
Van Gorp, Mazanek and Rose (Eds.):
Fifth Transformation Tool Contest (TTC 2011)
EPTCS 74, 2011, pp. 22–26, doi:10.4204/EPTCS.74.4

c© Steffen Mazanek
This work is licensed under the
Creative Commons Attribution License.

Hello World!
An Instructive Case for the Transformation Tool Contest

Steffen Mazanek
steffen.mazanek@gmail.com

This case comprises several primitive tasks that can be solved straight away with most transformation
tools. The aim is to cover the most important kinds of primitive operations on models, i.e. create,
read, update and delete (CRUD). To this end, tasks such as a constant transformation, a model-to-text
transformation, a very basic migration transformation or diverse simple queries or in-place operations
on graphs have to be solved.

The motivation for this case is that the results expectedly will be very instructive for beginners.
Also, it is really hard to compare transformation languages along complex cases, because the com-
plexity of the respective case might hide the basic language concepts and constructs.

1 Introduction

The case described in the following comprises not just a single transformation task. Rather it consists of
a set of primitive tasks each of which can be solved with just a few lines of code with most transformation
tools. So, this case is not a big challenge. However, it will result in an extensive set of small transfor-
mation programs that will be very instructive for beginners. Note that the goal of the Transformation
Tool Contest (TTC) is to compare transformation languages/tools. However, the effort for investigating
and comparing solutions for a complex case is remarkable. Moreover, it is really hard to learn the lan-
guage constructs and concepts from large programs. Finally, it can be expected that solutions in many
different transformation languages will be developed for this case, either for TTC 2011 or at a later time,
because it is neither time consuming nor difficult to solve but still insightful. Actually, no developer of a
transformation tool could effort not to solve the “Hello World” case.

2 Tasks

In the following the primitive tasks comprised by this case are introduced. The rationale of this selection
is that the four basic functions create, read/query, update and delete (CRUD) should be covered. Note that
certain subtasks are marked as optional, i.e. those are not required to solve the case but are considered
only as extensions.

2.1 Hello World!

• Provide a constant transformation that creates the example instance of the “Hello World” meta-
model given in Fig. 1.

• Consider now the slightly extended metamodel given in Fig. 2. Provide a constant transformation
that creates the model with references as it is also shown in Fig. 2.

http://dx.doi.org/10.4204/EPTCS.74.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


Steffen Mazanek 23

Figure 1: The “Hello World” metamodel and the example instance

Figure 2: The extended “Hello World” metamodel and the example instance

• Next, provide a model-to-text transformation that outputs the GreetingMessage of a Greeting to-
gether with the name of the Person to be greeted. For instance, the model given in Fig. 2 should
be transformed into the String "Hello TTC Participants!".1

2.2 Count Matches with certain Properties

For the following querying tasks the input models are simple graphs conforming to the metamodel given
in Fig. 3. As results numbers should be returned, again wrapped into an object of the respective result
type.

• Provide a model query that counts the number of nodes in a graph.

• Provide a model query that counts the number of looping edges in a graph, i.e. edges where the
source and the target node coincide.

• Provide a model query that counts the number of isolated nodes in a graph, i.e. nodes that are
neither the source nor the target of any edge.

• Provide a model query that counts the number of matches of a circle consisting of three nodes, i.e.
the pattern shown in Fig. 4 where n1, n2 and n3 are pairwise distinct. Note that each circle in the
model should be matched three times.

• Optional: Provide a model query that counts the number of dangling edges in a graph, i.e. edges
where either the source or the target node is missing.

1Note that we provide as accompanying material on the case website a metamodel, Result.ecore, that contains classes
for returning primitive results such as strings or numbers.



24 Hello World Case

Figure 3: The simple graph metamodel

Figure 4: Circle of three nodes (simplified representation of edge objects)



Steffen Mazanek 25

Figure 5: The evolved graph metamodel

Figure 6: The even more evolved graph metamodel

2.3 Reverse Edges

For the remainder of the paper we assume that there are no dangling edges in our graphs, i.e. src and trg
of edges are properly set. Provide a transformation that reverses all edges in a graph conforming to the
simple graph metamodel given in Fig. 3. This is an update operation.

2.4 Simple Migration

Provide a transformation that migrates a graph conforming to the metamodel given in Fig. 3 to a graph
conforming to the metamodel given in Fig. 5. The name of a node becomes its text. The text of a
migrated edge has to be set to the empty string.

Optional: Provide a topology-changing migration that transforms graphs of the metamodel given in
Fig. 3 to graphs as defined by the metamodel in Fig. 6.

2.5 Delete Node with Specific Name and its Incident Edges

Given a simple graph conforming to the metamodel of Fig. 3. Provide a transformation that deletes the
node with name “n1”. If a node with name “n1” does not exist, nothing needs to be changed. It can be



26 Hello World Case

Figure 7: Insertion of transitive edges

assumed that there is at most one occurrence of a node with name “n1”.
Optional: Provide a transformation that removes the node “n1” (as above) and all its incident edges.

2.6 Optional: Insert Transitive Edges

Consider the input graph as a relation R. Provide a transformation that creates the graph corresponding
to the relation R∪R2. To this end, for every three nodes n1, n2 and n3 and two edges e1, e2 where e1
points from n1 to n2 and e2 points from n2 to n3, insert an additional edge pointing from n1 to n3, if
there is no edge connecting n1 and n3 already (cf. Fig. 7).

3 Evaluation

Since this case is easy to solve an official award was not appropriate here. Instead, every team that
presented a correct solution for all subtasks at TTC 2011 has received ”Hello World” TTC cups for all
team members. In addition, an evaluation sheet was filled in by the participants. The following criteria
have been used: completeness, understandability and conciseness (all with equal weights).

4 Conclusion

This case comprises several easily solvable tasks. The results can still be expected to be very useful. Most
importantly, they can be explored by beginners in order to get an impression how basic problems can be
solved using the different transformation approaches. Moreover, it is planned to use these tasks and the
corresponding solutions as an initial fill for the recently developed online judge for model transformations
(http://transformation-judge.org), a system that supports the upload of cases and solutions,
which will be black-box-tested and automatically ranked according to criteria such as performance, LOC
and user ratings.

The website of this case proposal is http://sites.google.com/site/helloworldcase/. All
the metamodels as well as example input/output models can be downloaded from this site. In addition,
this site contains all solutions presented at TTC 2011.

Acknowledgment: I would like to thank Pieter Van Gorp for proposing a meaningful rationale for
the actual task selection and for his idea to call this case “Hello World”.

http://transformation-judge.org
http://sites.google.com/site/helloworldcase/

	1 Introduction
	2 Tasks
	2.1 Hello World!
	2.2 Count Matches with certain Properties
	2.3 Reverse Edges
	2.4 Simple Migration
	2.5 Delete Node with Specific Name and its Incident Edges
	2.6 Optional: Insert Transitive Edges

	3 Evaluation
	4 Conclusion

