
Pieter Van Gorp, Louis M. Rose, Christian Krause (Eds.):
Sixth Transformation Tool Contest (TTC 2013)
EPTCS 135, 2013, pp. 75–82, doi:10.4204/EPTCS.135.9

Solving the Class Diagram Restructuring Transformation
Case with FunnyQT

Tassilo Horn
horn@uni-koblenz.de

Institute for Software Technology, University Koblenz-Landau, Germany

FunnyQT is a model querying and model transformation library for the functional Lisp-dialect Clo-
jure providing a rich and efficient querying and transformation API.

This paper describes the FunnyQT solution to the TTC 2013 Class Diagram Restructuring Trans-
formation Case. This solution and the GROOVE solution share the best overall solution award for
this case.

1 Introduction

FunnyQT is a new model querying and transformation approach which is implemented as an API for
the functional, JVM-based Lisp-dialect Clojure. It provides several sub-APIs for implementing differ-
ent kinds of queries and transformations. For example, there is a model-to-model transformation API,
and there is an in-place transformation API for writing programmed graph transformations. FunnyQT
currently supports EMF and JGraLab models, and it can be extended to other modeling frameworks, too.

For solving the tasks of this transformation case1, only FunnyQT’s plain querying and model manip-
ulation APIs have been used, and the task is tackled algorithmically.

2 The Core Task

The core task’s solution consists of some helper functions, a function for finding sets of pullable prop-
erties and sorting them heuristically in order to achieve effective results, the rules depicted in the case
description [1], and a function applying the rules in order to realize the transformation. This section
starts with the helpers, then explains the function finding pullable properties, and then discusses the
restructuring rules. The complete source code is printed in Appendix A.

Helper Functions. The helper functions discussed in this section are quite simple and factor out func-
tionality that is used at several places in the rules. There are several very simple helpers that are not ex-
plained in detail. add-prop! adds a new Property with some given name and Type to some given Entity.
delete-prop! deletes the property identified by a given name from a given entity. The pull-up function
gets a list of [prop-name type] tuples, a set of source entities, and a target entity. It then adds new prop-
erties to the target entity and deletes them from the source entities. Lastly, there’s make-generalization!
which creates a new Generalization between a sub- and its super-entity, and there’s make-entity! that
creates a new Entity.

1This FunnyQT solution is available at https://github.com/tsdh/ttc-2013-cd-restruct and on SHARE (image
TTC13::Ubuntu12LTS_TTC13::FunnyQT.vdi)

http://dx.doi.org/10.4204/EPTCS.135.9
https://github.com/tsdh/ttc-2013-cd-restruct

76 Solving the Class Diagram Restructuring Transformation Case with FunnyQT

The function prop-type-set gets an Entity e and returns its set of [prop-name type] tuples, i.e.,
there’s one such tuple for any owned attribute of e.

1 (defn prop-type-set [e]
2 (set (map (fn [p] [(eget p :name) (eget p :type)])
3 (eget e :ownedAttribute))))

The filter-by-properties function gets a collection of [prop-name type] tuples via its pnts param-
eter, and a collection of entities via its entities parameter. It returns the subset of entities for which
every entity defines all of the given properties with identical types.

1 (defn filter-by-properties [pnts entities]
2 (set (filter (fn [e] (forall? #(member? % (prop-type-set e)) pnts))
3 entities)))

Restructuring Heuristics. This solution doesn’t pull up one attribute at a time, but instead it pulls up
the maximal set of properties that are shared by a maximum of entities. I.e., the heuristics can be specified
as follows. Let P1 and P2 be sets of properties shared by the sets of entities E1 and E2, respectively.

1. If |E1|> |E2|, then the solution pulls up the properties of P1 instead of the properties of P2.
(Maximality wrt. the number of entities declaring these properties)

2. If |E1|= |E2|, then the solution pulls up the properties of Pi where i =
{

1 if |P1| ≥ |P2|
2 otherwise

.

(Maximality wrt. the number of pullable properties.)

S

A
a
b

B
a
c

C
c
d

D
c
b

S

N1
a

N2
c

A
b

B
c

C
d

D
b

S

N1
c

A
a
b

B
a

C
d

D
b

Maximal number of declaring entities

S

A
a
b
c

B
a
b
d

C
d

S

A
a
b
c

B
a
b

C

N1
d

S

A
c

B
d

C
d

N1
a
b

Maximal number of pullable properties

Figure 1: Examples for the heuristics

Figure 1 illustrates these heuristics with two examples. In the left example, the property c is shared
by three classes, whereas a and b are shared by only 2 classes each. If the transformation pulls up a first
into a new class, c can be pulled up only from C and D into another new class. The number of property
declaration decreases from 8 to 6, b and c remain duplicated once, and 2 new classes have been created.
If the transformation uses the first heuristic, it pulls up c first because that’s common to more classes
than a and b. This also results in 6 remaining property declarations, a and b remain duplicated once, but
only one new class has been created.

In the right example, the set of properties {a, b} and {d} are shared by two classes both. If the
transformation decides to pull up d, the number of property declarations decreases from 7 to 6, a and
b remain duplicated once, and one new class has been created. If the transformation uses the second
heuristic, it pulls up a and b, and the number of property declarations decreases from 7 to 5, only d
remains duplicated once, and again one new class has been created.

The common-props function finds sets of pullable properties and sorts them according to the heuris-
tics. It is by far the most complex function of the transformation. The function receives a set of entities
via its classes parameter and returns the properties common to a maximal subset of these entities.

Tassilo Horn 77

1 (defn common-props [classes]
2 (let [pes (set (map (fn [pnt] [pnt (filter-by-properties [pnt] classes)])
3 (set (mapcat prop-type-set classes))))
4 freq-map (apply hash-map
5 (mapcat (fn [[_ ents]] [ents (count (filter #(= ents (second %))
6 pes))])
7 pes))
8 collapse (fn collapse [aes]
9 (when-let [[pnt entities] (first aes)]

10 (let [[s r] (split-with (fn [[_ ents]] (= entities ents)) aes)]
11 (cons [(map first s) entities]
12 (lazy-seq (collapse r))))))]
13 (collapse (into (sorted-set-by
14 (fn [[_ aes :as a] [_ bes :as b]]
15 (let [x (- (count bes) (count aes))]
16 (if (zero? x)
17 (let [x (- (freq-map bes) (freq-map aes))]
18 (if (zero? x) (compare a b) x))
19 x))))
20 pes))))

In line 2, pes is bound to a set of tuples [pnt entity-set], where pnt is a [prop-name type] tuple and
entity-set is the set of all entities declaring such a property. That is, pes has the following form2.
#{[[pn1 t1] #{e1 e2 e3}] [[pn4 t2] #{e2 e3 e4}]

[[pn2 t2] #{e2 e3 e4 e5}] [[pn3 t2] #{e1 e2 e3}]}

In line 4, freq-map is bound to a hash-map that maps to each set of entities occuring in the items of pes
the number of occurences in there. This map is used to implement the second heuristic.

In line 8, a local function collapse is defined. Before explaining that, first lines 13 to 22 are to be
explained. What’s done there is that the entries of the set pes are put into a sorted set. The sorting order
is determined by the comparator function defined in lines 14 to 21. It receives two items of the pes set,
binds their entity-sets to aes and bes, respectively, and then performs these checks:

1. If bes contains more entities than aes, b should be sorted before a. This implements heuristic 1.
2. Else, if the entity set bes occurs more often in the items of pes, b should be sorted before a. This

implements heuristic 2.
3. Else, the sorting order is not important and determined by Clojure’s standard compare function

that produces a stable ordering upon all objects implementing Comparable.
As a result, the sorted set has the following structure, i.e., items with larger entity sets are sorted before
items with smaller entity sets. The item with pn2 is sorted before the others because it is shared by 4
entities.
#{[[pn2 t2] #{e2 e3 e4 e5}] [[pn1 t1] #{e1 e2 e3}]

[[pn3 t2] #{e1 e2 e3}] [[pn4 t2] #{e2 e3 e4}]}

In case of equally large entity sets, the number of occurences of the entity sets determines the sorting
order, e.g., the items with pn1 and pn2 are sorted before the item with pn4, because their entity sets occur
twice whereas the entity set of pn4 occurs only once.

Finally, this set is mangled by the local collapse function defined in lines 8 to 12. It simply collapses
(merges) adjacent items with equal entity sets, thus the result of the function has the following form.
([([pn2 t2]) #{e2 e3 e4 e5}], [([pn1 t1] [pn3 t2]) #{e1 e2 e3}], [([pn4 t2]) #{e2 e3 e4}]}

Because the items of pn1 and pn3 have the same entity set, they are merged into one item.

2#{...} is a Clojure set literal.

78 Solving the Class Diagram Restructuring Transformation Case with FunnyQT

Restructuring Rules. The solution defines the function pull-up-helper shown in the next listing
which can implement all three restructuring rules by parameterizing it appropriately. The function re-
ceives the root model object mo, a superclass super, and a set of entities classes in which to find common
properties,. In case of rule 1 and rule 2, super is the superclass of all classes, and in case of rule 3, the
super parameter is nil and classes is the set of top-level classes.

1 (defn pull-up-helper [mo super classes]
2 (when (seq classes)
3 (when-let [[pnts entities] (first (common-props classes))]
4 (if (and super (= classes entities))
5 (pull-up mo pnts entities super) ;; rule 1
6 (when (> (count entities) 1)
7 (let [nc (make-entity! mo)] ;; rule 2 if super is given, else rule 3
8 (pull-up mo pnts entities nc)
9 (doseq [s entities]

10 (doseq [oldgen (eget s :generalization)
11 :when (= super (adj oldgen :general))]
12 (edelete! oldgen))
13 (make-generalization! mo s nc))
14 (when super (make-generalization! mo nc super))
15 true))))))

When the set of classes is not empty (line 2), and if there are common properties (line 3), the largest list
of common properties among the lists of properties declared by a maximal number of entities is bound
to pnts, and the entities declaring these properties are bound to entities. In case entities equals the
set of all classes (line 4), the situation is that of rule 1, and all properties in pnts are pulled up to super
(line 5). In the other case, the maximal set of common properties is shared by a maximal but strict subset
of classes. Here, it has to be ensured that there are more than one entity declaring these properties (line
6), because else the inheritance depth would increase without removing declarations. Then, the situation
is that of rule 2 if super is non-nil, and the situation is that of rule 3 if super is nil. In any case, all shared
properties are pulled into a new entity nc (line 8), and the generalizations are adapted by deleting the old
generalizations to super (lines 10-12), creating new generalization to the new superclass nc (line 13),
and making super a superclass of nc (line 14).

The overall transformation function simply calls the pull-up-helper function shown above with
appropriate parametrization as long as it can find a match.

Multiple Inheritance Extension. The solution discussed so far works well also if the initial model
already contains multiple inheritance. However, they won’t create new entities that specialize more than
one other entity. To exploit multiple inheritance in order to restructure the model resulting from the
core rules so that there are no duplicate properties, one additional rule is used. It computes the set of
duplicated properties of all classes, and then acts according these heuristics.

1. If one of the entities declaring the duplicated property is a top-level class created by the core task,
then the other entities become its subclasses. Only top-level entities created by the core task are
reused, because reusing one that already existed in the original class model makes the result’s type
hierarchy incompatible with original one, i.e., before B was no subclass of A, but afterwards it is.

2. Else, a new entity is created as superclass of the entities, and the property is pulled up.

3 Evaluation

The evaluation results requested by the case description [1] are summarized in Table 1.

Tassilo Horn 79

With 110 LOC (core + extension task), the solution’s size is quite good given that its heuristics
are more advanced than what was demanded. Due to these heuristics, its effectiveness is 100% for all
provided and several additional models (e.g., the ones in Figure 1). The case description defines the
complexity as the sum of operator occurences, type references, and feature references. The FunnyQT
solution consists of 161 function calls (or calls to special forms or macros), 4 type references, and 25
feature references. The development effort has been about 8 hours for the solution plus 2 hours for
writing unit tests for it. The most challenging and time-consuming task has been developing heuristics
that achieve 100% effectiveness in all models used for testing.

Size (LOC) 90 (core only), 105 (core + extension)
Complexity 190 = 161 funcalls + 4 type refs + 25 feature refs
Effectiveness 100%
Development effort approx. 8 hours (solution) + 2 hours (tests)
Execution time 6 secs for the largest model (testcase2_10000.xmi)
History of use approx. 1 year
No. of case studies published: the 3 TTC13 cases, unpublished: approx. 20
Maximum capability approx. 2 million elements on SHARE

Table 1: Evaluation measures

The detailed execution times on SHARE for the larger models are depicted in Table2. The largest
provided model testcase2_10000 consisting of 100000 elements3 can be processed in about six seconds
which is more than a thousand times faster than the reference UML-RSDS solution.

Model Core Core and Extension
testcase2_1000 418 ms 434 ms
testcase2_5000 2455 ms 2585 ms
testcase2_10000 5656 ms 6041 ms
testcase3 248 ms 268 ms
testcase2_200000 1006848 ms 1045648 ms

Table 2: Detailed execution times on SHARE

To determine the maximum capability of the solution, models up to two millions of elements have
been created. Given the limited amount of 800 MB RAM available to the JVM process on SHARE, the
model with 2 million elements (testcase2_200000) is about the maximum capability for the solution.

The solution of this case uses only a tiny part of FunnyQT’s features because it was best tackled
algorithmically. But next to the model querying and model manipulation APIs used here, FunnyQT
provides a model-to-model transformation API, APIs for pattern matching and programmed graph trans-
formations, and there are more features to come, making FunnyQT adequate for a very divergent set of
transformation tasks.

References
[1] Kevin Lano & Shekoufeh Kolahdouz Rahimi (2013): Case study: class diagram restructuring. In Pieter Van

Gorp, Louis Rose & Christian Krause, editors: Sixth Transformation Tool Contest (TTC 2013), EPTCS, this
volume.

3The models testcase2_n actually consist of 10×n elements.

80 Solving the Class Diagram Restructuring Transformation Case with FunnyQT

A The Complete Source Code of the Solution

1 (defn add-prop! [mo e pn t]
2 (let [p (ecreate! ’Property)]
3 (eadd! mo :propertys p)
4 (eset! p :name pn)
5 (eset! p :type t)
6 (eadd! e :ownedAttribute p)))
7

8 (defn delete-prop! [e pn]
9 (let [p (first (filter #(= pn (eget % :name))

10 (eget e :ownedAttribute)))]
11 (edelete! p)
12 (eremove! e :ownedAttribute p)))
13

14 (defn pull-up [mo pnts froms to]
15 (doseq [[pn t] pnts]
16 (add-prop! mo to pn t)
17 (doseq [s froms]
18 (delete-prop! s pn)))
19 true)
20

21 (defn make-generalization! [mo sub super]
22 (let [gen (ecreate! ’Generalization)]
23 (eadd! mo :generalizations gen)
24 (eset! gen :general super)
25 (eset! gen :specific sub)))
26

27 (defn make-entity! [mo]
28 (let [e (ecreate! ’Entity)]
29 (eadd! mo :entitys e)
30 (eset! e :name (str (gensym "NewClass")))))
31

32 (defn prop-type-set [e]
33 (set (map (fn [p] [(eget p :name) (eget p :type)])
34 (eget e :ownedAttribute))))
35

36 (defn filter-by-properties [pnts entities]
37 (set (filter (fn [e]
38 (forall? #(member? % (prop-type-set e)) pnts))
39 entities)))
40

41 (defn common-props [classes]
42 (let [pes (set (map (fn [pnt]
43 [pnt (filter-by-properties [pnt] classes)])
44 (set (mapcat prop-type-set classes))))
45 freq-map (apply hash-map
46 (mapcat (fn [[_ ents]]
47 [ents (count (filter #(= ents (second %))
48 pes))])
49 pes))
50 collapse (fn collapse [aes]
51 (when-let [[pnt entities] (first aes)]
52 (let [[s r] (split-with (fn [[_ ents]]
53 (= entities ents)) aes)]
54 (cons [(map first s) entities]

Tassilo Horn 81

55 (lazy-seq (collapse r))))))]
56 (collapse (into (sorted-set-by
57 (fn [[_ aes :as a] [_ bes :as b]]
58 (let [x (- (count bes) (count aes))]
59 (if (zero? x)
60 (let [x (- (freq-map bes) (freq-map aes))]
61 (if (zero? x)
62 (compare a b)
63 x))
64 x))))
65 pes))))
66

67 (defn pull-up-helper [mo super classes]
68 (when (seq classes)
69 (when-let [[pnts entities] (first (common-props classes))]
70 (if (and super (= classes entities))
71 (pull-up mo pnts entities super) ;; rule 1
72 (when (> (count entities) 1)
73 (let [nc (make-entity! mo)] ;; if super rule 2, else rule 3
74 (pull-up mo pnts entities nc)
75 (doseq [s entities]
76 (doseq [oldgen (eget s :generalization)
77 :when (= super (adj oldgen :general))]
78 (edelete! oldgen))
79 (make-generalization! mo s nc))
80 (when super (make-generalization! mo nc super))
81 true))))))
82

83 (defn exploit-multiple-inheritance [mo]
84 (doseq [[pnts entities] (common-props (eget mo :entitys))
85 :while (> (count entities) 1)]
86 (let [[nc reuse]
87 (if-let [top (first (filter
88 #(and (empty? (eget % :generalization))
89 (re-matches #"NewClass.*" (eget % :name)))
90 entities))]
91 [top true]
92 [(make-entity! mo) false])]
93 (doseq [[pn t] pnts]
94 (when-not reuse
95 (add-prop! mo nc pn t))
96 (doseq [e (remove #(= nc %) entities)]
97 (delete-prop! e pn)
98 (make-generalization! mo e nc))))))
99

100 (defn pull-up-1-2 [mo]
101 (loop [classes (eget mo :entitys), applied false]
102 (if (seq classes)
103 (let [super (first classes)
104 result (pull-up-helper
105 mo super (set (adjs super :specialization :specific)))]
106 (recur (rest classes) (or result applied)))
107 applied)))
108

109 (defn pull-up-3 [mo]
110 (pull-up-helper mo nil (set (remove #(seq (eget % :generalization))

82 Solving the Class Diagram Restructuring Transformation Case with FunnyQT

111 (eget mo :entitys)))))
112

113 (defn pull-up-attributes [model multi-inheritance]
114 (let [mo (the (eallobjects model ’model))]
115 (iteratively #(let [r (pull-up-1-2 mo)]
116 (or (pull-up-3 mo) r)))
117 (when multi-inheritance (exploit-multiple-inheritance mo))
118 model))

	1 Introduction
	2 The Core Task
	3 Evaluation
	A The Complete Source Code of the Solution

