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An infinte wordw avoids a patterp with the involution® if there is no substitution for the variables
in p and no involutiord such that the resulting word is a factornef We investigate the avoidance of
patterns with respect to the size of the alphabet. For ex@nitps shown that the pattem6(a) a
can be avoided over three letters but not two letters, wisétéawell known thatxr a o is avoidable
over two letters.

1 Introduction

The avoidability of patterns in infinite words is an old aréanterest with a first systematic study going
back to Thuell[b, 6]. This field includes rediscoveries andlisti by many authors over the last one
hundred years; see for exampglé [2] and [1] for surveys. dhiicle, we are concerned with a variation
of the theme by considering avoidable patterns with inwoiut An involution 8 is a mapping such
that 62 is the identity. We consider morphic, wheféuv) = 8(u)6(v), and antimorphic involutions,
where8(uv) = 6(v)0(u). The subject of this article draws quite some motivatiomfrapplications in
biology where the Watson-Crick complement corresponds arimorphic involution in our case. Our
considerations are more general, however, by considenpglahabet size and also morphic involutions.

During the review phase of this article, James Cufrie [3kpnted a solution for all those patterns
under involution in{a,8(a)}* that we do not consider here, which leads to a characterizat the
avoidance index for all unary patterns under involution.

2 Preliminaries

Our notation is guided by what is commonly found in the litara, see for example the first chapter
of [4] as areference. L&t be a finite alphabet déttersandZ* denote alfinite andZ® denote all (right-)
infinite words overZ. Let € denote the empty word. Letters are usually denoted, iy or ¢, and words
overZ are usually denoted hy, v, or win this paper. The-th letter of a wordw is denoted bywj;, that

is, W = Wiy W - - - Wy if wis finite, and the length of w is denoted byw| as usual.

Besidesz we need another finite s&t of symbols. The elements & are calledvariablesand we
usually denote them by, 3, or y. Words inE* are calledpatterns For examplexf3a € E* is a pattern
consisting of the variableg andf in E. We assign to every patterrpattern languag®ver the alphabet
2. This language contains every word, that can be generatadMstituting all variables in the pattern
by non-empty words irk*. For example the pattern language of the patemover> = {a,b} is
{aa,bb,aaaaabahbababbbh... }.

We say that a worel avoidsa pattern, if no factor ofv exists, that is in the pattern language. On the
other hand, if a factor ofvis an element of the pattern language, wewayontainsthe pattern. If for a
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given patterre and an alphabeX with k elements a worev € % exists that avoids, then we say thad
is k-avoidable Otherwise we calé k-unavoidableWe callk € N theavoidance index¥(e) of a pattern
ec E*, if eis k-avoidable andk is minimal. If no suctk exists, we defing/(e) = co.

Let f: {a,b}* — {a,b}" with a~ abandb+ ba The fixpointt = limy_,. f(a) exists and is
calledThue—Morse wordThe following result is a classical one.
Theorem 1([5,[6]). The Thue—Morse word avoids the pattenga andafafa.

3 Patterns with Involution

For introducing patterns with involution, we extend theafgpattern variable& by addingf(a) for all
variablesa € E and some involutior®. For the rest of the article, we will stick to this definitiof B.
Given a morphic or antimorphic involution, we build the asponding pattern language by replacing
the variables by non-empty words and, for variables of tmenf6(c ), by applying the involution after
the substitution.

For example, leB be the morphic involution witta — b andb — a overZ = {a,b}, and let the
pattern bea 6(a). We get the pattern languadeb, ba, aabhabbabaahbbaa...}. Every word in
{a,b}?\ (a® Ub®) contains the pattera 6(a) for the morphic involutiord with a+ b andb — a.

Observation 2. Let 8 be a morphic or antimorphic involution and not the identityreversal mapping.
Then every pattern, that contains variables of thand 6(a), is avoidable.

Indeed, sincéd is not the identity or reversal mapping, a letter X with 6(a) # a exists. Therefore
w = a® avoids every pattern that includes variabdeand8(a).

Because of this observation we do not have to examine, iépettare avoidable or unavoidable for
a given involution. So we now change the point of view. Forgegipatterne € E*, we either look at
all morphic or all antimorphic involutiong* — 2* at the same time. So, we examine, for example, if an
infinite wordw € Z% exists, that avoids a patteafor all morphic involutions.

Definition 3. Let ec E* be a pattern, possibly with variables of the fofa). We call ke N the
morphic (antimorphic)9-avoidance index/f (e) (¥, (e)) of ec E*, if an infinite word we =% over X
with |Z| = k exists, that avoids the pattern e for all morphic (antinfog) involutionsX* — * and k is
minimal. If this doesn’t hold for any & N, we define?/f (e) = oo (78 (e) = o0).

We establish the first facts about avoidance of pattefia) a.

Lemma 4. Let X be a binary alphabet. Then there is no wordZ®, that avoids the pattern 6(a) o
for all morphic involutionsd: =* — =*. That s, (a 8(a)a) > 2.

Proof. Let = = {a,b}. We try to construct a word/ € 2%, that avoidse = o 8(a) a for all morphic
involutions and bring this to a contradiction. For examphes word must not containaa bbb, abaor
babas a factor. Without loss of generalitybegins witha.

Case 1: Assumed the wovdbegins withab. Then this prefix must be followed Wy abb <, w. The
next letter must be aa, the fifth must be am too. So we havebbaa<, w. If the following letter is
ana, aaais a factor ofw. So the next letter must be the letterBut for the morphic involutiorf with
a— bandb+— athe wordab6(ab)abis a factor ofw.

Case 2: The argument for the case<p wis analogous to case 1. O

The proof of the following lemma is analogous to the previons.

Lemma 5. LetZ be a binary alphabet. There is no wordenz®, that avoids the pattera 6(a) a for
all antimorphic involutionsd: =* — =*. Thatis,? (a 8(a)a) > 2.
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4 Main Result

In this section, we establish tf&avoidance indices for the patteonf(a) a in the morphic and anti-
morphic case. We start with the morphic case.

Theorem 6. It holds that#¢ (a8(a)a) = 3.

Proof. Let  an alphabet with three elemenis= {a,b,c}. Letv be the infinitely long Thue—Morse
word over the letters’ andb’. Furthermore letv € Z* be the word, that is the outcome of replacing
everya in v by aacbhandb’ by acch We will show, thatw avoids the patter 6(a)a for all morphic
involutions. For better readability, we defire= aachandy = acch

We assume it exists a morphic involutiérand a substitution foer, such thatr6(a)a is a factor of
w. Proof by contradiction. First, we examine the possileiitof replacing the variable by wordsu € =
of length|u| < 7. The wordu6(u)u has a maximal length of 18. Therefore there must exist a nirph
involution so thati@(u)u is a factor of a wordv' € {x,y}°. Because of Theorefd 1, the wondsx yyy,
xyxyxandyxyxycan not be a factor of/. A computer program can easily check these finite posssilit
with the result, that no wordsandw’ exist, which fulfill the conditions. Now we assuraegets replaced
by a wordu € £ with |u] > 7. Then, the wordl containsaacbor acch Without loss of generality
containsaach Therefore,6(u) contains the factof(aac) = 6(a) 8(a) 6(c). In additionO(u) and for
this reasorfi(a) 6(a) 6(c) is a factor ofw. There are only two possibilities for two succeeding ideati
letters inw. Either these letters are two letterfollowed by the letteb, or two lettersa are followed by
the letterc. This implies, thati6(u)u can only be a factor of, if 6 is the identity mapping. Furthermore
this implies|u| = 4-k for ak € N. This is visualized in Fid.]1, whene;, wi;,wi» € {x,y} holds for all
0 <i < k. If the word(wWo) 5 (Wo) (3 (Wo) (4 OF (Wo) {1 (Wo) (2 (Wo) 3 (Wo) g = Wo is a prefix of the firstiin
Fig.[d, then the following equations apply:

Wo = Wy = Wy
W1 = Wy = Wy
W1 = Wier = W

The wordwgwy ... Wk—1 WoWy ... Wi 17 WorWyr .. . Wi_ 17 = (W0W1...Wk_1)3 is a factor ofw. Because
of wi € {x,y} for all 0 <i < k—1, this is a contradiction to Lemnid 1. On the other hand, if/onl
(Wo)(3/(Wo) 4 OF (Wo)y is @ prefix ofu, thenwp # wo is possible. But in this cas@vc )y (W) or
(Wier) (1] (Wier) 7 (Wier ) ) I @ suffix of the thirdu. This implies

W]_ = Wl/ = Wl"
W2 = W2/ = W2//
Wi = Wy = Wy

andwiws . .. Wi Wy Wy . .. Wi WyrWor .. . Wier = (W1W5. . . wk)3 is a factor ofw. Again, this is a contradiction
to Lemmd_l. The theorem follows with Lemifla 4. O

The result of Theorem 6 transfers also to the antimorphie.cas

Theorem 7. It holds that?,f (a8(a)a) = 3.
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Wo Wi Wk = Wy Wy Wie = W Wy Wier

W1 Wo W3 Wy

Figure 2: Part ofv and the factou of w

Proof. This proof follows the proof of the previous theorem. Bebe an alphabet with three elements,
>~ ={a,b,c}. Further, letv be the Thue-Morse word over the lettefsandb/’. Letw € X be the word,
that we get by replacing in v by aabbcandb’ by aacch We will show, thatw avoids the pattern
a 6(a) a for all antimorphic involutions. For better readabilityewlefinex = aabbcandy = aacch

We assume that there exists an antimorphic involution antatigution ofa by a wordu € =+ in
such a way, thati8(u) u is a factor ofw. First we suppose that| < 9 holds. The wordi8(u)u then has
a maximal length of 24 and6(u) u is factor of a wordv € {x,y}e. The wordxxx yyy, Xyxyx andyxyxy
must not be a factor of/ because of Lemnid 1. A computer program can check these fosthilities
with the result, that no wordsandw’ exist that fulfill these conditions for an antimorphic intéon 6.
So Ju| > 9 must hold andi contains at least one wosdor y completely. We now look at the firstof
the factoru@(u)u of w. Letwyw, <su with wy,w, € {X,y}, wo = w,wj and |w,| < 5. We get Fig[ P
wherews, wy € {x,y}. Without loss of generality, let; = x = aabbc Then8(u) and thereforav,wsw,
contains the word(aabbg = 6(c) 8(b) 8(b) 6(a) 6(a) with length 5 as a factor. Hence we look at the
following words:

xx = aabbcaabbc
Xy = aabbcaacch
yx= aaccbaabbc
yy = aaccbaacch

Only xxcontainsf(c) 6(b) 6(b) 6(a) 8(a) for the antimorphic involutio® with a— b, b— a, andc— c.
Because ofv; = x, the equationwv,ws = xx is a contradiction to Lemmia 1. The casgwsw,; = yxX
remains. Now there are five possibilities for the positioruofee Fig[ B. It is easy to check, that in all
five casesB(u) <p wywawa respectivelywywawy, <, 6(u) doesn't hold. So our assumption, that there
exists an antimorphic involutiof and a wordu € ™ with u6(u)u is a factor ofw, was wrong. The
theorem follows with Lemmial5. O
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W1 Wo W3 Wy
- ... | [ [ |
W= e s Y s e s D B B B
aabbc aacchb aabbc aabbc

Casel:-+ —
Case2:-+ ———]

Case 3 |
Case 4:-- |
Case 5:-- |

Figure 3: lllustration of possible positions of the factoof w

5 Complementary Patterns

In this section, patterns similar w6(a) a are considered.

For the next lemma we need a further definition. €etE* be a pattern consisting of variables of the
form o andf(a) and€ be the pattern that we get, when all variabdeand6(a) in e are switched. We
call € € E the 8-complementaryattern ofe. For example thé-complementary pattern @f a 6(a) 3
is B(a)B(a)a B(B). For this definition it doesn’t matter if morphic or antimbip involutions are
examined.

Lemma 8. Let ec E* be a pattern and’ec E be the@-complementary pattern of e. Thetf (e) =
78(¢) and %8 (e) = 72(€).

Proof. First of all we show?/¢(e) = #9(¢/). For better readability, we replace the variabén the
patterne by o’ and6(a) by 6(a’). We assume a word/ € % contains the pattera for a morphic
involution and a substitution off by u € Z*. Thenw contains the patterg’ for the same morphic
involution by substitutingx” by 6(u). Symmetry reasons imply:
It exists a morphic involutior® so thatw contains the pattera
& It exists a morphic involutior®’ so thatw contains the patterd.

By negation we get:

The wordw € =% avoids the patters.
& The wordw € =% avoids the pattere.

The equatior#f (e) = 79 (¢) follows. The proof of /2 (e) = 7,9 (¢) is identical. O

Note the following8-free patterns; seel[1].

Observation 9. The patternsxa, aaf, Baa, aaBa, aBBa, aaBB, aBafB, aaBaa,andaaBaf
are 2-unavoidable and@-avoidable.

Lemma 10. Let ec E* be a pattern, that contains the variablesand 6(«a). Further, e contains no
other variable of the forn®(y). Let € be the pattern when all occurrenceséfa) in e are replaced by
a. The pattern €obtained when all occurrences 6fa) in e are replaced by a new variab[e

Then? (¢) < #2(e) < ¥ (&) and ¥ (e) < 7 (¢).
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Proof. The relation? (€) < 7,2 (e) holds, since the morphi@-avoidance index considers all morphic
involutions, including the identity mapping. Now sa#§(€’) =k, i.e., a wordw € X% exists, that avoids
the patterne’.Then this word also avoids the pattegrfor all morphic and antimorphic involutions.
Therefore the relation%;f (e) < 7 (¢/) and 7 (e) < 7 (¢’) hold. O

Lemma 11. It holds that?(a a 8(a)) = #f(aa 8(a)) = 3.

Proof. According to Observatidn 9 the equati#f{a a 8) = 3 holds. Lemma10 implie¥,? (a a 6(a)),
78(aaB(a)) < 3. We show by contradiction, that it holds thégf (a a 8(a)) # 2. The proof for the
relationf (a a 6(a)) # 2 is analogous. Assuming a wonds =% with = = { a,b} exists that avoids the
patterna a 6(a) for all antimorphic involutions. Thew contains neitheaa nor bb as a factor. Without
loss of generalityv begins with the lettea. It follows thatw = (ab)®. Butw = (ab)® contains the pattern
a a 8(a) for a = aband the antimorphic involution defined by— b andb — a. This is a contradiction
to our assumption. Therefor&®(a a 8(a)) # 2 holds and analogously®(a a 8(a)) # 2. We get
Y2 (aab(a))=78(aab(a)) =3. O

Lemma 12. It holds that7(8(a)a a) = #8(8(a)a a) = 3.

Proof. The proof is analogous to the proof of Lemma 11. O
Corollary 13.

1. #8(8(a)ab(a)) =72 (6(a)a8(a)) =3 by Theorerhl6 and 7.

2. %#8(8(a)8(a)a) =78 (8(a)8(a)a) = 3 by Lemm&ll.

3. #8(a8(a)8(a)) = 7f(ab(a)8(a)) = 3 by Lemm&T2.
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