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1 Introduction

This contribution is devoted to the study of positional numeration systems with negative base introduced
by Ito and Sadahiro in 2009, called(−β )-expansions. We give an admissibility criterion for more general
case of(−β )-expansions and discuss the properties of the set of(−β )-integers, denoted byZ−β . We
give a description of distances withinZ−β and show that this set can be coded by an infinite word over
an infinite alphabet, which is a fixed point of a non-erasing non-trivial morphism.

2 Numeration with negative base

In 1957, Rényi introduced positional numeration system with positive real baseβ > 1 (see [7]).The
β -expansion ofx∈ [0,1) is defined as the digit stringdβ (x) = 0•x1x2x3 · · · , where

xi = ⌊βT i−1
β (x)⌋ and Tβ (x) = βx−⌊βx⌋ .

It holds that
x=

x1

β
+

x2

β 2 +
x3

β 3 + · · · .

Note that this definition can be naturally extended so that any real number has a uniqueβ -expansion,
which is usually denoteddβ (x) = xkxk−1 · · ·x1x0 • x−1x−2 · · · , where•, the fractional point, separates
negative and non-negative powers ofβ . In analogy with standard integer base, the setZβ of β -integers
is defined as the set of real numbers having theβ -expansion of the formdβ (x) = xkxk−1 · · ·x1x0•0ω .

(−β )-expansions, a numeration system built in analogy with Rényi β -expansions, was introduced
in 2009 by Ito and Sadahiro (see [5]). They gave a lexicographic criterion for deciding whether some
digit string is the(−β )-expansion of somex and also described several properties of(−β )-expansions
concerning symbolic dynamics and ergodic theory. Note thatdynamical properties of(−β )-expansions
were also studied by Frougny and Lai (see [4]). We take the liberty of defining(−β )-expansions in a
more general way, while an analogy with positive base numeration can still be easily seen.

Definition 1. Let−β <−1 be a base and consider x∈ [l , l +1), where l∈R is arbitrary fixed. We define
the(−β )-expansion of x as the digit string d(x) = x1x2x3 · · · , with digits xi given by

xi = ⌊−βT i−1(x)− l⌋ , (1)

where T(x) stands for the generalised(−β )-transformation

T : [l , l +1)→ [l , l +1) , T(x) =−βx−⌊−βx− l⌋ . (2)
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It holds that
x=

x1

−β
+

x2

(−β )2 +
x3

(−β )3 + · · ·

and the fractional point is again used in the notation,d(x) = 0•x1x2x3 · · · .
The set of digits used in(−β )-expansions of numbers (in the latter referred to as the alphabet of

(−β )-expansions) depends on the choice ofl and can be calculated directly from (1) as

A−β ,l =
{
⌊−l(β +1)−β⌋, . . . ,⌊−l(β +1)⌋

}
. (3)

We may demand that the numeration system possesses various properties. Let us summarise the most
natural ones:

• The most common requirement is that zero is an allowed digit.We see that 0∈A−β ,l is equivalent
to 0∈ [l , l +1) and consequentlyl ∈ (−1,0]. Note that this impliesd(0) = 0•0ω .

• We may require thatA−β ,l = {0,1, . . . ,⌊β⌋}. This is equivalent to the choicel ∈
(
− ⌊β⌋+1

β+1 ,− β
β+1

]
.

• So far, (−β )-expansions were defined only for numbers from[l , l + 1). In Rényi numeration,
theβ -expansion of arbitraryx∈ R+ (expansions of negative numbers differ only by “−” sign) is
defined asdβ (x) = xkxk−1 · · ·x1x0 •x−1x−2 · · · , wherek ∈ N satisfies x

β k ∈ [l , l +1) anddβ
(

x
β k

)
=

0•xkxk−1xk−2 · · · . The same procedure does not work for(−β )-expansions in general. A necessary
and sufficient condition for the existence of uniqued(x) for all x∈R is that− 1

β [l , l +1)⊂ [l , l +1).

This is equivalent to the choicel ∈
(
− β

β+1,− 1
β+1

]
. Note that this choice is disjoint with the

previous one, so one cannot have uniqueness of(−β )-expansions and non-negative digits bounded
by β at the same time.

Let us stress that in the following we will need 0 to be a valid digit. Therefore, we shall always
assumel ∈ (−1,0]. Note that we may easily derive that the digits in the alphabet A−β ,l are then bounded
by ⌈β⌉ in modulus.

3 Admissibility

In Rényi numeration there is a natural correspondence between ordering on real numbers and lexico-
graphic ordering on theirβ -expansions. In(−β )-expansions, standard lexicographic ordering is not
suitable anymore, hence a different ordering on digit strings is needed.

The so-called alternate order was used in the admissibilitycondition by Ito and Sadahiro and it will
work also in the general case. Let us recall the definition. For the strings

u,v∈ (A−β ,l )
N , u= u1u2u3 · · · and v= v1v2v3 · · ·

we say thatu≺alt v (u is less thanv in the alternate order) ifum(−1)m < vm(−1)m, wherem= min{k∈
N | uk 6= vk}. Note that standard ordering between reals in[l , l +1) corresponds to the alternate order
on their respective(−β )-expansions.

Definition 2. An infinite string x1x2x3 · · · of integers is called(−β )-admissible (or just admissible), if
there exists an x∈ [l , l +1) such that x1x2x3 · · · is its (−β )-expansion, i.e. x1x2x3 · · ·= d(x).

We give the criterion for(−β )-admissibility (proven in[2]) in a form similar to both Parry lexico-
graphic condition (see [6]) and Ito-Sadahiro admissibility criterion (see [5]).
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Theorem 3. ([2]) An infinite string x1x2x3 · · · of integers is(−β )-admissible, if and only if

l1l2l3 · · · �alt xixi+1xi+2 · · · ≺alt r1r2r3 · · · , for all i ≥ 1, (4)

where l1l2l3 · · ·= d(l) and r1r2r3 · · ·= d∗(l +1) = limε→0+d(l +1− ε).
Remark 4. Ito and Sadahiro have described the admissibility condition for their numeration system
considered with l=− β

β+1. This choice imply for anyβ the alphabet of the formA−β ,l = {0,1, . . . ,⌊β⌋}.
They have shown that in this case the reference strings used in the condition in Theorem 3 (i.e. d(l) =
l1l2l3 · · · and d∗(l +1) = r1r2r3 · · · ) are related in the following way:

r1r2r3 · · ·= 0l1l2l3 · · ·

if d(l) is not purely periodic with odd period length, and,

r1r2r3 · · ·=
(
0l1l2 · · · lq−1(lq−1)

)ω
,

if d(l) =
(
l1l2 · · · lq

)ω
, where q is odd.

Remark 5. Besides Ito-Sadahiro case and the general one, we may consider another interesting example,
the choice l= −1

2, β /∈ 2Z+ 1. This leads to a numeration defined on “almost symmetric” interval
[−1

2,
1
2) with symmetric alphabet

A−β ,− 1
2
=

{⌊β +1
2

⌋
, . . . ,1,0,1, . . .

⌊β +1
2

⌋}
.

Note that we use the notation(−a) = a for shorter writing of negative digits. If we denote the
reference strings as usual, i.e. d

(
− 1

2

)
= l1l2l3 · · · and d∗

(1
2

)
= r1r2r3 · · · , the following relation can be

shown:
r1r2r3 · · ·= l1l2l3 · · ·

if d(l) is not purely periodic with odd period length, and,

r1r2r3 · · ·=
(
l1l2 · · · lq−1(lq−1)l1l2 · · · lq−1(lq−1)

)ω
,

if d(l) =
(
l1l2 · · · lq

)ω
, where q is odd.

4 (−β )-integers

We have already discussed basic properties of(−β )-expansions and the question of admissibility of digit
strings. In the following,(−β )-admissibility will be used to define the set of(−β )-integers.

Let us define a “value function”γ . Consider a finite digit stringxk−1 · · ·x1x0, thenγ(xk−1, · · ·x1x0) =

∑k−1
i=0 xi(−β )i .

Definition 6. We call x∈R a (−β )-integer, if there exists a(−β )-admissible digit string xkxk−1 · · ·x00ω

such that d(x) = xkxk−1 · · ·x1x0•0ω . The set of(−β )-integers is then defined as

Z−β = {x∈R | x= γ(ak−1ak−2 · · ·a1a0), ak−1ak−2 · · ·a1a00ω is (−β )-admissible,

or equivalently
Z−β =

⋃

i≥0

(−β )iT−i(0) .
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Note that(−β )-expansions of real numbers are not necessarily unique. As was said before, unique-
ness holds if and only ifl ∈

(
− β

β+1,− 1
β+1

]
. Let us demonstrate this ambiguity on the following example.

Example 7. Let β be the greater root of the polynomial x2−2x−1, i.e. β = 1+
√

2, and let[l , l +1) =[
− β9

β9+1,
1

β9+1

)
. Note that[l , l +1) is not invariant under division by(−β ).

If we want to find the(−β )-expansion of number x/∈ [l , l + 1), we have to find such k∈ N that
x

(−β)k ∈ [l , l + 1), compute d
(

x
(−β)k

)
by definition and then shift the fractional point by k positions to

the right. The problem is that, in general, different choices of the exponent k may give different(−β )-
admissible digit strings which all represent the same number x.

Let us find possible(−β )-expansions of1. It can be shown that 1
(−β)k ∈ [l , l + 1) if and only if

k∈N\{0,2,4,6,8} and there are5 (−β )-admissible digit strings representing1, computed from(−β )-
expansions of 1

(−β)k for k= 1,3,5,7,9 respectively:

1•0ω = 120•0ω = 13210•0ω = 1322210•0ω = 132222210•0ω .

Let us mention some straightforward observations on the properties ofZ−β :

• Z−β is nonempty if and only if 0∈ A−β ,l , i.e. if and only ifl ∈ (−1,0].

• The definition implies−βZ−β ⊂ Z−β .

• A phenomenon unseen in Rényi numeration arises, there are cases when the set of(−β )-integers
is trivial, i.e. whenZ−β = {0}. This happens if and only if both numbers1

β and− 1
β are outside of

the interval[l , l +1). This can be reformulated as

Z−β = {0} ⇔ β <−1
l

and β ≤ 1
l +1

,

and it can be seen that the strictest limitation forβ arises whenl =−1
2. This implies for any choice

of l ∈ R:

Z−β 6= /0 and β ≥ 2 ⇒ Z−β ) {0} .

• It holds thatZ−β = Z if and only if β ∈ N.

Remark 8. As was shown in Example 7, in a completely general case of(−β )-expansions, there is a
problem with ambiguity. Because of this, in the following weshall limit ourselves to the choice l∈

[
−

β
β+1,− 1

β+1

]
. Note that we allow Ito-Sadahiro case l=− β

β+1, which also contains ambiguities, but only
in countably many cases, which can be avoided by introducinga notion of strong(−β )-admissibility.

Definition 9. Let x1x2x3 · · · ∈ A−β ,l . We say that

x1x2x3 · · · is strongly(−β )-admissible if 0x1x2x3 · · · is (−β )-admissible.

Remark 10. Note that if l∈
(
− β

β+1,− 1
β+1

]
, the notions of strong admissibility and admissibility coin-

cide. In the case l=− β
β+1, the only numbers with non-unique expansions are those of the form(−β )kl,

which have exactly two possible expansions using digit strings l1l2l3 · · · and1l1l2l3 · · · . While both are
(−β )-admissible, only the latter is also strongly(−β )-admissible.
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In order to describe distances between adjacent(−β )-integers, we will study ordering of finite digit
strings in the alternate order. Denote byS (k) the set of infinite(−β )-admissible digit strings such that
erasing a prefix of lengthk yields 0ω , i.e. fork≥ 0, we have

S (k) = {ak−1ak−2 · · ·a00ω | ak−1ak−2 · · ·a00ω is (−β )-admissible} ,

in particularS (0)= {0ω}. For a fixedk, the setS (k) is finite. Denote by Max(k) the stringak−1ak−2 · · ·a00ω

which is maximal inS (k) with respect to the alternate order and by max(k) its prefix of lengthk, i.e.
Max(k) = max(k)0ω . Similarly, we define Min(k) and min(k). Thus,

Min(k)�alt r �alt Max(k) , for all digit stringsr ∈ S (k).

With this notation we can give a theorem describing distances inZ−β valid for casesl ∈
[
− β

β+1,− 1
β+1

]
.

Note that for casel =− β
β+1 it was proven in[1].

Theorem 11. Let x< y be two consecutive(−β )-integers. Then there exist a finite string w over the
alphabetA−β ,l , a non-negative integer k∈ {0,1,2, . . .} and a positive digit d∈ A−β ,l \ {0} such that
w(d−1)Max(k) and wdMin(k) are strongly(−β )-admissible strings and

x= γ(w(d−1)max(k)) < y= γ(wdmin(k)) for k even,
x= γ(wdmin(k)) < y= γ(w(d−1)max(k)) for k odd.

In particular, the distance y−x between these(−β )-integers depends only on k and equals to

∆k :=
∣∣∣(−β )k+ γ

(
min(k)

)
− γ

(
max(k)

)∣∣∣ . (5)

5 CodingZ−β by an infinite word

Note that in order to get an explicit formula for distances from Theorem 3, knowledge of reference strings
min(k) and max(k) is necessary. These depend on both reference stringsd(l) andd∗(l +1). Concerning
the form of min(k) and max(k) we provide the following proposition.

Proposition 12. Let β > 1. Denote d(l) = l1l2l3 · · · , d∗(l +1) = r1r2r3 · · · .
• min(0) = max(0) = ε ,

• for k≥ 1 eithermin(k) = l1l2 · · · lk or there exists m(k) ∈ {0, · · ·,k−1} such that

min(k) =





l1l2 · · · (lk−m(k)+1)min(m(k)) if k−m(k) even

l1l2 · · · (lk−m(k)−1)max(m(k)) if k−m(k) odd

• for k≥ 1 eithermax(k) = r1r2 · · · rk or there exists m′(k) ∈ {0, · · ·,k−1} such that

max(k) =





r1r2 · · · (rk−m′(k)−1)max(m′(k)) if k−m′(k) even

r1r2 · · · (rk−m′(k)+1)min(m′(k)) if k−m′(k) odd
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Computing min(k) and max(k) for a general choice ofl may lead to difficult discussion, however,
in special cases an important relation betweend(l) and d∗(l + 1) arises and eases the computation.
Examples were given in Remarks 4 and 5.

Let us now describe how we can code the set of(−β )-integers by an infinite word over the infinite
alphabetN.

Let (zn)n∈Z be a strictly increasing sequence satisfying

z0 = 0 and Z−β = {zn | n∈ Z} .

We define a bidirectional infinite word over an infinite alphabet v−β ∈NZ, which codes the set of(−β )-
integers. According to Theorem 11, for anyn∈ Z there exist a uniquek∈ N, a wordw with prefix 0 and
a letterd such that

zn+1−zn =
∣∣γ(w(d−1)max(k))− γ(wdmin(k))

∣∣ .
We define the wordv−β = (vi)i∈Z by vn = k.

Theorem 13. Let v−β be the word associated with(−β )-integers. There exists an antimorphismΦ :
N∗ →N∗ such thatΨ = Φ2 is a non-erasing non-identical morphism andΨ(v−β ) = v−β . Φ is always of
the form

Φ(2l) = S2l (2l +1)R̃2l and Φ(2l +1) = R2l+1(2l +2)S̃2l+1 ,

whereũ denotes the reversal of the word u and words Rj , Sj depend only on j and onmin(k),max(k)
with k∈ { j, j +1}.

The proof is based on the self-similarity ofZ−β , i.e. −βZ−β ⊂ Z−β , and on the following idea.
Let x = γ(w(d− 1)max(k)) < y = γ(wdmin(k)) be two neighbours inZ−β with gap∆k and suppose
only k even. If we multiply bothx and y by (−β ), we get a longer gap with possibly more(−β )-
integers in between. It can be shown that between−βy and−βx there is always a gap∆k+1. Hence the
description is of the formΦ(k) = Sk(k+ 1)R̃k, where the wordSk codes the distances between(−β )-
integers in[γ(wdmin(k)0),γ(wdmin(k+ 1))] and, similarly,Rk encodes distances within the interval
[γ(w(d−1)max(k)0),γ(w(d−1)max(k+1))].

As it turns out, in some cases (mostly when reference stringsl1l2l3 · · · andr1r2r3 · · · are eventually
periodic of a particular form) we can find a letter-to-letterprojection to a finite alphabetΠ : N→ B with
B ⊂N, such thatu−β = Πv−β also encodesZ−β and it is a fixed point of a an antimorphismϕ = Π◦Φ
over the finite alphabetB. Clearly, the square ofϕ is then a non-erasing morphism overB which fixes
u−β .

Let us mention that(−β )-integers in the Ito-Sadahiro casel = − β
β+1 are also subject of [8]. For

β with eventually periodicd(l), Steiner finds a coding ofZ−β by a finite alphabet and shows, using
only the properties of the(−β )-transformation, that the word is a fixed point of a non-trivial morphism.
Our approach is of a combinatorial nature, follows a similaridea as in [1] and shows existence of an
antimorphism for any baseβ .

To illustrate the results, let us conclude this contribution by an example.

Example 14. Let β be the real root of x3−3x2−4x−2 (β Pisot,≈ 4.3) and l=−1
2. The admissibility

condition gives us for any admissible digit string(xi)i≥0:

201ω �alt xixi+1xi+2 · · · ≺alt 201
ω

for all x ≥ 0.

We obtain
min(0) = ε , min(1) = 2, min(2) = 20



Daniel Dombek 121

and
min(2k+1) = 20(11)k−10, min(2k+2) = 20(11)k for k≥ 1.

Clearly it holds thatmax(i) = min(i) for all i ∈ N.
Theorem 11 gives us the following distances withinZ−β :

∆0 = 1, ∆1 =−1+
4
β
+

2
β 2 , and ∆2k = 1− 2

β
− 2

β 2 , ∆2k+1 = 1+
2
β
+

2
β 2 for k≥ 1.

Finally, the antimorphismΦ : N∗ → N∗ is given by

0→ 02102 ,

1→ 2,

2→ 3,

and for k≥ 1

2k+1→ 0210(2k+2)0102 ,

2k+2→ 2k+3.

It can be easily seen that a projection fromN to a finite alphabet exists and a final antimorphismϕ :
{0,1,2,3}∗ →{0,1,2,3}∗ is of the form

0→ 02102,

1→ 2,

2→ 3,

3→ 021020102.
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