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An infinte wordw avoids a patternp with the involutionθ if there is no substitution for the variables
in p and no involutionθ such that the resulting word is a factor ofw. We investigate the avoidance of
patterns with respect to the size of the alphabet. For example, it is shown that the patternα θ (α)α
can be avoided over three letters but not two letters, whereas it is well known thatα α α is avoidable
over two letters.

1 Introduction

The avoidability of patterns in infinite words is an old area of interest with a first systematic study going
back to Thue [5, 6]. This field includes rediscoveries and studies by many authors over the last one
hundred years; see for example [2] and [1] for surveys. In this article, we are concerned with a variation
of the theme by considering avoidable patterns with involution. An involution θ is a mapping such
that θ2 is the identity. We consider morphic, whereθ(uv) = θ(u)θ(v), and antimorphic involutions,
whereθ(uv) = θ(v)θ(u). The subject of this article draws quite some motivation from applications in
biology where the Watson-Crick complement corresponds to an antimorphic involution in our case. Our
considerations are more general, however, by considering any alphabet size and also morphic involutions.

During the review phase of this article, James Currie [3] presented a solution for all those patterns
under involution in{α ,θ(α)}∗ that we do not consider here, which leads to a characterization of the
avoidance index for all unary patterns under involution.

2 Preliminaries

Our notation is guided by what is commonly found in the literature, see for example the first chapter
of [4] as a reference. LetΣ be a finite alphabet oflettersandΣ∗ denote allfiniteandΣω denote all (right-)
infinite words overΣ. Let ε denote the empty word. Letters are usually denoted bya, b, or c, and words
overΣ are usually denoted byu, v, or w in this paper. Thei-th letter of a wordw is denoted byw[i], that
is, w= w[1]w[2] · · ·w[n] if w is finite, and the lengthn of w is denoted by|w| as usual.

BesidesΣ we need another finite setE of symbols. The elements ofE are calledvariablesand we
usually denote them byα , β , or γ . Words inE∗ are calledpatterns. For exampleαβα ∈ E∗ is a pattern
consisting of the variablesα andβ in E. We assign to every pattern apattern languageover the alphabet
Σ. This language contains every word, that can be generated bysubstituting all variables in the pattern
by non-empty words inΣ∗. For example the pattern language of the patternαα over Σ = {a,b} is
{aa,bb,aaaa,abab,baba,bbbb, . . . }.

We say that a wordw avoidsa pattern, if no factor ofw exists, that is in the pattern language. On the
other hand, if a factor ofw is an element of the pattern language, we sayw containsthe pattern. If for a
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given patterne and an alphabetΣ with k elements a wordw∈ Σω exists that avoidse, then we say thate
is k-avoidable. Otherwise we calle k-unavoidable. We callk∈ N theavoidance indexV (e) of a pattern
e∈ E∗, if e is k-avoidable andk is minimal. If no suchk exists, we defineV (e) = ∞.

Let f : {a,b}∗ → {a,b}∗ with a 7→ ab andb 7→ ba. The fixpoint t = limk→∞ f k(a) exists and is
calledThue–Morse word. The following result is a classical one.

Theorem 1([5, 6]). The Thue–Morse word avoids the patternsααα andαβαβα .

3 Patterns with Involution

For introducing patterns with involution, we extend the setof pattern variablesE by addingθ(α) for all
variablesα ∈ E and some involutionθ . For the rest of the article, we will stick to this definition of E.
Given a morphic or antimorphic involution, we build the corresponding pattern language by replacing
the variables by non-empty words and, for variables of the form θ(α), by applying the involution after
the substitution.

For example, letθ be the morphic involution witha 7→ b andb 7→ a over Σ = {a,b}, and let the
pattern beα θ(α). We get the pattern language{ab,ba,aabb,abba,baab,bbaa, . . . }. Every word in
{a,b}ω \ (aω ∪bω) contains the patternα θ(α) for the morphic involutionθ with a 7→ b andb 7→ a.

Observation 2. Let θ be a morphic or antimorphic involution and not the identity or reversal mapping.
Then every pattern, that contains variables of theα andθ(α), is avoidable.

Indeed, sinceθ is not the identity or reversal mapping, a lettera∈ Σ with θ(a) 6= a exists. Therefore
w= aω avoids every pattern that includes variablesα andθ(α).

Because of this observation we do not have to examine, if patterns are avoidable or unavoidable for
a given involution. So we now change the point of view. For a given patterne∈ E∗, we either look at
all morphic or all antimorphic involutionsΣ∗ → Σ∗ at the same time. So, we examine, for example, if an
infinite wordw∈ Σω exists, that avoids a patterne for all morphic involutions.

Definition 3. Let e∈ E∗ be a pattern, possibly with variables of the formθ(α). We call k∈ N the
morphic (antimorphic)θ -avoidance indexV θ

m (e) (V θ
a (e)) of e∈ E∗, if an infinite word w∈ Σω over Σ

with |Σ|= k exists, that avoids the pattern e for all morphic (antimorphic) involutionsΣ∗ → Σ∗ and k is
minimal. If this doesn’t hold for any k∈ N, we defineV θ

m (e) = ∞ (V θ
a (e) = ∞).

We establish the first facts about avoidance of patternα θ(α)α .

Lemma 4. Let Σ be a binary alphabet. Then there is no word w∈ Σω , that avoids the patternα θ(α)α
for all morphic involutionsθ : Σ∗ → Σ∗. That is,V θ

m (α θ(α)α)> 2.

Proof. Let Σ = {a,b}. We try to construct a wordw ∈ Σω , that avoidse= α θ(α)α for all morphic
involutions and bring this to a contradiction. For example,this word must not containaaa, bbb, abaor
babas a factor. Without loss of generalityw begins witha.

Case 1: Assumed the wordw begins withab. Then this prefix must be followed byb, abb<p w. The
next letter must be ana, the fifth must be ana too. So we haveabbaa<p w. If the following letter is
ana, aaa is a factor ofw. So the next letter must be the letterb. But for the morphic involutionθ with
a 7→ b andb 7→ a the wordabθ(ab)ab is a factor ofw.

Case 2: The argument for the caseaa≤p w is analogous to case 1.

The proof of the following lemma is analogous to the previousone.

Lemma 5. Let Σ be a binary alphabet. There is no word w∈ Σω , that avoids the patternα θ(α)α for
all antimorphic involutionsθ : Σ∗ → Σ∗. That is,V θ

a (α θ(α)α) > 2.
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4 Main Result

In this section, we establish theθ -avoidance indices for the patternα θ(α)α in the morphic and anti-
morphic case. We start with the morphic case.

Theorem 6. It holds thatV θ
m (αθ(α)α) = 3.

Proof. Let Σ an alphabet with three elements,Σ = {a,b,c}. Let v be the infinitely long Thue–Morse
word over the lettersa′ andb′. Furthermore letw ∈ Σω be the word, that is the outcome of replacing
everya′ in v by aacbandb′ by accb. We will show, thatw avoids the patternαθ(α)α for all morphic
involutions. For better readability, we definex= aacbandy= accb.

We assume it exists a morphic involutionθ and a substitution forα , such thatαθ(α)α is a factor of
w. Proof by contradiction. First, we examine the possibilities of replacing the variableα by wordsu∈ Σ+

of length|u| < 7. The worduθ(u)u has a maximal length of 18. Therefore there must exist a morphic
involution so thatuθ(u)u is a factor of a wordw′ ∈ {x,y}6. Because of Theorem 1, the wordsxxx, yyy,
xyxyxandyxyxycan not be a factor ofw′. A computer program can easily check these finite possibilities
with the result, that no wordsu andw′ exist, which fulfill the conditions. Now we assumeα gets replaced
by a wordu∈ Σ+ with |u| ≥ 7. Then, the wordu containsaacbor accb. Without loss of generality,u
containsaacb. Therefore,θ(u) contains the factorθ(aac) = θ(a)θ(a)θ(c). In additionθ(u) and for
this reasonθ(a)θ(a)θ(c) is a factor ofw. There are only two possibilities for two succeeding identical
letters inw. Either these letters are two lettersc followed by the letterb, or two lettersa are followed by
the letterc. This implies, thatuθ(u)u can only be a factor ofw, if θ is the identity mapping. Furthermore
this implies|u| = 4 · k for a k ∈ N. This is visualized in Fig. 1, wherewi,wi′ ,wi′′ ∈ {x,y} holds for all
0≤ i ≤ k. If the word(w0)[2](w0)[3](w0)[4] or(w0)[1](w0)[2](w0)[3](w0)[4] = w0 is a prefix of the firstu in
Fig. 1, then the following equations apply:

w0 = w0′ = w0′′

w1 = w1′ = w1′′

...
...

...
wk−1 = wk−1′ = wk−1′′

The wordw0w1 . . .wk−1w0′w1′ . . .wk−1′ w0′′w1′′ . . .wk−1′′ = (w0w1 . . .wk−1)
3 is a factor ofw. Because

of wi ∈ {x,y} for all 0 ≤ i ≤ k− 1, this is a contradiction to Lemma 1. On the other hand, if only
(w0)[3](w0)[4] or (w0)[4] is a prefix ofu, thenw0 6= w0′ is possible. But in this case(wk′′)[1](wk′′)[2] or
(wk′′)[1](wk′′)[2](wk′′)[3] is a suffix of the thirdu. This implies

w1 = w1′ = w1′′

w2 = w2′ = w2′′

...
...

...
wk = wk′ = wk′′

andw1w2 . . .wkw1′w2′ . . .wk′ w1′′w2′′ . . .wk′′ =(w1w2 . . .wk)
3 is a factor ofw. Again, this is a contradiction

to Lemma 1. The theorem follows with Lemma 4.

The result of Theorem 6 transfers also to the antimorphic case.

Theorem 7. It holds thatV θ
a (αθ(α)α) = 3.
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w= . . .
w0 w1

. . .
wk = w0′ w1′

. . .
wk′ = w0′′ w1′′

. . .
wk′′

. . .

u u u

Figure 1: Part ofw to illustrate the factoruuu

w= . . .
w1 w2

w′
2 w′′

2

w3 w4
. . .

. . .

u

Figure 2: Part ofw and the factoru of w

Proof. This proof follows the proof of the previous theorem. LetΣ be an alphabet with three elements,
Σ = {a,b,c}. Further, letv be the Thue-Morse word over the lettersa′ andb′. Let w∈ Σω be the word,
that we get by replacinga′ in v by aabbcand b′ by aaccb. We will show, thatw avoids the pattern
α θ(α)α for all antimorphic involutions. For better readability, we definex= aabbcandy= aaccb.

We assume that there exists an antimorphic involution and a substitution ofα by a wordu∈ Σ+ in
such a way, thatuθ(u)u is a factor ofw. First we suppose that|u|< 9 holds. The worduθ(u)u then has
a maximal length of 24 anduθ(u)u is factor of a wordw′ ∈ {x,y}6. The wordxxx, yyy, xyxyx, andyxyxy
must not be a factor ofw′ because of Lemma 1. A computer program can check these finite possibilities
with the result, that no wordsu andw′ exist that fulfill these conditions for an antimorphic involution θ .
So ,|u| ≥ 9 must hold andu contains at least one wordx or y completely. We now look at the firstu of
the factoruθ(u)u of w. Let w1w′

2 ≤s u with w1,w2 ∈ {x,y}, w2 = w′
2w′′

2 and |w′
2| < 5. We get Fig. 2

wherew3,w4 ∈ {x,y}. Without loss of generality, letw1 = x= aabbc. Thenθ(u) and thereforew2w3w4

contains the wordθ(aabbc) = θ(c)θ(b)θ(b)θ (a)θ (a) with length 5 as a factor. Hence we look at the
following words:

xx= aabbcaabbc

xy= aabbcaaccb

yx= aaccbaabbc

yy= aaccbaaccb.

Only xxcontainsθ(c)θ(b)θ(b)θ (a)θ (a) for the antimorphic involutionθ with a 7→b, b 7→ a, andc 7→ c.
Because ofw1 = x, the equationw2w3 = xx is a contradiction to Lemma 1. The casew2w3w4 = yxx
remains. Now there are five possibilities for the position ofu, see Fig. 3. It is easy to check, that in all
five casesθ(u) ≤p w′′

2w3w4 respectivelyw′′
2w3w4 ≤p θ(u) doesn’t hold. So our assumption, that there

exists an antimorphic involutionθ and a wordu ∈ Σ+ with uθ(u)u is a factor ofw, was wrong. The
theorem follows with Lemma 5.
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w= . . .
w1

a a b b c

w2

a a c c b

w3

a a b b c

w4

a a b b c
. . .

Case 1:. . .

Case 2:. . .

Case 3:. . .

Case 4:. . .

Case 5:. . .
u

Figure 3: Illustration of possible positions of the factoru of w

5 Complementary Patterns

In this section, patterns similar toα θ(α)α are considered.
For the next lemma we need a further definition. Lete∈E∗ be a pattern consisting of variables of the

form α andθ(α) ande′ be the pattern that we get, when all variablesα andθ(α) in eare switched. We
call e′ ∈ E theθ -complementarypattern ofe. For example theθ -complementary pattern ofα α θ(α)β
is θ(α)θ(α)α θ(β ). For this definition it doesn’t matter if morphic or antimorphic involutions are
examined.

Lemma 8. Let e∈ E∗ be a pattern and e′ ∈ E be theθ -complementary pattern of e. ThenV θ
a (e) =

V θ
a (e′) andV θ

m (e) = V θ
m (e′).

Proof. First of all we showV θ
m (e) = V θ

m (e′). For better readability, we replace the variableα in the
patterne′ by α ′ andθ(α) by θ(α ′). We assume a wordw ∈ Σω contains the patterne for a morphic
involution and a substitution ofα by u ∈ Σ+. Thenw contains the patterne′ for the same morphic
involution by substitutingα ′ by θ(u). Symmetry reasons imply:

It exists a morphic involutionθ so thatw contains the patterne.

⇔ It exists a morphic involutionθ ′ so thatw contains the patterne′.

By negation we get:

The wordw∈ Σω avoids the patterne.

⇔ The wordw∈ Σω avoids the patterne′.

The equationV θ
m (e) = V θ

m (e′) follows. The proof ofV θ
a (e) = V θ

a (e′) is identical.

Note the followingθ -free patterns; see [1].

Observation 9. The patternsαα , ααβ , βαα , ααβα , αββα , ααββ , αβαβ , ααβαα , andααβαβ
are 2-unavoidable and3-avoidable.

Lemma 10. Let e∈ E∗ be a pattern, that contains the variablesα and θ(α). Further, e contains no
other variable of the formθ(γ). Let e′ be the pattern when all occurrences ofθ(α) in e are replaced by
α . The pattern e′′ obtained when all occurrences ofθ(α) in e are replaced by a new variableβ .

ThenV (e′)≤ V θ
m (e)≤ V (e′′) andV θ

a (e)≤ V (e′′).
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Proof. The relationV (e′) ≤ V θ
m (e) holds, since the morphicθ -avoidance index considers all morphic

involutions, including the identity mapping. Now sayV (e′′) = k, i.e., a wordw∈ Σω exists, that avoids
the patterne′′.Then this word also avoids the patterne for all morphic and antimorphic involutions.
Therefore the relationsV θ

m (e)≤ V (e′′) andV θ
a (e)≤ V (e′′) hold.

Lemma 11. It holds thatV θ
a (α α θ(α)) = V θ

m (α α θ(α)) = 3.

Proof. According to Observation 9 the equationV (α α β ) = 3 holds. Lemma 10 impliesV θ
a (α α θ(α)),

V θ
m (α α θ(α)) ≤ 3. We show by contradiction, that it holds thatV θ

a (α α θ(α)) 6= 2. The proof for the
relationV θ

m (α α θ(α)) 6= 2 is analogous. Assuming a wordw∈ Σω with Σ = {a,b} exists that avoids the
patternα α θ(α) for all antimorphic involutions. Thenw contains neitheraa nor bb as a factor. Without
loss of generalityw begins with the lettera. It follows thatw= (ab)ω . Butw= (ab)ω contains the pattern
α α θ(α) for α = aband the antimorphic involution defined bya 7→ b andb 7→ a. This is a contradiction
to our assumption. ThereforeV θ

a (α α θ(α)) 6= 2 holds and analogouslyV θ
m (α α θ(α)) 6= 2. We get

V θ
a (α α θ(α)) = V θ

m (α α θ(α)) = 3.

Lemma 12. It holds thatV θ
a (θ(α)α α) = V θ

m (θ(α)α α) = 3.

Proof. The proof is analogous to the proof of Lemma 11.

Corollary 13.

1. V θ
m (θ(α)α θ(α)) = V θ

a (θ(α)α θ(α)) = 3 by Theorem 6 and 7.

2. V θ
m (θ(α)θ(α)α) = V θ

a (θ(α)θ(α)α) = 3 by Lemma 11.

3. V θ
m (α θ(α)θ(α)) = V θ

a (α θ(α)θ(α)) = 3 by Lemma 12.
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