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We introduce a new interaction net implementation of optimal reduction for the pure untyped lambda
calculus. Unlike others, our implementation allows to reach normal form regardless of the interaction
net reduction strategy using the approach of so-called token-passing nets and a non-deterministic
extension for interaction nets. Another new feature is the read-back mechanism implemented without
leaving the formalism of interaction nets.

1 Introduction

Optimal reduction for the A-calculus was defined by Lévy [9]. One of its implementations is done by
Lamping [7]]. Independently in [[6], Lafont introduced interaction nets which are graph rewriting systems
similar to those used by Lamping. Later, Lamping’s optimal algorithm was redefined using the formalism
of interaction nets; see [2] where the problem of optimal reduction is covered in great detail.

Interaction nets were found as capable to encode reduction strategies directly [10]. Also, a new
approach of token-passing nets was introduced and demonstrated to implement call-by-value and call-by-
name evaluation of A-terms using pure interaction nets thanks to Sinot [[12]]. Finally, he achieved a token-
passing net implementation of call-by-need evaluation [[13]] by leaving the formalism of interaction nets.
Almeida, Pinto, and Vilaca analyzed and generalized Sinot’s approach to a wider class of systems [1]], and
also stated a (currently still open) question if token-passing nets are applicable to closed reduction [3]].

This paper is a part of an ongoing WOI'kE| on implementation of the pure untyped AK-calculus. For
that purpose, we have introduced a domain-specific language based on the interaction calculus [4] with a
non-deterministic extension [3]] and side effects. However, our software implementation of this language
has some limitations implied by eventually aiming at a distributed computation network. Specifically,
we have chosen not to support any specific interaction net reduction strategy as different computation
nodes are meant to work independently with as minimal synchronization to each other as possible.

Hence, the optimal algorithm and many other interaction net implementations of the A-calculus are
not possible in our setting as they rely upon weak strategies aiming to reach interface-normal form of
a net. Also, they often require external garbage collection which we would rather prefer to delegate to
interaction nets themselves. Still, we found that token-passing nets fit us perfectly. In particular, we have
successfully adapted [[11] Sinot’s call-by-need for free [13]. Our current work is mostly based on the
latter adaptation, thus we also base our system on interaction nets with non-deterministic extension.

In this paper, we apply the approach of token-passing nets to optimal reduction of pure untyped
AK-terms. Our optimal implementation has two new features: reaching normal form (if any) regardless
of the interaction net reduction strategy and producing textual representation of the normal form. The
first feature is in contrast with other implementations that require avoiding interactions in disconnected
parts of a net. The second feature makes more sophisticated use of eval and return tokens which Sinot’s
token-passing nets are based on.

! The latest stable version of our implementation is available online at https: //codedot . github. io/lambda/ and works
in modern Web browsers with no server side, computation being performed solely on the client side.
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2 Preliminaries

This section gives a rather informal brief introduction to interaction nets and their textual representation
called the interaction calculus [4]. Also, we will give an overview of our programming language based
on the interaction calculus which we use for software experiments with interaction nets.

Interaction nets are graph-like structures consisting of primitives shown in Figure[I] Agents of type
o can be graphically represented as shown in Figure[la] Agents have arity ar(ct) > 0. If ar(a) = n, the
agent & has n auxiliary ports x1, ..., x, in addition to its principal port xy. All agent types belong to a set
X called signature. Any port can be connected to at most one edge and ports not connected to any edge
are called free ports, the latter ones forming the interface of an interaction net. Wiring @ on Figure
consists solely of edges. Inductively defined frees on Figure[Id|correspond to terms t ::= a(ty, ... 1) | x
in the interaction calculus, where x is called a name.

Any net N can be redrawn using the previously defined wiring and tree primitives as follows:

no|: N | RS wi
N |= o
tm |- N | Wn
which in the interaction calculus corresponds to a configuration (t1,...,t,, | vi =wi,..., vy = wy), where
t;, vi, and w; are arbitrary terms. The ordered sequence 1, ..., 1, in the left-hand side is called an interface,

while the right-hand side contains an unordered multiset of equations v; = w;. The wiring @ translates
to names, and each name has to occur exactly twice in a configuration.

Just like in the A-calculus, the interaction calculus has the notions of a-conversion and substitution
naturally defined on configurations. Specifically, both occurrences of any name can be replaced with a
new name if the latter does not occur in a given configuration. In turn, substitution t[x := u] is the result
of replacing the name x in term ¢ with another term u if x has exactly one occurrence in term ¢.
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When two agents are connected to each other with their principal ports, they form an active pair. For
active pairs one can introduce interaction rules which describe how the active pair rewrites to another
net. Graphically, any interaction rule can be represented as follows:

Xm N Xm — — V1

Vm : : wi

where o, B € X, and the net N is redrawn using primitives of wirings and trees in order to translate the
rule into the interaction calculus as &[vy,...,v,| > B[wi,...,w,]| using Lafont’s notation. A net with no
active pairs is said to be in normal form. A signature X (with mapping ar defined on it) along with a set
of interaction rules defined for agents & € X together constitute an interaction system.

Now, let us consider an example for the notions introduced above in this section. Figure [2| shows two
interaction rules for commonly used agents € and 6 and a simple interaction net to which these interaction
rules are applied. Using Lafont’s notation, the erasing rule from Figure [2afis written as € < «([e, ..., €],
while the duplication rule given in Figure [2b|can be represented as follows:

6[06()(1,. . axn)va(yla- . ~7yn)] > a[5(x1,y1),. . '75(xnayn)]'

Figure[2c|provides an example of a non-terminating net which reduces to itself. In terms of the interaction
calculus, one can write this net as a configuration (& | 8(&,x) = y(x,€)) with no interface.

The interaction calculus defines reduction on configurations in more details than seen from graph
rewriting defined on interaction nets. Namely, if a[vy,...,vy] > B[wi,...,w,], the following reduction:

Tloftry. stm) =Bty ytty), A) = T 1 =V1yeoy by = Vi, Ul =W, nnsy Uy =Wy, A)

is called interaction. When one of equations has the form of x = u, indirection can be applied resulting
in substitution of the other occurrence of the name x in some term ¢:

(ot |x=u A) = (. tx:=u]... |A) or {F|x=ut=w A)— {|thx:=ul=w, A).

Figure 2: Example
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An equation ¢ = x is called a deadlock if the name x has occurrence in the term ¢. We only consider
deadlock-free nets. Together, interaction and indirection define the reduction relation on configurations.
The fact that configuration ¢ reduces to its normal form ¢’ with no equations left is denoted as ¢ | ¢’.
Coming back to the example of a non-terminating net shown in Figure the infinite reduction
sequence starting from the corresponding configuration in the interaction calculus is as follows:

(@] d(€,x)=17(x€) =

(@] &=1v(x1,%2), x=Y(y1,y2), x=6(x1,1), €= 6(x2,)2)) ="
(D |x1=¢€, x2=€,x=Y01,y), x=0(x1,y1), X2 =€, y =€) ="
(7| 6(g,x) = y(x,€)) — ...

In our DSIEI which is similar to the UNIX utilities yacc (1) /1ex (1) by structure and lexically close to
LaTeX representation for the interaction calculus, the example net can be specified as follows:

\epsilon {
console.log("epsilon >< delta");
} \delta[\epsilon, \epsilon];

\epsilon {
console.log("epsilon >< gamma') ;
} \gamma[\epsilon, \epsilon];

\delta[\gamma(x, y), \gamma(v, w)] {
console.log("delta >< gamma");
} \gamma[\delta(x, v), \delta(y, w)];

$$

\delta(\epsilon, x) = \gamma(x, \epsilon);

Note that our programming language allows side effects written in imperative style, thus enabling
execution of arbitrary code, including input/output as well as conditional multiple rules for a given pair
o > fB; depending on i and j, while manipulating i and j as arbitrary data attached to agents.

Our implementation of this language does not rely on any external garbage collection as it does not
distinguish disconnected subnets. The latter is due to lack of interface as we specify a net by a multiset
of equations only. In order to still represent a net with a non-empty interface, one needs to modify the
net, for instance, by attaching agents with zero arity to all of its free ports.

An interaction system’s signature and arities of agents are derived automatically at compile time
based on input interaction rules and initial configuration. The interaction rules along with their side
effects are compiled in advance before starting reduction of a net, the compiler preparing a table for a
fast O(1) rule search at run time. After that, the initial configuration is pushed into a FIFO queue which
is then processed by evaluator until no more equations left.

Finally, implementation of our DSL includes non-deterministic extension for interaction nets in the
same form as described in Section [3| namely using McCarthy’s amb agent which allows to simulate
agents with multiple principal ports such as the sharing agent s used by Sinot in [13]].

2 Our programming language is provided with a Node.js package called JavaScript Engine for Interaction Nets which is
available athttps://www.npmjs.com/package/inet-1ib in the NPM repository.


https://www.npmjs.com/package/inet-lib
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3 Non-deterministic extension

‘We work in the interaction calculus [4] extended with a non-
deterministic agent amb [3]]. This agent will be required Figure 3: Non-deterministic agent
in the waiting construct which is described in Section [3]
Specifically, it is used to handle non-deterministic nature of
deciding whether a given sub-term of an encoded AK-term
is to be reduced and erased. The context where we need the
amb agent is similar to where multiple principal ports were
necessary for token-passing net implementation of call-by-
need evaluation by Sinot.

We represent this agent in a more conservative fashion
than it was suggested in the original paper [3]. Specifically,
we prepend the list of auxiliary ports of amb with its extra
principal port and introduce the following conversion:

(f |t =amb(u,v,w), A) = (f | u=amb(t,v,w), A).

We assume that any interaction system’s signature X is
implicitly extended by amb with ar(amb) = 3, while its set
of rules is implicitly extended with

Vo € X : oofx] ><xambly, o (), y].

Figure|3| gives a graphical representation of amb.

4 Optimal reduction

The pure interaction net implementation of optimal reduction upon which we base our interaction system
is the main one used through most of the book by Asperti and Guerrini [2, pp. 39-40]. In that system,
all agents have box level numbers attached to them. From the viewpoint of the interaction calculus,
this fact results in an interaction system with an infinite signature and an infinite set of interaction rules.
Specifically, its signature can be defined as follows:

Xo= {8} U{Ai, @i,ﬁi,@i,ui | i€ N},

with ar(g) = 0, ar(M;) = ar(L;) = 1, and ar(};) = ar(@;) = ar(&;) = 2. In Section [7| where we define
the embedded read-back mechanism, we will extend the signature with agents that have A-terms and
contexts attached rather than natural numbers.

The set of interaction rules consists of two groups. The first group includes annihilation rules:

] < i

L [x] o<t L [x]s
Ailx,y] > @[x, y);
Gilox, y] > §lx, y]
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The second group contains the following propagation rules, where o; € Xp and i < j:

rm,-[aj_l (X] yoen ,Xn)] > Ocj[rmi(xl), .. .,rm,-(xn)];
ui[aj-H (x1 yeun ,)Cn)] > OCj[|_|i(.X1), .. .,I_Ii(xn)];
Silatj(xr, . ,xn), @G (Y15, ¥n)] B 0[S (x1, 31), - 6, ym)]-

The initial encoding of A-terms we base our work on is the one given in [2, pp. 41-42], although
other compatible versions can also be used as described in [2, Chapter 8]. We preserve both original
interaction rules and original initial encoding with exceptions for the B-reduction A; 1 @; rule modified
and free variables allowed in a given A-term. The former modification is to be covered in Section
about the waiting construct, and the latter feature will be a part of the read-back mechanism embedded
into our interaction system described in Section [/| Together, they will constitute our token-passing net
implementation of optimal reduction.

In order to make it easier to work with the interaction calculus below, we will denote the (graphical)
encoding [M] of a given A-term M as (textual) configuration (x | [M,x]), where x is a name for the only
free port in its interface, and [M, x] is a multiset of equations that correspond to the initial encoding [M].

S Waiting construct

Our main modification to the optimal algorithm on the way to
its token-passing net version is to replace the -reduction rule Figure 4: Waiting construct
@i[xay] > li[xvy] with

@,[x,y] > A;[wait(z, hold(z,x)),y], b

extending the original signature Xy with a set of agents used to
represent what we call the waiting construct: v a

Xw = o U{wait, hold, decide, eval, call }, — \
6N

with ar(wait) = ar(hold) = ar(decide) =2, ar(eval) = 1, and

ar(call) = 0. Figure 4| provides graphical representation of the b C
modified B-reduction rule. Note the waiting construct appear-

ing between variable » and argument d is similar to the ! agent used by Mackie in [10] to cut edges
corresponding to active pairs.

The waiting construct propagates through the body of every abstraction after substitution, blocking
possibly unnecessary B-redexes until they are called. This mechanism consists of several additional
interaction rules we define through the rest of this section. Since the process of deciding whether a given
redex is needed has non-deterministic nature, it is the waiting construct that requires non-deterministic
extension for interaction nets we discussed earlier. In particular, interaction between a fan-in agent
(denoted below as §;) and wait results in creation of an ambiguous decide agent with two principal ports,
the latter one being simulated using amb as shown in Figure

Figure [6] illustrates the @; < wait rule. Note that rather than just passing through application, the
waiting construct initiates another waiting construct on the way to the root of application. Otherwise,
an € agent that performs garbage collection from the root of application might be unable to reach either
of application’s sides. That, in turn, could lead to a disconnected net, which would become blocked
non-interacting garbage. We avoid that thanks to the structure of our @; bt wait rule.
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Figure 5: Propagation through fan-in
Figure 6: Propagation through application
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Unblocking evaluation happens through wait > eval interaction which is implemented in a fashion
similar to how evaluation strategies are encoded in Mackie’s paper [10]. Although, the corresponding
interaction rules are different due to the simulation of multiple principal ports:

decide

The rest of propagation and garbage collection interaction rules are more or less straightforward, so
we use Lafont’s notation instead to put them all together:

eval[A;(x,y)] < Aix, eval(y)];
eval[8;(x,y)] > &[x,y];
eval[x] > wait[eval(x), call];
call > hold[x, eval(x)];
O;[wait(x,amb(y, decide(z,v),v)), wait(w,y)] >t wait[5;(x, w), z];
call < decidelcall, g];
€ i decide[x, x];
@[x,wait(y, hold(@;(x,y),wait(v,w)))] > wait[v, w];

m;[wait(x,y)] b wait[m;(x), y];
Li[wait(x,y)] p< wait[L; (x), y].
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6 Remarks on efficiency

Note that our solution is of proof-of-concept nature, and currently we do not directly aim at efficiency.
Still, our approach preserves some parallelism of Lamping’s optimal algorithm, as there are potentially
multiple eval agents operating simultaneously throughout the interaction net. This is in contrast to the
original token-passing net implementations [12} [13]].

Our main concern was the capability of our system to handle corner cases for closed reduction [5] and
to reach the normal form of essentially A K-terms. During development and testing, some of the example
terms we used were (A fx.Kxf)Q, o (o (w(Afx.f(fx)))) where ® = Ax.xx, and (Ax.M) (Y I) where
x ¢ FV (M) with various combinations of terms M and fixed point combinators Y.

As our main test case, we used a complex A K-term representing arithmetical expression 33 — (2 4-2)!
with Church numerals and factorial defined via Turing’s fixed point combinator. The chosen A-term was
meant to cover most of the corner cases, and it also allowed us to collect comprehensive benchmarks. For
this test case, the total number of interactions was 2652687 out of which 2621262 are related to oracle
nodes. The number of interactions related to the waiting construct was 1182981 out of which 1159057
interactions were against oracle nodes. In other words, the waiting construct occupied less than half of
interactions, and the vast majority of its overhead is due to unoptimized oracle representation.

As shown in Section[5] the waiting construct propagates through the whole body of every abstraction
applied to an argument. If the waiting construct were modified to interact with oracle nodes in a more
sophisticated way than just propagating through them, it could result in a run-time optimizer for oracle
nodes and might possibly solve a long-standing issue about inefficiency of optimal reduction [§].

7 Read-back

The process of decoding the normal form of an interaction net into the corresponding A-term is called
read-back. Usually, read-back is described in prose, and only facilities external with respect to interaction
nets are available. Here we embed the read-back mechanism into interaction nets themselves. Essentially,
we dissolve application and abstraction agents into textual representation of the corresponding A-term.

Through the rest of this section we will use the following notations: we denote the set of all A K-terms
as A, and C[ | means a context, i. e. a A-term with one hole, while C[M] is the result of placing M in
the hole of the context C[ ].

In order to add the read-back mechanism to our interaction system, we further extend its signature:

=YwU{T}tU{ay |[M €A} U{r¢c || C[ ]isacontext},

with ar(ay) = 0 and ar(r¢; 1) = ar(T) = 1, the atom agent ay encoding the textual representation of a
A-term M and the read agent r¢| | performing read-back in the context of C [ ]. In particular, agents ay
make it possible to represent free variables in a given A-term being encoded into interaction nets. Note
that our X \ Xy extension is infinite as there has to be an agent for every A-term and every context.

Let us recall that the original encoding in [2, pp. 41-42] assumes no free variables in a A-term
being mapped into its initial encoding. In order to allow free variables, we need to extend the mapping.
Specifically, while encoding A-terms into our interaction system, we will distinguish their free variables
from their bound variables. So, let us mark all free variables in a A-term M using the following operation:
M*® = M[X :=X*|, where (X) = FV(M). Then, A-term M can be mapped to configuration

(x| eval(ry 1(T(x))) =y, [M*,y]),

where the original encoding [M, x] is extended with [x*,y] = {ay, = y}.
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Figure 7: Read-back
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Our read-back mechanism mainly consists of the three interaction rules that are shown in Figure
More formally in the interaction calculus, the rules related to read-back are as follows:

rep XI5 Alay, reayg 1(x)],  where y is fresh;

Now, we believe that the following statement holds true. It is still missing a formal proof. However,
no counterexamples have been found while experimenting with software implementation.

Conjecture. (x| eval(r; |(T(x))) =y, [M*,y]) | (an | @) iff N is the normal form of M.

That is, the interaction net that encodes a A-term M in our interaction system reduces to normal form

(if any) with no garbage and only one agent ay in its interface, N representing the normal form of the
encoded A-term M; see Figure
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8 Conclusion and further work

To the best of our knowledge, optimal reduction had not yet been implemented using the approach of
token-passing nets until this paper. While our implementation of optimal reduction is rather a preliminary
result, we still considered it worth sharing. Also, we are not aware of any other existing implementations
of read-back embedded into interaction nets and we covered it here in much more details than [11].

In our opinion, further work should be directed to obtaining a proof for the conjecture given above
if the latter holds true. We believe that a proof may be achieved by verifying the following four aspects:
non-interference with the original optimal reduction algorithm, the eval agents only triggering needed
redexes, no possible deadlocks, and correctness of read-back. Additionally, one needs to quantify how
well our implementation preserves the parallelism of Lamping’s optimal algorithm. Finally, upgrading
the waiting construct into optimization mechanism for oracle nodes and researching its efficiency looks
promising for optimal implementations of functional programming languages.
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