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In recent years codes that are not Uniquely Decipherd#ily have been studied partitioning them
in classes that localize the ambiguities of the code. A m@diguestion is how we can extend the
notion of maximality to codes that are ndbD. In this paper we give an answer to this question.

To do this we introduce a partial order in the set of submamoféd monoid showing the existence, in
this poset, of maximal elements that we dall monoids. Then a set of generators of a full monoid
is, by definition, a maximal code. We show how this definitigteads, in a natural way, the existing
definition concernindJD codes and we find a characteristic property of a monoid gételay a
maximalUD code.

1 Introduction

At the beginning, in the context of information theory, therdrcodehas denoted what we call here
Uniquely DecipherableUD) code, that is a set of words with the property that every ammation of
words of the set (callechessagehas an unique decomposition in code words. This notiorhémiext
years, has been weakened so we call here code just a set efmuig-words.

A notion weaker than uniquely decipherability has been useskveral situations: to investigate
natural languages (s€€ [7]) or to study situations in whidh @llowed to recover the original message
up to a permutation of the code words (se€ [10]] [11], [9])\v@rewhen the only information to recover
is the number of code words (seée12]). In other cases the $iasl been oriented toward sets of words
with a constraint source (s€€ [5]). [0 [8], Guzman has baaonduced the notion ofariety of codes to
study, in a general approach, decipherability conditioeaker tharuD.

In [4], studying varieties of codes under the aspect of umfdistribution of probability, we noted
that the construction, introduced by Ehrenfeucht and Ra®egiin [6], for embedding a regul&D
code in a complete and reguldD code, also works in the ambit of varieties of codes: the newds;o
introduced by the construction, do not create new relati@t&een code words. Indeed the only relations
between the code words are that existing before the cotisinuc
This observation has lead to deepen the study of the reatiat arise in a set of non-empty words and
so in [3], generalizing a construction used!(in [4], we introeld the notion ofoding partition Roughly
speaking a partition of a code is a coding partition if any sage has a unique factorization in blocks: a
block is the concatenation of words from one class of thetfmart and consecutive blocks are composed
by words from different classes of the partition. In thise#éise possible ambiguities of the code are
confined in the classes of the partition.

In [2], the very important class of maximblD codes is studied. In the case of thifD codes, is
known, for example, the equivalence between maximality@mdpleteness.
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In this paper we define the maximality of a code by an algelpeiperty of the monoid generated
by the code itself. We show that this definition of maximabtjgneralizes the existing one concerning
UD codes. We present, moreover, some classical resultibicodes that we can easily re-establish in
the general case.

2 Partitions of a code

Let A be an alphabet. We denote By the set of finite words over the alphal#gtand byA™ the set of
non-empty finite wordsA* is a monoid under the concatenation operation of two wordh, tve empty
word as the neutral element. @de Xis here a subset d&t. Its elements are callecbde wordsthe
elements oX* messages

A codeX is said to beuniquely decipherabl@UD) if every message has a unique factorization into
code words, i.e. the equality

X1X2 -+ Xn =Y1¥2"** Ym,
X1,%2, ..., %n, Y1,¥2,...,Ym € X, implies n=m and X; =V1,...,%X = Yn.

Let X be a code and let
P={X|iel}

be a partition oiX i.e., Ui Xi = X andXiNX; =0 iff i# j.
A P-factorizationof a message € Xt is a factorizatioow = 21z, - - - z, where

o for eachi, z € X, for somek € |
eift>1 zeX =z1¢ X (1<i<t-1).

The partitionP is called acoding partitionif any elementv € X has aunique Rfactorization i.e.

if
W=21Zp---Zg=UiUp- - - U,

wherez;z, - - -z, U1y - - - Uy areP-factorizationsof w, thens=t andz = u; fori=1,...,s.
We observe that the trivial partitiod = {X} is always a coding patrtition.

Letw e A" be a word. Afactorizationof wis a sequence of words; )1<j<s such thatv = vy, - - - vs.
Let X be a code. Aelationis a pair of factorizationsix, - --Xs = 1Yz - -}t into code words of a same
message € XT; the relation is said non-trivial if the factorizations atistinct. In the sequel, when no
confusion arises, sometimes we will denoteziinpth the “word”zand therelation X xo - - - Xs =YyiY2 - - V.
We say that the relatioxyx, - - - Xs = y1Y2- - - ¥ is primeif for all i < sand for allj <t one hasqXy---% #

yiyz2---Yj.
In [3], the following theorem is proved.

Theorem 2.1 Let P={X; | i € |} be a partition of a code X. The partition P is a coding partitiif for
every prime relation x---Xs = y1y2- - -}, the code words;xy; belong to the same component of the
partition.

Recall that there is a natural partial order between thatioad of a setX: if P andP, are two
partitions ofX thenP; < P, if the elements of; are unions of elements & and we say tha®, is finer
thenP;. Then from Theorern 2.1 we have the following corollary.
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Corollary 2.2 Let P and P be two partitions of a code X with R P’. If P’ is a coding partition then P
also.

What follows, till Theorend 27, is stated in/[3].
Theorem 2.3 The set of the coding partitions of a code X is a completeckatti

As a consequence of previous theorem we can give the folgpadfinition. Given a cod¥, thefinest
coding partitionP of X is called thecharacteristicpartition of X and it is denoted b(X).

A codeX is calledambiguousf it is not UD. It is calledtotally ambiguous(TA) if |X| > 1 andP(X)
is the trivial partition:P(X) = {X}.

Remark 2.4 So UD codes and TA codes correspond to the two extremal camesascode is UD iff
P(X) ={{x} [xe X}.

Let X be a code and I6?(X) be the characteristic partition &f. Let Xy be the union of all classes of
P(X) having only one element, i.e. of all classeés P(X) such tha{Z| = 1. The codeX is aUD code
and is called thenambiguous componeot X. FromP(X) one then derives another partitionXf

Re(X) ={X[i >0},

where{X; | i > 1} is the set of classes &(X) of size greater than 1. If there are such sgtaithi > 1,

then they areT A. They are called th& A componentsf X. By Corollary[2.2 we have th&&:(X) is a
coding partition (indeed-(X) < P(X)) and it is called thecanonical coding partitiorof X: it defines
acanonical decompositioaf a codeX in at most one unambiguous component and a (possibly empty)
set of TA components. Roughly speaking, if a coddas not UD, then its canonical decomposition,
on one hand separates the unambiguous component of the iCedg)( and, on the other, localizes
the ambiguities inside th€ A components of the code. On the contraryXifs UD, then its canonical
decomposition contains only the unambiguous compoKgnWoreover ifX is UD then every partition

of X is a coding partition.

Theorem 2.5 There is a Sardinas-Patterson like algorithm to computeci@onical coding partition of
a finite code X.

Example 2.6 Let us consider the code X {0,1}*, X = {00,0010100011,1111
010,011}. In [3] it is shown that the canonical coding partition of X Bs(X) = {Xo, X1, X2} with
Xo = {010,011}, X; = {00,001Q 1000}, X, = {11,1111}.

Theorem 2.7 Given a regular code X and a partition {Xy,..., Xy} of X such that Xfori=1,...,n,
is a regular set, it is decidable whether P is a coding pautitiof X.

Still in [], it was conjectured thaf X is regular, the number of classes af(K) is finite and each
class of B(X) is a regular set.

Finally, the positive answer has given fin [1] where the feilog theorem and corollary are proved.

Theorem 2.8 The canonical partition of a regular code is finite and regulss classes can be effectively
computed.

Corollary 2.9 Given aregular code X and a regular partitionP {Xz, Xz, ..., X,} of X, it is decidable
whether P is the canonical coding parition of X.
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From the definition of coding partition we deduce immediateke next theorem that gives a tool to
construct infinitely manyJD codes starting from any nohA code with more than one code word.

Theorem 2.10 Let P= {X; | i € | } be a coding partition of a code witl| > 1.
Then the set§X X --- X" [n>2ijel,ij#ij;11V1<j<nin#i1} are UD codes.

We conclude this section with the following theorem conawgrthe regularity of the classes of a
finite coding partition of a regular code.

Theorem 2.11 Let{Y; | j € J} be a coding partition of a regular code X and lej be the unambiguous
component of X. If there exists ¢ J such that Y, is not regular then we have Y1 Xy # 0. Moreover if
J is finite then there exists £ J, j2 # j1 such that also ¥ is not regular and Y, N Xo # 0.

Proof. LetPR-(X) = {Xo,X,...,Xn} be the regular and finite canonical coding partitiorkoff, by con-
tradiction, Yj, N Xo = 0 then, recalling howr:(X) rises fromP(X) and recalling thaP(X) is the finest
coding partition ofX, we see thaYj, is a finite union of some of the regular codgs, ..., X,} and so it
is regular: a contradiction. Thefy, N Xy # 0. Moreover ifJ is finite then if, by contradiction, all th¥;
for j # j1 where regular, theM;, where the complement, with respect to the regular codé a regular
code and s&j, where regular against the hypothesis. Then there ekists], j> # j1 such that alsy/,
is not regular and, by the first part of the progf, N Xo # 0. O

Example 2.12 Let X be the regular UD code ¥ a*b™. Then =X and putY:={a"b"|n>1},Y,:=
X\ Y1 we have that P= {Y1,Y>} is a coding partition of X in two non-regular classes.

3 Free factorizations of a monoid

In this section the previous results are restated in an edgebetting making use of the free product of
monoids.

Given a codeX C A" we can study the properties of the mondid= X*. On the contrary, if we
start with a monoidM C A*, we can study the characteristic properties of the diffesstisX C A*
of generators oM. We recall that any submonoidl of A* has a unique minimal set of generators
X = (M~ 1)~ (Mx1)? where 1is the empty word (s€€ [2]); in such a case we saytisthe base of
M. In general we say that a codfeis a baseif X is the base oK*.

It is natural to investigate how the properties of a pantitid a code are related to those of the monoids
generated by the classes of the patrtition.

Given a partitionP = {X; | i € |} of a codeX C A", the condition that every word € X admits a
uniqueP-factorizationhas a natural algebraic interpretation in terms of free gpcodf monoids.

Let M be a monoid generated by submonoMg, A € A, and letm € M. An expression om of
the form mymy---m,, wherer > 0, 1# my € My, Aj # Ai11, is said inreduced formwith respect to
M,’s. By definition,M is the free product of th#, s iff every element oM has an unique expression
in reduced form with respect tl,'s and we writeM = Fr)a M,. In the finite case we also write
M =M, *---xM,..

The previous results can be expressed then in the follovang.f
Theorem 3.1 Let X C AT be a code, let P- {X; | i € |} be a partition of X and let M= X*, M; = X*
with i € I. If P is a coding partition of X then M is the free product okétM’s. Conversely let M be
the free product of the submonoids’dvilet X be sets of generators ofiMnd let X= {Ji; Xi. Then
P={X|iel}itis acoding partition of X.
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It's natural at this point to introduce the notion of freettatzations of a monoid.

Definition 3.2 A family {M, |A € A} of submonoids of M is &ee factorizatiorof M if M is the free
product of the M’s. The M,’s are called thefree factorsof the free factorization; moreover we say that
a monoid M isfreely indecomposablé M cannot be expressed as a free product of nontrivial madsoi

We stress that a free factor is not, in general, a free monoid.

Remark 3.3 We note that a monoid M is freely indecomposable iff any sgtioérators of M is a totally
ambiguous code. From another hand we have that a code X is DX*if= Fryex {X}* so, in particular,
the monoid X is free.

The next proposition comes directly from the definition @diproduct of monoids: it is the Corollary
[2.2 restated in terms of monoids.

Proposition 3.4 Let M=Fr, -5 M, and let{A, | 1 € '} be a partition ofA. Setvu €', M, the monoid
generated byM, [A € Ay} then M, = Fryca, My and M= Fryer M.

Starting with an arbitrary family of submonoids Af, analogously to what we have made with a
codeX, we can partition the family in classes in such a way that teord generated by the family is
the free product of the monoids generated by each class gfatigion. On the contrary, if we have a
monoid M, we can consider the family of all the free factorizationdvbtind define a partial order on
this family.

Definition 3.5 Let iy = {My |t € A1}, F = {M, |A € A2} be two free factorizations of a monoid M.
We say that F< F, if there exists a partitiof Ay |t € A1} of Az such that for eacht, My = Fryca, M.

By Theoreni 2.8 and Theorém B.1 we deduce the following timeore
Theorem 3.6 Given a monoid M the family of the free factorizations of M momplete lattice.

As in the case of the canonical partition of a cothe finest free factorization of a monoid is
called thecharacteristicfree factorization oM and it is denoted by# (M) or, if we want to make the
free factors explicit,7 (M) = Fryca M,.

Now let Mg be the monoid generated by all the free factorsagM ) having only one generator. The
monoidMg is then a free monoid and it is called tliee componemf M. From.% (M) one then derives
another decomposition &

LO}\(:(M) = Mo* FI’)\E/\ M)\,

where theM, ’s are the free factors of* (M) having more then one generator. If there are such monoids
M, then they are not free and they are, of course, freely indposable. They are called tlieely
indecomposable componerd6M. By Propositio 34 we have tha#:(X) is a free factorization of

M (indeed.Zc(M) < .%#(M)) and it is called thecanonical free factorizatiof M: it defines acanon-

ical decompositiorof a monoidM in at most one free component and a (possibly empty) set elyfre
indecomposable components.

Example 3.7 Let A= {ay,ay,... }. ThenZ (A") = (aj) = (&) - - -, and.Zc(A*) = {A*}. Then the poset
of the free factorizations of*Aare in bijection with the poset of the alphabet A.

Already in [1], the following equivalent formulation of Theem[2.8 is given.
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Theorem 3.8 Any regular submonoid M- A* admits a canonical decomposition into a free product
of at most one regular free submonoid and finitely many (pbsgero) regular freely indecomposable
submonoids.

Example 3.9 Let A= {a,b,c,d} and let XC A" be the following regular code: % a+bb+c+ad*b+
bcbb.

In [I] it is shown that R(X) = {Xo, X1} where X% = ad*b and X = a+ ab+ bb+c+bc*bb. Then the
canonical decomposition of the regular submonoitdis<X* = (X3) * (X{).

4 Full monoids and maximal codes

Using ideas of previous section we introduce a partial omdéne family of the submonoids @t*. We
will prove that, in this poset, there exist maximal elemeht& call this maximal elemenfsll monoids
and we will say that a code maximalif it is the base of a full monoid. We show that this definition o
maximality extends that concerningD codes and, with Theoreim 4114, we will give a characteripatio
of maximalUD codes depending only on the monoid they generate.

Definition 4.1 Let M,N C A* be monoids we say that M N if there exists a monoid € A* such that
N=M=xL.

Proposition 4.2 The relation= is a partial order on the set of submonoids df A

Proof. We need to prove that is transitive and antisymmetric. If < M andM =< N then3L’,M’ such
thatM =L« L’ andN =M «M’. ThenN = (L*L")*M’ =Lx* (L'«M’) and soN < L. Now letM < N
andN <M soM = NN’ andN = M x M’ for some monoid§1’,N’. ThenM = M « M’ « N’ thusM’,N’
are trivial monoids and skl = N. O

The first question is, given a monadi if there exists a monoit! with N € M andM maximal with
respect to the partial ordet.

To answer to the previous question we first prove the follgi@mma.

Lemma 4.3 Let M= My x M, and let X X1, Xo be the base of MM1, M5 respectively. Then X% X; U X,.

Proof. SinceM = M1 x M, andX;, X, are the bases dfl; andM, respectively, it is clear thax; U X,
is a set of generators ®f. Let, by contradictionX C X; UX; and letx' € (X3 UXz) \ X. We can as-
sume tha’ € X;. SinceX is a set of generators M, X' = X%, - - - X, with x; € X. Butx € My and, by
the uniqueness of the reduced form with respedifoand M,, we havex; € M1, V1 <i <n, and so
X € X1, V1 <i <n. This shows thaX; \ {X'} is a set of generators &f;: a contradiction. ThuX; UX;
is a minimal set of generators bf and we have the thesis. O

As an obvious generalization we have the following
Corollary 4.4 LetM=Fr oM, andlet X, A € Aand X be the bases of)MA € A and M respectively.
Then X=Ujcp X,

We note that without Lemnia 4.3, by Theorem 3.1, we only sayMha X; UX; is a set of generators
of M and thatP = {X3,X,} is a coding partition o¥. Lemmd4.B says that is the base oM.
Now we can prove the following theorem.
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Theorem 4.5 Any submonoid MZ A* is contained in a submonoid N A*, which is maximal with
respect to< and such that V< N.

Proof. We will make use of Zorn’s lemma. L&t be the family of all the submonoid® C A*, ordered
by <, such thaM < P, VP € § and let{M, |A € A} be a chain ir§. If A < ythen there exists a sub-
monoidH, , € A" such thaM, = M, xH, , and so if we calX,, X, andX, , the bases o, M,, H, ,
respectively, by Lemmia 4., = X, UX, , and thenX, C X,. Now, VA € A, let X, the base oM},

Y :=U,cp X, and letN be the monoid generated ¥y We show thaM, <N, VA € A. LetZ, :=Y\ X,
and letH, the submonoid generated By. We will prove thatN = M, xH,. Letmé& N and let us sup-
pose, by contradiction, thamh has two different expressions in reduced form with respedif,H, so
m= mnMg---m = My, ---mg with r,s> 1. SinceN is generated by thenm=y1y>---Yh =V¥iY, - Vi
for certainyi,yj €Y and, since the two expressions in reduced form with respadj tH, are different,
Yy € {Y1,Y2,--,Yh, Y1, Y2, - - ¥k} such thaty ¢ X,. LetA; € A such thatd; > A andy,,y; € Xy, Vi, ].
ThenM,, =M, xH, ,, for acertainH, ,, C A" Sincem,m,rﬁj € M,,, Vi, ], then the two different ex-
pressions omin reduced form with respect td, ,H, are still two different expressions in reduced form
with respect tdvl) , H, ,,. This contradiction shows that = M, «H, and thusM), <N, VA € A. Since
M <M,, VA e AthenM <N soN € § and it is a upper bound for the chafiM, |A € A}. Invoking
Zorn’s lemma we have the thesis. O

Remark 4.6 By Examplé_3]7 we see that if M is not generated by a subsee @ipiabet A, then the
maximal monoid N which the previous theorem refers to, ip@ny contained in Ai.e. M <N C A"

We give now the following definition.

Definition 4.7 We say that a submonoid M of & full if it is maximal with respect to the partial
order <.

Remark 4.8 From the definition we have that if'MC M and M is full then also M is full.
A first statement on full monoids is given by the following position.

Proposition 4.9 Let M C A* be a monoid. If M is maximal with respect to the inclusion ordehen it
is full.

Proof. We will prove that ifM is not full then it is not maximal with respect to the inclusiorderC. If
M is not full then there exist a monoM C A* and a non trivial monoid/l; C A* such thaiN = M % M.
Let X the base oM, x € X and letM, be the monoidx?)*. Then we havéM C M M, C N. O

We recall that the submonoids 8f maximal with respect to the inclusion orderare “few”; in
fact it is easy to see that a submondidlof A* is maximal with respect to the inclusion order iff
M = A"\ {a} for a certaina € A.

A UD codeX C AT is said to be anaximal UDcode if X is not properly contained in any otheiD
code overA.

Now we extend the notion of maximality to codes that arelidt
Definition 4.10 A code XC At is saidmaximalif the monoid X is full.
The next theorem shows how this notion generalizes that afmadity given forUD codes.
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Theorem 4.11 Let X be a UD code. Then X is a maximal UD code iffiXa full monoid.

Proof. If X is a maximalUD code thervw € A™, X' := XU {w} is not aUD code and, by Remafk 3.3
and Propositio 314, this imply thatw € A", (X’)* is not the free product ok* and{w}* and this is
true iff X* is full. O

A free monoidM C A* is saidmaximal freef M # A" andM is not properly contained in any other
free monoid different fronf\*.

If a free monoid is maximal free then it is full. Indeed if adrenonoid is maximal free then its base
is a maximalUD code (se€ [2]) so by Theordm 4111 the monoid is full.
We have proved then the following theorem.

Theorem 4.12 Let M be a free monoid. If M is maximal free then it is full.

Remark 4.13 In [2] it is proved that uniform codes Pare maximal UD codes'n > 1 and it is been
underlined that with r=Im, I, m > 1, we have(A")* C (A™)* C A*. This has two consequences: from
one hand, by Theorem 4]11, we can see that the inverse of §itiop&d.9 is false, moreover, since the
monoids(A™)* are free, again by Theoreim 4111, also the inverse of Thebr&ébid false.

Recalling that ifM is a free monoid then its base idJD code, then from Theorem 4J11 we have
the following characterization of a maximelD codes in terms of algebraic properties of the monoid
generated by the code itself.

Theorem 4.14 Let X C AT be a code that is a base. Then X is a maximal UD code®ifis)a full and
free submonoid of A

We see now how with this notion of maximality we will recovemse results concerning théD
codes.

We first recall some definitions.
A wordw € A" is afactor of a wordz € A* if there existu,v € A* such thatz = uwv. For anyX C A* let
F(X) denote the set of factors of wordsXn
A setX C A*isdensdf F(X) = A*. A set that is not dense is calléuin.
Finally, a setX C A* is completaf X* is dense.

Theorem 4.15 Let X C A" be a maximal code then it is a complete set.

Proof. Let X be a code over the alphabgt with card(A) > 2 (the caseard(A) < 2 is trivial). We
will prove that if X is not complete theX* is not full. If X is not complete, there exists a word: A*
such thatv does not belong t& (X*). Let a be the first letter ok and letb € A~ {a}. Consider the
word w = vb¥I=1, By constructionw is unborderedli.e. no proper prefix ofv is a suffix ofw. Sincev
does not belong t& (X*), we have that alsw does not belong t& (X*). LetM := (XU {w})* we now
prove that every wortle (X U{w})* has an unique expression in reduced form with respext tgw}*.
Indeed, sincav is unbordered, we can uniquely distinguish all occurrerafegin t, i.e. t has a unique
factorization of the form
t = UpWULW- - - WU,

withn> 1 andy; € X*, fori=1,...,n.
This shows thaM = (X*) x (w*) andX* is not full. O

By the previous theorem we deduce the following corollary.



F. Burderi 91

Corollary 4.16 Any full monoid MC A* is dense in A

The inverse of previous corollary is not true. Indeed thelOgadeD overA = {a,b} is aUD dense
code and for eack € D the codeD . {x} remains dense (see [2]) but it is no more a maxiilcode
and so by Theorem 4.1 ~ {x})* it is not full in A*.

The next lemma holds (se€ [2]).

Lemma 4.17 Let X C A" be a thin and complete code. Then all words W* satisfy
(X*WXH) TN X* £ 0.
Then we can prove the following theorem.

Theorem 4.18 Let X be a thin code. If X is complete then it is maximal.

Proof. Let M C A" be a monoid and let ¥ w e M. By previous lemma there exist,v, € X* and
ze Xt such thatz = (v;ww,)*. From thisz has not a unique expression in reduced form with respect to
X*andM. ThenX* is full and X is a maximal code. 0

Putting together the last two results we have:

Theorem 4.19 Let X C A" be a thin code. Then X is complete iff it is maximal.
Again in [2], the following result is proved.

Proposition 4.20 Any regular UD code is thin.

Indeed the proof of the cited result shows the following mypeeeral proposition.
Proposition 4.21 Any regular code that is a base is thin.
Then we can conclude with the following corollary.

Corollary 4.22 Let XC A" be aregular code that is a base. Then X is complete iff it isimalx

5 Concluding remarks

In this paper we have given a definition of maximality thateexts the existing one fayD codes re-
establishing, in the general case, some classical realitsfer UD codes. At this point it is interesting
to understand which, among the deep results concerningnmadkiD codes, can be recovered from the
more general definitions of maximality and coding partitigiWe emphasize that the notion of coding
partition generalizes that &fD code: the “uniquely decipherability” at the level of classéthe partition
takes the place of the uniquely decipherability existintpeen the words of &D code.) Two subjects
that it is possible to deepen are composition of codes artahpility distributions.
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