case uses the auxiliary functiom. dNote also the difference with the call-by-
name case: applications and explicit substitutions do setraplication, which is instead associated to
values, with the important exception of applied values. &pplicativerestriction on the strategyo,
comes from this exception: the impossibility of interagtumder replication in the-calculus reflects on
terms as the fact that one can substitute only on variableppticative contexts, because the others are
under a replication prefix. Last, this encoding is a minoiatam over the CBV one in [39], which is
not Milner’s original CBV encoding.

Lemma 10. Lett € Ayker. Thentn({t}¥) = fv(t) W {x} andfn({t}?) = fv(t) W {a}.
Proof. By mutual induction on{t[}* and {t]. O

The following lemma is the call-by-value analogous of Lenfna

Lemma 11(RelatingE andN via {-}¥). LetA be a set of variable names, x a variable name BRdn
evaluation context. There exist a set of nam€possibly containing both variables and special names),
a non-blocking contextia.r, and a variable name z s.{Ea(t) [* = Nawr ({t}%) andIr nfv(t) = O for
every term t. Moreover, i, is a substitution contexta then x=z,I' = 0, andN, does not depend on
X.



B. Accattoli

51

Proof. By induction onEx. The base case is given by the empty congxt (- ), and it is trivial, just
takel := 0, Np := (-|), andz:= x. The inductive cases:

e Right of an applicationEax = VFa:

{Ea@®)} = {vRa(t)}* =

Thei.h. also givesz N fv(t)

fv(t) =0.

=ih.
= 0. Sinceb,y ¢ fv(t) i

¥ [ {Fa(t)})
%) [ Maez ({t}9) = Nawsgyoy ({tH
t) it follows thatl" := X {y,b} satisfiesl' N

vbvy({v}° | b
vbvy({v}® | b

¢ Right of a substitutionEa = sly/Fa|:

{Eal)}* = {sly/Falt)]}”

Thei.h. also giveNfv(t)

vy({st [ {Fa(t)}¥)
ih. VY({S}* | Mass({t}?) = NALﬂzLﬂ{y}Ht]}zD

=0. Sincey ¢ fv(t) it follows thatl" := Zw {y} satisfied Nfv(t) =0.

e Left of a substitutionEp, = Faly/u]. Then:
{Ralthly/ulb* = vy({Ra(th}* | {u})

{Enspyy @D =

Thei.h. also gived N

{Enwgy (D}

=ih. VY(Mawr ({t}*) | {ulY) = Nawgyper ({t}?)

fv(t) = 0. Now, suppose thdiy; (and thus-,) is a substitution context
La. Then byi.h. we getMa not depending oR s.t.:

= {R®y/J = vy{Fa()}* | {u}’)

—in VYMa({th) | {ul) = Naugy ({1

where clearlyN,.y, does not depend on O

Theorem 12(— 5 strongly simulates—,).
1. t—oygp S implies{t}* =g= {s}*.
2. t—oy15 S implies{t}* == {s}*.

Proof. We show the base cases, the inductive ones are as in theyaadlre case, using Lemrmal 11.
1. If (Ay.t)s —oyqp t[y/g| then:

{Aysp = vbvz({Ayt}® | b(zx) | {s}?)
= VOvy({th"{w/x}{y/z} | {s}*)

—  ubtlx/g*

2. I AaIY/L=(M] —1sv L5 (An

{Aa D ly/Ls(IF

Lem1]]

oA

:

vbvy(b(y,w).{t}" | b(z,x) | {s}?)
a vbvy({t}* | {s})
LemTd {tIX/S/}*

(M y/vI) andAn(-) = Ea((-)s) then:

({Ealy9 }* [ {L=(M]Y)

(Nawr ({ys}?) | Ms({v}))

(Nawr ({ys}?) | Ms('y(a).{v}*))

vy(Nawr (vovw({y}® | bw,2) | {s}*)) | Ms(ly(a).{v}?))
VV(NAur(lVbVW( (b) [ B(w,2) | {s}")) | Ms(!y(a).{v}?))
VyMs (Nawr (Vovw({v}® | ly(a).{v}* | b(w,2) | {s}")))
VyMs (Nawr (vbyw({v}® | bw,2) | {s}*)) | ly(a).{v}?)
VYMs (Nawr ({vs}?) | ty(a).{v}?)

VyMs ({Ea(ve) | ty(a).{v})

Mz (vy({Ea(ve[* | ty(a).{vi?))

M ({Ea(va)[y/VI})

L= (Ealvd [y/VID [

{Ls(AaM y/vIDE

vy
vyl
vy
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The = step after the reduction is justified by the fact thatw, and all the variables ifi are
introduced fresh and so do not belongttqv). Moreover AN £v(v) = 0 by hypothesis,and so we
can apply LemmBalPl1. O

The converse relation. As for call-by-name, we show that linear weak applicativeéuction reflects
exactly evaluation in ther-calculus.

Lemma 13. LetA andl” be a set of variable names and a set of special names, regplgcti hen:
1. If {t}* = Nawr ('x(a).P) with x¢ A thenl" = 0 and exist v and., s.t. P= {v}# and t= La(V).
- {t}* = Nawr (y(a)) with y ¢ A then exis& C A andAs s.t. t=As(y).

Proof. Both points are by induction an
e Value if t =V then{t}* =Ix(a).{V]}°.
1. Clearlyl =A=0,visV, andL, is the empty context.
2. The hypothesis is false, and so there is nothing to prove.

e Application if t = V'sthen{V's}* = vbvz({V}* | b(z,x) | {s}?) with zandb are fresh.

1. By definition of the translation ¢ £v(V's) and so by Lemma1@ ¢ fn({V]") U fn({s}?).
Consequently, there is no contét.r s. t. {t}* = Naur ('x(a).P), so the hypothesis is false
and there is nothing to prove.

2. Two cases:

(@) {V}° =y(a) andNpyr = vbvz((-) | b(z,x) | {s}?), which implyV =y, a=b, A= {z},
andl" = {b}. We conclude taking := 0 andAg := (-))s.

(b) The context holg-) isin {s}% LetA':=A\{z} andl"" :=T\ {b}. If {t}* = Naur (2(a))
then{s}* = Mawr (z(a)) for some contexinwr. Thei.h. givesZ C A" and an applica-
tive contextBs s.t. s= Bx(y). We conclude taking\s := V'Bs.

e Substitution if t = s[z/u] then{t}}* = vz({s}* | {u}?).

1. By definition of the translation ¢ fv(s[z/u]) and so by LemmBA 18 € £n({s}*) andx ¢
fn({u}}?). Consequently, the context hdlé) is in {s}*, which then writes abl . (!X(a).P),
with A = A’ @ {z} for some contexMur. By i.h. we get that there exist andL'y s.t.
P = {v}?ands=L'x (V). We conclude takingi := L'n[z/u].

2. Two cases:

(a) The context hold-|) is in {s}*. LetA’' := A\ {z}. If {t}* = Nawr(z(a)) then {s}* =
Maur (2(a)) for some contexMpa . Thei.h. givesX’ C A’ and an applicative context
By s.t. s= By (y). We conclude taking := ¥’ W {z} andAs := By/[z/u].

(b) The context hole is ifu}?. Analogous to the previous case (except that 2'). O

Theorem 14(—o, strongly simulates> via {-|}%).
1. If {t}* =4 Q then exists r s.t. +o,q5 r and {r}*=Q
2. If {t}* = Qthen exists r s.t. o,y rand {rj*=Q

Proof. By induction ont. Cases:
e Values if t is a value thert}* cannot reduce.
e Application if t = vsthen{vs}* = vbvy({v}® | b(y,x) | {s}¥) with y andb fresh. Then:
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1. Multiplicative reduction Cases oft]x =5 Q:

— Root {v}” = b(z,w).P interacts withb(y,x) onb. Clearly,v is an abstractiod z.u with
{u}¥ =P, andt = (Azu)shas aroot—o,4s redex. Thent and{t}* are related exactly as
in the proof of Theorermn 12.1. Note that £n({s}¥) by Lemmd10, and so there cannot
be any multiplicative root interaction involvings}Y.

— Inductive {t}* = Q becauses}Y = P. Byi.h.we get that there exist§s.t. s—4p I’
and{r'}Y = P. Sincev(-)) is an evaluation contexts, takimg= vr’ we gett —4p r and
{r}*=P.

2. Exponential reduction The inductive case.€. {t}* = Q becaus€[s}Y =, P) follows by
thei.h. as in the inductive case for multiplicative reductions.Ha toot case there cannot be
any root exponential reduction. Indeef)}® would have to be(b) and{s}¥ should have a
Iz(c).P sub-process. This second requirement is only possildeadhtains a valug which
in {s}Y is translated with respect i so that{v|}* =!z(c).P. But this is impossible becauge
is fresh (and sg # 2) and any variable name which is used as a parameter in theletiam
of a subterm ofis eithery or it is introduced fresh (and so cannot be equaj)to

e Substitution if t = {s]y/u][}* then{t}* = vy({s}* | {u}Y)

1. Multiplicative reduction If the reduction takes place ifs}* or {u}Y we use the.h. as in the
previous inductive cases. And there cannot be any root phiglitive reduction. Indeed, it
should be along a special namé&ee in both{s}* and{ul}¥, but by Lemma Igs}* and{u}}Y
have no free special name.

2. Exponential reductionlf the reduction takes place ifs}* or {u}Y we use the.h. as in the
previous inductive cases.

Otherwise, an exponential reduction can only be along ablriname which is free in both
{s}* and{u}Y. Thenz+# x, becausex ¢ fn({u}¥). Another requirement is thathas to be
used as the parameter of the translation of a valuehich is the only way to get a replicated
input. The only possibility then is that=y, because all variable parameter names used in
the translation and different fromandy are fresh and cannot be in bofl}* and {ul}”.

Now, {s}* has to be of the forfNa.r (y(a)) and{u}}¥ has to be of the forrM . ('y(b).P),

for some sets of variable namasandA’ and some sets of special nanfeandl”’, and with

y¢ AUA. By LemmaIB we gef’ = 0 and that exisv, Ly, Z C A, andAs s.t. P = {v}°,
u=La(V), ands= As(y). Summing upt = As(y)[y/La (V)] and it has a—-,;s redex which
maps onft]x = Q exactly as in the proof of TheordmlP.2. O

Conclusions

We have shown how to refine the relation betweenihealculus and ther-calculus, getting a perfect
match of reductions steps in both call-by-name and caNddye. The refinements crucially exploits
rewriting rules at a distance, and unveil that tliealculus evaluatea -terms exactly as linear logic
proof nets. A natural continuation would be to extend thetations to calculi with multiplicities [14],
which are related to the study of observational equivalericesould also be interesting to investigate
linear weak applicative reduction, in particular in redatiwith complexity [9] or with Taylor-Ehrhard
expansion[[22]. Finally, given the compactness of the tesarnd the involved reasoning about bound,
free, and fresh variables, it would be interesting to trydonfalize this work in Abellal [25], which is a
proof assistant provided with a nominal quantifier pregiskdveloped to cope with the-calculus [32]
and where reasoning about untyped calculi with bindersng ¢lese to pen-and-paper reasoning [6].
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