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Partial words are sequences over a finite alphabet that mginovildcard symbols, called holes,
which match or are compatible with all letters; partial wowithout holes are said to be full words
(or simply words). Given an infinite partial wond, the number of distinct full words over the
alphabet that are compatible with factorsmbf lengthn, called subwords ofy, refers to a measure
of complexity of infinite partial words so-called subwordplexity. This measure is of particular
interest because we can construct partial words with subbwomplexities not achievable by full
words. In this paper, we consider the notion of recurrena avfinite partial words, that is, we
study whether all of the finite subwords of a given infinitetigkvord appear infinitely often, and we
establish connections between subword complexity andm&oce in this more general framework.

1 Introduction

Let w be a (right) infinite word over a finite alphab&t A subword ofw is a block of consecutive letters
of w. Thesubword complexitfjunction, py(n), counts the number of distinct subwords of lengtin w.
Subword complexity is a well-studied topic and relates toaigical systems, ergodic theory, theoretical
computer science, et¢./[1[ 2] 7, 9] 10]. Another topic ofrieseon infinite words is the one afcurrence
An infinite word is said to be recurrent if every subword appeagfinitely many times. In 1938, Morse
and Hedlund introduced many concepts dealing with recaeréb2]. Rauzy in[[18] surveys subword
complexity and recurrence in infinite words, while Cassaign[8] surveys some results and problems
related to recurrence.

Partial words are sequences over a finite alphabet that nragioavildcard symbols, called holes,
which match, or are compatible with, all letters in the alpgtg(full words are those partial words without

ta]

holes). Combinatorics on partial words is a relatively neljsct [3[4]; oftentimes the basic tools have
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not yet been developed. In [6], Blanchet-Sadri et al. ingastd finite partial words of maximal subword
complexity where the subword complexity function of a @ntvordw over a finite alphabei assigns to
each positive integen, the numberp,,(n), of distinct full words oveA that are compatible with factors
of lengthn of w. In [11], Manea and Tiseanu showed that computing subwontpéexity in the context
of partial words is a “hard” problem.

In [5], with the help of our so-called hole functions, we coasted infinite partial wordss such that
pw(n) = ©(n%) for any real numbea > 1. In addition, these partial words have the property thateth
exist infinitely many non-negative integems satisfying pw(m+ 1) — py(m) > m?. Combining these
results with earlier ones on full words, we showed that thfgresents a class of subword complexity
functions not achievable by full words. We also construdtdihite partial words with intermediate
subword complexity, that is between polynomial and exptakn

In this paper, we introduce recurrent infinite partial woedsl show that they have several nice
properties. Some of the properties that we present deabwaithections between recurrence and subword
complexity. Besides reviewing some basics in Sedflon 2 andlading with some remarks in Section 5,
our paper can roughly be divided into two parts: Among othargs, Sectionl3 extends well-known
results on recurrent infinite full words to infinite partiabwds. Sectiori]4 uses the results obtained
previously to prove new results. There, we study the ralatipp between the subword complexity of
an infinite partial wordwv and that of its various completions; here a completion islaritiin” of the
holes ofw with letters from the alphabet. In particular we ask whena@a&ompletion achieve maximal,
or nearly maximal, complexity? It turns out that this isinétely related to the notion of recurrence.

2 Preliminaries

For more information on basics of partial words, we referréder tol[4]. Unless explicitly stated,is
a finite alphabet that contains at least two distinct lett®¥e denote the set of all words ovarby A*,
which under the concatenation operation forms a free monbiwke identity is the empty wordl

A finite partial wordof lengthn overAis a functionw: {0,...,n—1} — AU {¢}, wherec ¢ A. The
union setAU {o} is denoted byA, and the length ofv by |w|. A right infinite partial word or infinite
partial word overA is a functionw : N — A,. In both the finite and infinite cases, the symbol at position
i inwis denoted byv(i). If w(i) € A, theni is defined inw, and ifw(i) = o, theni is a hole inw. If whas
no holes, thenvis afull word. A completioni is a “filling in” of the holes ofw with letters fromA. Two
partial wordsu andv are compatible, denotadt v, if there exist completiona &ndv'such thau= V.

A finite partial wordw overA is said to bep-periodic if pis a positive integer such that(i) = w(j)
wheneveli and j are defined irw and satisfyi = j mod p. We say thatv is periodicif it is p-periodic
for somep. An infinite partial wordw overA is calledperiodicif there exists a positive integegr(called
aperiod of w) and lettersag, ay,...,ap-1 € Asuch that forali € Nandj € {0,...,p—1},i=j modp
impliesw(i) 1 a;. If wis an infinite partial word, then we define thkift a,(w) by gp(w)(i) = w(i + p).
The infinite partial wordv is calledultimately periodidf there exist a finite partial word and an infinite
periodic partial wordv (both overA) such thatw = uv. If wis a full ultimately periodic word, then
w = xy” = xyyy--- for some finite words,y with y # ¢ called aperiod of w (we also call the lengtty|
a period). If|x| and|y| are as small as possible, theis called theminimal periodof w.

Given a partial wordv over A, a finite partial wordu is afactor of w if there exists somé € N
such thatu = w(i)---w(i + |u| — 1). We adopt the following notations for factona(i..j) (resp.wfi..j),
w(i..j], wli..j]) denotesw(i +1)---w(j —1) (resp.,w(i)---w(j—21),w(i+21)---w(j), w(i)---w(j)). On
the other hand, a finite full word is asubwordof w, denotedu <1 w, if there exists somee N such that



F. Blanchet-Sadri, A. Chakarov, L. Manuelli, J. Schwartz &8ch 73

utwli..i+|u|). In the context of this paper, subwords are always finite afid\We denote by Sul(n)
the set of all subwords of of lengthn, and by Subw) = U, Suky(n) the set of all subwords of.
Note thatpy(n) is precisely the cardinality of Syin). Furthermore, ifw’is a completion ofy, then
pa(n) < pw(n), since Sul(n) C Suky(n).

The following result extends well-known necessary condégifor a function to be the subword com-
plexity function of an infinite full word[[9].

Theorem 1. The following are necessary conditions for a functighfppm N to N to be the subword
complexity function of an infinite partial word w over a fingphabet A:

1. pyis non-decreasing;

2. py(m+n) < pw(m)pw(n) for all m,n;

3. whenever p(n) < nor py(n+ 1) = pw(n) for some n, then pis bounded,;
4

. if A has k letters, then,gn) < k" for all n; if pw(np) < k™ for some g, then there exists a real
numberk < k such that g(n) < k" for all n sufficiently large.

3 Recurrent Partial Words

Recurrence is a well-studied topic in combinatorics on itdifull words. We turn our attention to
the study of infinite recurrent partial words. We call an iitérpartial wordw recurrentif every u €
Suhy(n) occurs infinitely often inw; that is, there are infinitely manys such thatw(j +i) 1 u(i) for

i €{0,...,n—1}. We call an infinite partial wordv uniformly recurrent if for every u € Suhy(n),
there existan € N such that every factor of length of w hasu as a subword, that isj<w[0..m— 1],
u<aw[1..m], .... Clearly, a uniformly recurrent partial word is re@nt. The following proposition gives
a few equivalent formulations of recurrence.

Proposition 1. Let w be an infinite partial word. The following are equivaten
1. The partial word w is recurrent;
2. Every subword compatible with a finite prefix of w occurseast twice;

3. Every subword of w occurs at least twice.

Proof. Itis clear that1) implies both(2) and(3), whereag3) implies(2) since any subword compatible
with a finite prefix ofw s itself a subword o#v. To show that2) implies(1), for the sake of contradiction
suppose some worde Suhy(n) appeared only finitely many timesw Suppose the last occurrence of
v starts at positiom. Then for allj > i, vis not compatible wittw[j..j +n). Now letu be a completion
of the prefix of length + n of w such thauli..i + n) = v. Then by(2), d must appear at least twice\m

In particular, there exists some positipo- 0 such thati? w[j..j +i+n). Butthenvtw[j+i..j+i+n),
contradicting the fact that the last occurrencer sfarted at position Hence, every subword @f must
appear infinitely many times. O

Theorem 2. If wis an infinite recurrent partial word with a positive bunhitie number of holes, then w is
not ultimately periodic.

Proof. For the sake of contradiction, supposes ultimately periodic. Then we can writg = xyyy-: - -
wherey is a finite full word such thaly| is the minimal period ofv. Let j be the position of the last
hole inx. Letz=ax(j + 1..|x|)y" = avy’ wheren > |y| and the letter is chosen so that # y(j’), where
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i’=1y|—1—|v| mod|y|. Sincew is recurrent and is a subword ofv, zoccurs infinitely many times in
w. In particular, it occurs somewhereun= y“, wherely| is the minimal period ofi. Thus, there exists
i €{0,...,ly|—1} such thau(i)---u(i+ |z — 1) = z Sincey(i) =a#y(j’), we have # j'.

Seti’ = (i+|v|+1) modly|,y» =y(0)---y(i' = 1), andy, = y(i') - -- y(|y| — 1). We gety=y1y, = yoy1,
and soy; andy, are powers of a common wosd. ThusyY! = (y)¥. However, 1< |y| < |y|. Then
u=y® = (yWhe = ((y)¥® = (y)®is |y|-periodic, which contradicts the minimality of perigg. I

To extend the above theorem to the case whehas infinitely many holes we must introduce some
additional restrictions. We would like to impose some crists on the number of holes and their
distribution insidew. The motivation for these is the fact that any infinite pani@rd with a large
number of holes exhibits a behavior similar to the one of theat partial wordw = <%, which is
recurrent and periodic.

Next we define the gap function which quantifies the spaciriggdxen consecutive appearances of
the hole symbol in a partial word. Let(n) — 1 be the position of thath hole in an infinite partial word
w (we also say thaH (n) is the hole functionof w). Then leth(n) = H(n) —H(n—1), for n > 2, be
defined as thgap functionof w. For example, the infinite partial word

odavavaad>adaadadaaaaaddaaaaaaaaaadaaaaaaaaaqa: -

has holes at positionsl (n) — 1 = [24"~1/5] — 1 and the distance between the 5th and 6th holes is
h(6) =H(6) —H(5) = 16— 10= 6. This is actually an example of an infinite partial word éeted as
a partial word over the alphabéh, b}) having a complexity function not achievable by any full @wor

Corollary 1. Let w be a recurrent partial word with infinitely many holes ¥ehich there exists N> 0
such that fin) < h(n+1) for all n > N. Then w is not ultimately periodic.

Proof. For the sake of contradiction, suppagés ultimately periodic. Then we can write = xy1ys - - -,
where for alli, j > 0, y; andy; are compatible factors of lengfhwith p being the minimal period. We
will refer toyy, Yo, ... as they factors. By choosing sufficiently large> 3, we can ensure thatn) > 3p.
Thus, there exist$ > p such that botly; andy;; are full words. Let/ = xy1y,---yj_1. Thenv contains
at least two holes. Without loss of generality, assumeufiat=v(I') = ¢, for somel < I’.

Leti; = (p—|v|+1) mod pandiy = (p—|v|+1") mod p. Then choose a completiarof v such that
V(1) #y;(ir) andvil’) # y;(ir). Letu = Vy;y;+1 andmbe sufficiently large so that(m) > 2|u|. Sincew
is recurrent, the subwond must occur at some position to the righttéfm) — 1. So suppose it occurs
at positioni. Then if we letz=w/i..i + |u|) thenz contains at most one hole. By the choice,andiy,
at least one of/(T) or V(I) is incompatible with the corresponding symbolzinThus they factors inu
cannot align with the factors inz. Also, at least one of thefactors inzis full. Analogous to the proof
of Theoreni 2, we conclude thgt- - -y -1 is periodic with periodd’ < p, wherep' is the length of the
offset. This contradicts the minimality @fand, therefore, no ultimately periodic words with the deir
property exist. O

Let w be an infinite partial word. We defire,(n), therecurrence functiorof w, to be the smallest
integerm such that every factor of lengtim of w contains at least one occurrence of every subword of
lengthn of w. The following theorem extends a well-known result on fulirds to partial words (segl[2]).

Theorem 3. Let w be a uniformly recurrent infinite partial word. Then tiedowing hold:
1. Ry(n+1) > Ry(n) foralln > 0;
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2. Iffor each n> Othere exists an index i such thafiwi 4-n) is a full word then R(n) > pw(n)+n—1
foralln>0;

3. Ifw has a positive finite number of holes or an eventualtygasing gap function, then,Rn) > 2n
foralln> 0.

Proof. The proof of(1) is identical to that for full words. Fof2), letn > 0 and sem= Ry(n). Then
there exists an indeixsuch thatv = wli..i +m) is a full word. Sincelv| = m, v contains every subword
of w of lengthn. But any full word of lengthm contains at mosin— n+ 1 distinct subwords of length
n. Hence,py(n) < m—n-+ 1. ThereforeRy(n) > pw(n)+n—1 for alln > 0. For(3), note that the
conditions onw together with Theoreri 2 and Corollddy 1 imply thats not ultimately periodic. Thus
by Theoreni 1L (3)py(n) > n+ 1 for alln > 0. Since(3) implies(2), we getRy(n) > py(n)+n—1>2n
for alln> 0. O

The following theorem captures the fact that a uniformlyureent word cannot achieve maximal
complexity.

Theorem 4. Let w be a uniformly recurrent infinite word. Then there exi¥tsuch that g(n) < k" for
all n > N, where Kk is the alphabet size.

Proof. By Theoreni 1(4), we only need to show thgf(n) < k" for somen. We split the proof into two
cases. Ifpw(1) < k then we are done. Thus suppgsg1l) = k. Then lett = Ry(1). For the sake of
contradiction, suppose achieves maximal complexity, that is,(n) = k" for all n > 0. Thenw contains
the subwordd!, wherea € A. Hence,|a'| =t = Ry (1) impliesb < a' for someb € A b # a, which is a
contradiction. O

It is natural to extend the above theorem to partial wordh Wuititely many holes.
Corollary 2. Let w be a uniformly recurrent infinite partial word with fialy many holes. Then there

exists N such that,n) < k" for all n > N, where k is the alphabet size.

Proof. ChooseN such thatj > N impliesw(j) # ¢. Then letv = on(w). Then uniform recurrence
implies that Subw) = Sul(v). Hence,py(n) = py(n) and thus Theoreim 4 gives us the result. [

To extend the result to partial words with infinitely many é®Wwe must introduce some additional
restrictions. In essence too many holes still allows us hiexe maximal complexity. A trivial example
isw=o0%,

Corollary 3. Let w be a uniformly recurrent infinite partial word for whighere exists  such that
n > ng implies n) < h(n+ 1) andlimy.h(n+ 1) —h(n) = . Then there exists & 0 such that
pw(n) < k" for all n > N, where k is the alphabet size.

Proof. The proof is very similar to that of Theordm 4.
O
The following result illustrates the relationship betweerecurrent partial word and its completions.

Proposition 2. Let w be an infinite partial word having a finite number of hadesin eventually increas-
ing gap function. Then w is recurrent if and only if every ctetipn W is recurrent.
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Proof. First supposev is recurrent. Letv'be any completion ofv. Propositior 1L implies that we only
need to show that each subwordwéppears at least twice. Choase Suly(n). Supposev has a finite
number of holes. Then there exidts> 0 such thatj > N impliesw(j) # . Sincew is recurrent,u
appears starting at some positior N, that is,u = wli..i + n). But note thaw/i..i + n) = w[i..i +n).
Hence, the subword occurs twice inv{i)W(i +1)--- and thusnis recurrent.

Now supposev has an eventually increasing gap function. Sincis recurrent, we see that there
exists a wordv such thatuvue Suliw). Let m= |uvdu and chooséN such that for allj > N we have
h(j) > m. Recurrence implies thailvu appears starting at some positiogreater thaH (N). Suppose
uvut zwherez = wji..i +m). Thenz contains at most one hole. Hence, at least one-efw[i..i +n) or
u=w[i + m—n..i+m) holds. Sincew is recurrentuvuhas to appear again im, and sou must appear
one more time in a factor af that contains no holes. Without loss of generality, assumaen]i’..i" 4 n)
is the desired full word. Thew(i’..i" +n) = W[i"..i" + n). Henceu = W[i"..i" 4+ n) so thatu appears at least
twice inwW. Hence w'is recurrent.

Now suppose every completion is recurrent. ChaoseSublw). Then there exists a completion ~
such thatu € Sub(W). Sincew'is recurrentu occurs again at an index different from where it appeared
initially in w. Supposel=W[i..i+|u|). Sincewis a completion ofvwe see thawv[i..i+|u|) T W[i..i+|u]).
Henceu occurs twice inw so thatw is recurrent. O

4 Completions of Infinite Partial Words

We investigate the relationship between the complexitynahéinite partial wordw and the complexity
achievable by a given completiom Our main question is given an infinite partial worsdhow much
complexity can be preserved while passing to a completion?

Theorem 5. Let w be an infinite recurrent partial word. Then there exstsompletion of wyv, such
that Sulfw) = Sul{w).

Proof. The set Sufw) is countable, so choose some enumeration of its elermgms xz, . ... Choosang
so thatxg <w([0..ng]. Sincex; occurs infinitely often irw, we can find soma; > ng so thatx; <w(ng..ny .
Similarly we can find some, > n; so thatx, <w(n;..nz] and so on for eack. Now we completav]0..no|
so that it containgg as a subwordw(ng..n;] so that it containg;, and so on to gew.”By construction
Sub(w) C Sub(Ww) and we have Sul%v) C Subiw). O

Another question is to ask when a completion with maximal plexity exists. We know by Theo-
rem[5 that it is sufficient that the original partial wondbe recurrent. In the case whesehas infinitely
many holes, this turns out to be necessary as well.

Theorem 6. Let w be a partial word with infinitely many holes. Then w isureent if and only if there
exists a completiow such that Sufw) = Sul(w).

Proof. The forward implication is simply a consequence of Thedrérr&@ the backward implication,
suppose there exists a completiansuch that Sutw) = Sub(w). We show that the prefix of length
H(n) — 1 of W occurs twice for everyn > 1. Choosea € A such thata # W(H(n) —1). Thenv =
W[0..H(n) — 1)a € Suhllw) = Sul(W). Hencev must occur somewhere in. But it cannot occur as a
prefix sincea # W(H(n) —1). Thus there exists > 0 such thaw[i..i+H(n)) = v. But thenwli..i +
H(n) — 1) = w[0..H(n) — 1) so thatw]0..H (n) — 1) appears twice. Thus every prefix wfotcurs twice
and thusw’is recurrent and since S() = Sub(W), w is recurrent as well. O
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The proof really relies on the fact thathas infinitely many holes. The theorem is not true in the
case of finitely many holes. For example, choase ¢a® andw = ba®. Then Sulpw) = Sub(Ww) but
W is not recurrent sinck occurs only once. However, we note thiiw) is recurrent. This fact actually
holds more generally. First we call an infinite partial wardltimately recurrentf there exists an integer
p > 0 such thatop(w) is recurrent. With this definition in hand we can extend Tkedg to the case
when we may not have infinitely many holes.

Corollary 4. Let w be an infinite partial word with at least one hole. If thexists a completiow of w
such that Sulw) = Sul{w), then w is ultimately recurrent. In facty1)(w) is recurrent, where Kin) is
the hole function.

Proof. We claim that ifH (1) — 1 is the position of the first hole arl= H (1) thenop(w) is recurrent.
Letv = op(w). By Propositiori L, it suffices to show that every finite prefiaoy completion ot/ occurs
twice inv. Thus suppose is a full word such thaz 1 v[0..n). Choose a completion of w[0..n+ p)

so thatz=u[p..n+ p). In addition, we require that the hole at positibi{1) — 1 be filled in such a
way thatu(H (1) — 1) # W(H (1) — 1). Thenu € Sul(Ww). However, we see that the way we filled in the
hole atH (1) — 1 prohibitsu from occuring as a prefix oi.” Thus there exists an indéx> 0 such that
U= W[i..i+n+ p). Butthenz=u[p..n+ p) = Wi + p..i+n+ p) 1 V]i..i+n) so thatz appears twice in
v. Hencev is recurrent. Thusv is ultimately recurrent. O

Let RSuly(n) denote the set of recurrent subwords of lenytf a finite or infinite partial wordv.
Let RSuljw) = U,~1 RSuly(n). Letry(n) = |RSuky(n)| anddy(n) = pw(n) —rw(n). In other words,
dw(n) counts the number of non-recurrent subwords of lemgtNote thatd,(n) is non-decreasing. The
following proposition captures the fact that in an ultimateecurrent partial word with finitely many
holes almost every subword is recurrent.

Proposition 3. Let w be an infinite partial word with finitely many holes. Thers ultimately recurrent
if and only if dy(n) is bounded.

Proof. Supposev is ultimately recurrent. Then there exigtsuch thao,(w) is recurrent. We claim that
dw(n) < p. Note that any subword beginning at an indey must be recurrent. Thus any non-recurrent
subword must appear starting at a position less thdfach position with 0 <i < p contributes finitely
many distinct subwords of length

Now supposedy,(n) is bounded. Sincel,(n) is non-decreasing, there exist a const@nand an
integern such thatC = dy(n) = dw(m) for all m> n. Since there are onl¢€ non-recurrent subwords
of lengthn and each appears only finitely many timesainthere exists amN such that none of these
non-recurrent subwords appear starting at positiondN. We claim thatw' = on(w) is recurrent. For
the sake of contradiction, supposeis not. Then there must exist a non-recurrent word Sub(w').
Assume without loss of generality that = m > n. Now we break the proof into two cases. If the prefix
of lengthn of vwas a non-recurrent subwordwf then this would contradict the choicef So suppose
that the prefix of lengtim of v is not a non-recurrent subword wf Note that each lengthnon-recurrent
subword contributes at least one distinct lengthon-recurrent subword. In additianis distinct from
each of these since the prefixes of lengttio not match. Thus,,(m) > dy(n), a contradiction. O

The case whenv has infinitely many holes is markedly different. In partautl,(n) cannot be
positive and bounded. This is captured in the following psifion.

Proposition 4. Let w be a partial word with infinitely many holes. Thep(n) is either identically zero
or unbounded.
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Proof. For the sake of contradiction, suppose there exists a aarStauch that 1< dy(n) < C for
all n > 0. Then there exists amand av such thatv € Suky(n)\RSuky(n). Sincev € Subiw) there
exists an index such thatv 1 w[i..i +n). Sincew has infinitely many holes, there exists amsuch
that wn..m] has at leash holes wherek" > C. Sincev is not recurrent, each of the completions of
wwin..m] is non-recurrent. Hence if we l¢t= [vw[n..m|| we see thath,(j) = pw(j) —rw(j) > k" >C, a
contradiction. O

The infinite partial wordv being ultimately recurrent does not imply anything aboet gihowth of
dw(n) by itself. However, we can relate the growth @f(n) andry(n). Intuitively we can think ofw
being ultimately recurrent as capturing the fact thdtas a large proportion of recurrent subwords. We
would expect that,,(n) is a good approximation gd(n). In fact, it turns out thap,,(n) = ©(ry(n)).

Proposition 5. Let w be an ultimately recurrent infinite partial word. Thémte exists a constant C such
that ry(n) < pw(n) < Cry(n) for all n sufficiently large. In other words,n) = ©(ry(n)).

Proof. SupposeN is such thaboy(w) is recurrent. Consided,(n) for n > N. Then every non-recurrent
subword of lengtim must start at some positidn0 < i < N, and must be compatible with a factor of
the formw[i..i + n). We can break the factor into two partafi..N) which may have a non-recurrent
completion, andv|[N..i + n) where every completion is recurrent. If there arboles inw[i..N), there
are at mosk" completions ofv[i..N). Any completion ofw[N..i +n) must be recurrent, each has length
at mostn, so there are at mos,(n) such completions. Hence there are at mds(n) distinct non-
receurrent subwords of lengtrstarting at positiom. Since there are exactly possible starting positions
for non-recurrent subwords, we see thia{n) < NK'ry(n). Since pw(n) = ry(n) + dy(n), the result
follows. O

One might expect that ifv has a large proportion of recurrent subwords then it mighilbhmately
recurrent. However, this is not true in general. Considerwlordw that is alla’'s except forb's at
positionsH(n) —1=n?— 1. Then it is easy to check thaf,(n) is linear. Also, it is clear that every
subword containing at most ofeis recurrent. There ane+ 1 such lengtm words. Hence botin,(n)
and py(n) are linear. Howeveny is not ultimately recurrent since any subword with at leasi b's
occurs exactly once. Thus the requirement that a word bmaitkily recurrent is too restrictive. In fact
we can also find a partial word with infinitely many holes suchttthe same property holds. All that
is required is to let the hole function Ibé&(n) = [a"] with a > 2 being a real number, and then notice
that py(n) is asymptotically linear. Then as before every word with astroneb is recurrent so that
rw(n) = n+ 1. Hencepy(n) < Cry(n) for a suitable constart € R.

The above proposition has an easy corollary. We know thatameatways find a completion that
contains all the recurrent subwords. Thusvifs ultimately recurrent then there exists a completion ~
whose complexity function is of the same order of growth as tifiw.

Corollary 5. Let w be an ultimately recurrent infinite partial word. Thdrete exists a completio
such that g(n) = ©(pw(n)).

Intuitively, the “closest” that a complexity function cae b another is to be within a constant of that
function. Thus, if we could not attain maximal complexitythva completion, the best we could hope for
is “off by a constant” complexity. The following propositicshows that this is not possible in general.

Proposition 6. Let w be a partial word with infinitely many holes. Wfis a completion of w such that
pw(n) < pw(n)+C for all n > 0 and some constant C, then $uh = Sul{Ww) and thus p(n) = pa(n).
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Proof. For the sake of contradiction, assume there existedSuly(n) with v ¢ Suly(n). Thenv 1
w(i..i+n) for somei. Now using the fact that contains infinitely many holes, we can chose an inalex
such that, - - - Wi has at leash holes wheré > C. Then there are at least completions ofws - - - W
Sincepy(n) — pw(n) < C at least one of these completions, calliimust also be a subword of. But
then sincer is a prefix ofu we would necessarily hawec Sub(W), a contradiction. O

Thus a completionv must satisfy eithepy(n) = py(n) or the functionf(n) = py(n) — pa(n) must
be unbounded. The above result actually holds more geperdfhat allows us to prove the above
proposition is that we are able to use the holes to createutghiosubwords to overcome the constant
C. Thus if we havepy(n) < pg(n) + ¢ (n) for some increasing functio§, then as long as the holes are
spaced close enough together we must hay@) = py(n). Thus the closer spaced the holes become,
the farther away a non-maximal completion must be in termtofplexity.

Proposition 7. Let w be an infinite partial word with hole function(kh). If W is a completion of w such
that py(n) < pw(n) + ¢(n) for all n > 0 and some increasing functigh satisfyinglimy .., 250 — g,
then py(n) = pw(n).

Proof. The proof follows the same general strategy as that of Pitio®. For the sake of contradiction,
suppose there existade Suly(n) such thatv ¢ Suly(n). Thenv 1 w(i..i +n) for somei. Let j be the
smallest integer such thhit(j) > i+n. Then choosen> j such thak™ ! > ¢ (H(m)). Then there are at
leastk™ I distinct completions ofw/[i +n..H(m)). Since they have length less théH (m)) and ¢ is
increasing we see that at least one of them, callhust be contained in S(W). But sincev is a prefix
of uwe see thav € Sul(w), a contradiction. O

The situation is different for infinite partial words with fiely many holes. Ifw has finitely many
holes then for each completion there exists a con€anich thatp,(n) < py(n) +C. However, ifC is
small enough then it turns out thatis actually ultimately recurrent.

Proposition 8. Let w be an infinite partial word with exactly h holes whérg h < «. If there exists a
completionw of w such that p(n) < pg(n) 4-C for all n > 0 and some constant C satisfying<Ck" — 2,
then w is ultimately recurrent.

Proof. We show that = oy () (W) is recurrent. We show that every finite prefixwaccurs at least twice.
Considenv[0..n). Then there ar&" distinct completions o#|[0..H (h))v[0..n). SinceC < k" — 2 at least
two of these completions must be subwordswfThus at least one is not compatible with a prefix of
W. Letu be this subword. Then there must exist same0 such that = W[i..i + |u|). Sincev[0..n) is a
suffix of u this implies that there exists> 0 such thaw[0..n) = Vv[]j..]j + n) so that every finite prefix of

V occurs twice. O

The following is a strengthening of Theoréin 6.
Theorem 7. Let w be a partial word with infinitely many holes. Then w isureent if and only if there

exists a completiow and constant C such thatyfn) < pg(n) +C for all n > 0.

Proof. The forward implication is a direct consequence of Thedremads the backward implication, if
pw(n) < pw(n) +C then Propositiofl6 implies that Si#) = Sub(Ww). Then Theorerhl6 implies thatis
recurrent. O
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Intuitively TheorenmL¥ shows us that we cannot get too claseoff by a constant) to the complexity
of wwith a completion unlesw is recurrent. In fact the conditions in the previous the@ame actually
stronger than what is needed. In order to show recurreneevef only need to be able to find completions
W that stay close t@,(n) for arbitrarily largen. This is made precise in the following lemma.

Lemma 1. Let w be a partial word with infinitely many holes. Supposd thaeach N> 0 there exists
a completioni such that p(n) = pw(n) for all n < N. Then w is recurrent.

Proof. By Proposition[1 it suffices to show that each subword appegteast twice. We argue by
contradiction. Suppose there exists a subwoedSuh,(n) that appears only once. Sayt wli..i +n).
Sincew has infinitely many holes there exists a smallest index + n such thatv(j) = . Now choose a
completionw'such thatpy,(m) = py(m) for all m< j+ 1. Choose € A such that # W;. Then consider
u=ww[i +n..j)a. Then|u| < j+ 1 so that is a subword ofv” Thusu must appear somewherevin But

it cannot appear starting at positionT hus there must exist another positibsuch thati = W[i’..i" + |u|).
But thenv 1 w[i’..i" + n) so thatv appears twice imv, a contradiction. O

We can now use the above lemma to prove a stronger versioneoir&in T .

Corollary 6. Letw be a partial word with infinitely many holes. Supposeelsxists a constant C such
that for each N> O there exists a completioft such that p(n) < pg(n)+C for all n < N. Then w is
recurrent.

Proof. We reduce the proof to an application of Lemma 1. For eachO, we find a completiorw ~
such thatpy(n) = pw(n) which allows us to apply the lemma. Fix Now chooseN such that all
subwords ofv of lengthn appear irw[0..N). Now chooseM such thatv[N..M) has at least holes where

k" > C. Then choosev 8uch thatp,,(m) < pg(m) +C for all m < M. Now we claim thatpy(n) = pg(n).
Choosev € Suhy(n). Now completew[0..N) such thatv appears as a subword. Call this completed
subwordu. Then there are at leakt > C completions ofuw{N..M). Hence sincepy(n) < pa(n) +C

at least one completion must be a subwordvofSincev is a prefix ofu this impliesv € Sub(w). Thus
Suhy(n) = Suky(n) and hencepy(n) = pw(n). All that remains is to apply the lemma to conclude that
w is recurrent. O

A similar argument provides a generalization of Proposifio

Proposition 9. Let w be an infinite partial word with hole function(kh) and let¢ be an increasing
function. If for each N> O there exists a completiofi such that g(n) < ps(n)+ ¢ (n) for alln <N and

iMoo 250 — 0, then py(n) = pa(n) and w is recurrent.

Another question that one may ask is how the complexity ofragtetion py(n) relates to the recur-
rence functiorr,,(n) for the original partial wordv. If the complexity of all completions is bounded by
rw(n) (up to a constant) then it turns out thais actually ultimately recurrent. The following theorem
states this rigorously.

Theorem 8. Let w be an infinite partial word. Then w is ultimately recurtef and only if for each
completionw there exists a constant C such that(p) < ry(n)+C for alln > 0.

Proof. Supposevis ultimately recurrent. Then there exi§tsuch thabc(w) is recurrent. Then consider
any completionrw” Any subword starting at an indeéx> C is contained in RSulw). Thus the only
possible subwords in SA¥)\ RSuliw) must occur starting at positions<Qi < C. There are at most
such subwords. Thusy(n) < ry(n)+C. Now suppose for each completiantiiere exists a constatt
such thatpg(n) < ry(n)+C for all n> 0. The intuition of the proof is as follows. ¥ is not ultimately



F. Blanchet-Sadri, A. Chakarov, L. Manuelli, J. Schwartz &8ch 81

recurrent we can find as many non-recurrent subwords as wieTlkis allows us to find a completiam ~
that contains all the recurrent subwords and hay@) — ry(n) be unbounded.

For the sake of contradiction, assumés not ultimately recurrent. Then I¢tv,} be an enumeration
of the elements of RSyty). Sincew is not ultimately recurrent we can choose a non-recurremverd
Vo. Letip be an index such thag is not a subword ot (w). Completew|0..ig) so that it containsp
as a subword. Now choogg such thatwg is a subword ofwfip.. jo). Completew(ip..jo) So thatwg is
a subword. Now sincev is not ultimately recurrent there exists a nhon-recurreibtngrd v, appearing
in gj,(w) with |v1| > |vo|. Choosei; such thatv; is not a subword ot;, (w). Completew|jo..i1) such
that v, appears as a subword. Now chogsesuch thatw; is a subword ofwli;..j1) and complete it
so thatw; appears as a subword. Continuing on in this way we seewtanfains all the recurrent
subwords and infinitely many non-recurrent subwords. Nowafx Choosem = |vc|. Then eachy,
for 0 <i < C contributes (by extending to the right) a lengthsubword. In addition each of these is
non-recurrent. Also they are all distinct since otherwhseytwould have to have matching prefixes, a
contradiction. Henceg(m) > C+ 1+ ry(m). Thus for this completion there exists no const@rguch
that p(n) < rw(n)+C for all n > 0, a contradiction. O

We can actually strengthen the above theorem. The prookadiuwvs that ifv is ultimately recurrent
then the sam€ works for all completionsv.” In other words the bound is uniform across completions.
We state this in a corollary.

Corollary 7. Let w be an infinite partial word. If w is ultimately recurrerhen there exists a constant
C such that p(n) < ry(n)+C for all n > 0 and all completionsv of w.

Oftentimes if every completion of an infinite partial wondhas a certain property, themhas it as
well. In particular this property holds with respect to miéite recurrence.

Proposition 10. Let w be an infinite partial word. Then w is ultimately recurtéf every completionv
is ultimately recurrent.

Proof. If wis not ultimately recurrent, then the completion cons&ddh the proof of Theoreim 8 is not
ultimately recurrent. O

We now introduce the notion ofraost complex completioifhe motivation is that this concept helps
us understand the role of recurrent subwords in completiogisv be an infinite partial word. We say that
W is a most complex completion of if for all completionsw of w and alln > 0 we havepg(n) < pg(n).

In general a most complex completion of an infinite partiatdwmay not exist. However, assuming that
w possesses such a completion we have the following resuttveli@tes that a most complex completion
must contain all the recurrent subwords. The intuition hestraightforward. In a rough sense one gets
the recurrent subwords @f for free. We can delay putting them in the completion for tabily long,
and they still occur after that for us to capture. Thus it isdifficult to construct a completion of higher
complexity if this is not the case.

Proposition 11. Let w be an infinite partial word. v is a most complex completion, then RSubc
Sub(W).
5 Conclusion

Intuitively all the above work culminates to show that costjgns can achieve complexities equal (or
“close”) to that of the original partial word if and only if ¢hword is recurrent or ultimately recurrent.
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Another interesting avenue of research would be to invatgigvhether a relation exists between the
growth ofry(n) and that ofpy(n). Although it would be nice, the answer seems to be no. Givgn an
constantd < 1 we can find a partial word with infinitely many holes such tﬁﬁ% — d. Also, even if

we impose the restriction tha(n) be linear then we still have a fair bit of freedom with the cdexjty

of pw(n). In particular we can make it so that asymptotically(n) attains any polynomial complexity.
We can also attain some intermediate complexities, i.ectioms of the form ?". The construction
of these examples is actually quite simple. You just have allmat is alla’s with holes at positions
H(n) — 1. Since the hole functions in all of our constructions arengwally increasing we see that any
word with at least twdy's is not recurrent. Since there are exactly 1 words of lengtm with at most
oneb we see that,,(n) = n+ 1. By controlling the growth oH (n) we can control the growth gd,(n).
The slowerH (n) grows the fastep,,(n) grows.

References

[1]
(2]

(3]
[4]
[5]
[6]

[7]
(8]
[9]
[10]
[11]
[12]

[13]

Jean-Paul Allouche (1994)Sur la complex@& des suites infiniesBulletin of the Belgium Mathematical
Societyl, pp. 133-143.

Jean-Paul Allouche & Jeffrey O. Shallit (2003): Automatic Sequences - The-
ory, Applications, Generalizations Cambridge University Press. Available at
http://www.cambridge.org/gb/knowledge/isbn/item1170556/7site_locale=en_GB.

Jean Berstel & Luc Boasson (199%artial Words and a Theorem of Fine and WilTheor. Comput. Sci.
218(1), pp. 135-141. Available Attp://dx.doi.org/10.1016/50304-3975(98) 00255-2.

Francine Blanchet-Sadri (2008)gorithmic Combinatorics on Partial Word€hapman & Hall/CRC Press,
Boca Raton, FL.

Francine Blanchet-Sadri, Aleksandar Chakarov, Lucasiwlli, Jarett Schwartz & Slater Stich (201Qpn-
structing partial words with subword complexities not asrable by full wordsPreprint.

Francine Blanchet-Sadri, Jarett Schwartz, Slater hSti& Benjamin J. Wyatt (2010): Bi-
nary De Bruijn Partial Words with One Hole In: TAMC, pp. 128-138. Available at
http://dx.doi.org/10.1007/978-3-642-13562-0_13

Julien Cassaigne (1997 omplexié et facteurs sgciaux Bulletin of the Belgium Mathematical Society
4(1), pp. 67-88.

Julien Cassaigne (2001):Recurrence in Infinite Words In: STACS pp. 1-11. Available at
http://dx.doi.org/10.1007/3-540-44693-1_1.

Sébastien Ferenczi (1999 omplexity of sequences and dynamical systé&hserete Mathematicg06(1-3),
pp. 145-154. Available atttp://dx.doi.org/10.1016/S0012-365X(98)00400-2.

Irina Gheorghiciuc (2007)rhe subword complexity of a class of infinite binary worddvances in Applied
Mathematic9, pp. 237-259.

Florin Manea & Catalin Tiseanu (201Mtard Counting Problems for Partial Wordin: LATA, pp. 426—438.
Available athttp://dx.doi.org/10.1007/978-3-642-13089-2_36.

Marston Morse & Gustav A. Hedlund (1938ymbolic dynamicsAmerican Journal of Mathematié$, pp.
815-866.

G. Rauzy (1982—-83Buitesa termes dans un alphabet filSéminaire de Théorie des Nombres de Bordeaux
25, pp. 2501-2516.


http://www.cambridge.org/gb/knowledge/isbn/item1170556/?site_locale=en_GB
http://dx.doi.org/10.1016/S0304-3975(98)00255-2
http://dx.doi.org/10.1007/978-3-642-13562-0_13
http://dx.doi.org/10.1007/3-540-44693-1_1
http://dx.doi.org/10.1016/S0012-365X(98)00400-2
http://dx.doi.org/10.1007/978-3-642-13089-2_36

	1 Introduction
	2 Preliminaries
	3 Recurrent Partial Words
	4 Completions of Infinite Partial Words
	5 Conclusion

