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1 Introduction

This contribution is devoted to the study of positional nuatien systems with negative base introduced
by Ito and Sadahiro in 2009, callé¢d 3)-expansions. We give an admissibility criterion for moreel
case of(—pB)-expansions and discuss the properties of the sét-@f)-integers, denoted b_z. We
give a description of distances withifx 3 and show that this set can be coded by an infinite word over
an infinite alphabet, which is a fixed point of a non-erasing-trivial morphism.

2 Numeration with negative base

In 1957, Rényi introduced positional numeration systermhwibsitive real bas@ > 1 (seel[7]).The
B-expansion ok < [0,1) is defined as the digit strindg (x) = 0 e XXXz - - -, where

X =BTy (9] and Tg(x) = pBx—|Bx|.

It holds that X X X
B TR

Note that this definition can be naturally extended so thgtraal number has a uniqy&-expansion,
which is usually denoted(X) = XXk—1---X1Xo ® X_1X_2---, Wheree, the fractional point, separates
negative and non-negative powers/fin analogy with standard integer base, theZgof B-integers
is defined as the set of real numbers having@rexpansion of the forng (x) = XX—1- - - X1%o  0%.

(—B)-expansions, a numeration system built in analogy with R@agxpansions, was introduced
in 2009 by Ito and Sadahiro (se€ [5]). They gave a lexicogcaptiterion for deciding whether some
digit string is the(—f)-expansion of somg and also described several properties-6f3)-expansions
concerning symbolic dynamics and ergodic theory. Notedigatmical properties af—f3)-expansions
were also studied by Frougny and Lai (see [4]). We take trextljbof defining(—f)-expansions in a
more general way, while an analogy with positive base nutioeraan still be easily seen.

Definition 1. Let—f < —1be a base and consider(l,| + 1), where I€ R is arbitrary fixed. We define
the (—B)-expansion of x as the digit stringx) = x1x2X3- - -, with digits x given by

X =[BT x) 1], (1)
where T(x) stands for the generalise@-f3)-transformation
T:[,I+1)—[I,14+21), T(X)=-Bx—|-Bx—I]. 2
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It holds that X1 %o X3
X=—F+—5+—03
B (-B)? (-B)?
and the fractional point is again used in the notatabix) = Oe X1 XoX3- - - .
The set of digits used if—f3)-expansions of numbers (in the latter referred to as theablkphof

(—pB)-expansions) depends on the choicé ahd can be calculated directly frol (1) as

o g1 = {1 B+1)—Bl..... |- (B+1)]}. 3)

We may demand that the numeration system possesses vatipastigs. Let us summarise the most
natural ones:

e The most common requirement is that zero is an allowed digitsee that & .<7_g | is equivalent
to 0€ [I,I + 1) and consequently< (—1,0]. Note that this impliesl(0) = 0e 0“.

e We may require that/ g, ={0,1,..., |B]}. Thisis equivalent to the choide= (— Lgﬂl,—%].

e So far, (—f)-expansions were defined only for numbers frinph 4+ 1). In Rényi numeration,
the B-expansion of arbitrarx € R (expansions of negative numbers differ only by"“sign) is
defined aslg(X) = XX—1-+-X1Xo ® X_1X_2-- -, Wherek € N satisfiesﬁxg € [I,1+1) anddg (EXE) =
OeXiXk—_1X—2---. The same procedure does not work(fei3 )-expansions in general. A necessary
and sufficient condition for the existence of unigl(&) for all x e R is that—% LI+1) C[l,I+1).

This is equivalent to the choidee (— %,—ﬁ]. Note that this choice is disjoint with the
previous one, so one cannot have uniqueness Bf-expansions and non-negative digits bounded

by B at the same time.

Let us stress that in the following we will need 0 to be a valigitd Therefore, we shall always
assumé < (—1,0]. Note that we may easily derive that the digits in the alphalig; | are then bounded
by [B] in modulus.

3 Admissibility

In Rényi numeration there is a natural correspondence leetwedering on real numbers and lexico-
graphic ordering on theiB-expansions. In—f)-expansions, standard lexicographic ordering is not
suitable anymore, hence a different ordering on digit giis needed.

The so-called alternate order was used in the admissibitindition by Ito and Sadahiro and it will
work also in the general case. Let us recall the definitiom.ti® strings

u,ve(%_ﬁ7|)N, U=uUpus--- and V=viVovg---

we say thatl <4t v (uis less tharv in the alternate order) ifi,(—1)™ < vin(—1)™, wherem = min{k €
N | ug # w}. Note that standard ordering between realf jh+ 1) corresponds to the alternate order
on their respectivé— f3)-expansions.

Definition 2. An infinite string xxpx3--- of integers is called —f)-admissible (or just admissible), if
there exists an x [I,| + 1) such that xxpXs - is its (—f3)-expansion, i.e. goXz - - - = d(X).

We give the criterion for —f)-admissibility (proven in2]) in a form similar to both Parry lexico-
graphic condition (seé [6]) and Ito-Sadahiro admissipitititerion (seel([5]).
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Theorem 3. ([2]) An infinite string xx»X3- - - of integers ig —B)-admissible, if and only if
lalols- - Zait XiXi+1Xi42- - <ai M1r2rz---,  forall i >1, 4)

where llolz--- =d(l) and rirorg--- =d*(1 +1) =limg_ o, d(I1 +1—¢€).
Remark 4. Ito and Sadahiro have described the admissibility conditior their numeration system

considered with & —%. This choice imply for an the alphabet of the form”_g, = {0,1,...,|B]}.

They have shown that in this case the reference strings st icondition in Theoref 3 (i.e.(ld =
l1l2l3--- and d'(I + 1) =rqror3---) are related in the following way:

rirorz--- =0lylol3---
if d(I) is not purely periodic with odd period length, and,
rrorg--- = (0|1|2 o qul(lq — 1))0)’

ifd(1) = (l1l2---1)“, where g is odd.
Remark 5. Besides Ito-Sadahiro case and the general one, we may evr@sidther interesting example,

the choice = —%, B ¢ 2Z+ 1. This leads to a numeration defined on “almost symmetriceninal
[—3,3) with symmetric alphabet

A s :HBTHJ,...,IO,L... VBTHJ}

Note that we use the notatiar-a) = a for shorter writing of negative digits. If we denote the
reference strings as usual, i.e( & ) = l1lol3--- and d*(3) =rarars-- -, the following relation can be
shown:

rirorz---=1Iills---
if d(1) is not purely periodic with odd period length, and,

Mraolfz--- = (|1|2' .- qul(lq — l)|1|2' .- qul(lq — 1))0.)’

if d(l) = (Il2---14), where g is odd.

4 (—p)-integers

We have already discussed basic propertigs-@if)-expansions and the question of admissibility of digit
strings. In the following{—)-admissibility will be used to define the set(©f3)-integers.
Let us d_efine a “value functiony. Consider a finite digit stringx_1 - - - X3Xo, theny(Xx_1, - - - X1Xp) =

SIex(—B)"
Definition 6. We call xe R a (—f3)-integer, if there exists & f3)-admissible digit string g1 - - - Xo0“
such that dx) = xXk—1- - - X1 X0 ® 0“. The set of —3)-integers is then defined as

Z_g={XxeR|x=y(a_18k_2-- a180), ak-18—2--- 2800 is (—pB)-admissible
or equivalently

Z_g=J(-B)T(0).

i>0
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Note that(—f)-expansions of real numbers are not necessarily unique.asssaid before, unique-

ness holds if and only Ife (— %, —ﬁ] . Let us demonstrate this ambiguity on the following example

Example 7. Let B be the greater root of the polynomiat x 2x— 1, i.e. B = 1++/2, and let[l,| + 1) =
[— Bg—il, ﬁ) Note that]l,| + 1) is not invariant under division by—p3).

If we want to find thg—)-expansion of number ¢ [I,I + 1), we have to find such & N that
ﬁﬁ € [I,1 + 1), compute Q(T%R) by definition and then shift the fractional point by k posigoto
the right. The problem is that, in general, different chsic# the exponent k may give differértf3)-
admissible digit strings which all represent the same numbe

Let us find possiblé¢—f)-expansions ofl. It can be shown tha{f—%; e [I,I +1) if and only if

ke N\ {0,2,4,6,8} and there are&s (—)-admissible digit strings representirig computed fronj—f3)-
expansions of%mg fork=1,3,5,7,9 respectively:

1e0“ = 1200 = 1321000 = 132221G0“ = 1322222160%.

Let us mention some straightforward observations on thpepties ofZ_p:

e Z_gis nonempty if and only if G <7 g, i.e. if and only ifl € (—1,0].
e The definition implies-BZ_g C Z_p.

e A phenomenon unseen in Rényi numeration arises, there ses eahen the set ¢f-f3)-integers
is trivial, i.e. whenZ_g = {0}. This happens if and only if both numbe%sand—% are outside of

the interval[l,| 4+ 1). This can be reformulated as

1
Z_B:{O} ~ B<—I— andﬁgm—,

and it can be seen that the strictest limitationfarises wheh = —%. This implies for any choice
of| € R:
Z_ﬁ;«é(l) and>2 = Z_BQ{O}.

e Itholds thatZ_g = Z if and only if B € N.

Remark 8. As was shown in Examp]é 7, in a completely general cage Bf-expansions, there is a
problem with ambiguity. Because of this, in the followingskall limit ourselves to the choiced [—

%, —ﬁ] Note that we allow Ito-Sadahiro cas&l—%, which also contains ambiguities, but only

in countably many cases, which can be avoided by introdugingtion of strong — f3)-admissibility.

Definition 9. Let xxox3--- € &g . We say that

X1XoX3 - - - IS strongly(—f)-admissible  if Oxjxpx3--- is (—f)-admissible

Remark 10. Note that if € (— %, —ﬁ] , the notions of strong admissibility and admissibilityreoi
cide. In the case + —%, the only numbers with non-unique expansions are thoseedbtim (— ),

which have exactly two possible expansions using digigsrlols--- and 1l1lsl3---. While both are
(—pB)-admissible, only the latter is also strondly 3)-admissible.
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In order to describe distances between adjaceift)-integers, we will study ordering of finite digit
strings in the alternate order. Denote.l#(k) the set of infinite|—3)-admissible digit strings such that
erasing a prefix of lengthyields @, i.e. fork > 0, we have

7 (K) = {ak-18k 2---a00% | ak_18k_2--- a0 is (—B)-admissiblg,
in particular.”(0) = {0“}. For a fixedk, the set” (k) is finite. Denote by Magk) the stringay_1ax_2 - - - 8o0%

which is maximal in.” (k) with respect to the alternate order and by fkvits prefix of lengthk, i.e.
Max(k) = max(k)0®. Similarly, we define Miiik) and mir(k). Thus,

Min(K) <ai r <air Max(k), for all digit stringsr € . (K).
With this notation we can give a theorem describing distamté _g valid for cases € [— %, —ﬁ] .
Note that for case= — 22 it was proven ir{].

Theorem 11. Let x< y be two consecutive—f3)-integers. Then there exist a finite string w over the
alphabets/_ g, a non-negative integer & {0,1,2,... } and a positive digit cc </_g, \ {0} such that
w(d — 1)Max(k) and waMlin (k) are strongly(—f3)-admissible strings and

x=yw(d—-1)maxk)) < y=y(wdmin(k)) for k even
x = y(wdmin(k)) < y=y(w(d—1)maxk)) for k odd

In particular, the distance y x between thesg-f3)-integers depends only on k and equals to

Ay = ‘(—[3)"+ y(min(k)) — y(max(k)) ‘ . (5)

5 CodingZ_g by an infinite word

Note that in order to get an explicit formula for distancesvirTheorem 13, knowledge of reference strings
min(k) and maxk) is necessary. These depend on both reference sttihgandd*(l +1). Concerning
the form of mir(k) and maxk) we provide the following proposition.

Proposition 12. Let3 > 1. Denote dl) = l1lol3---, d*(I +1) =rrorg---.

e min(0) = max0) = ¢,

e for k> 1 eithermin(k) = l1l2- - -l or there exists 1tk) € {0, --,k—1} such that
ll2- - (hemuo+1) min(m(k))  if k—m(k) even

min(k) =

102+ (lk—mao — L) max(m(k))  if k—m(k) odd

e for k > 1 eithermax(k) =rir,---ry or there exists fiik) € {0,---,k—1} such that

rirz-- (o —1) max(mt (k) if k—nv (k) even
max(k) =

162+ (N mgg + D) min(nf(k)) — if k—n (k) odd
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Computing mirik) and maxk) for a general choice df may lead to difficult discussion, however,
in special cases an important relation betweéh and d*(I + 1) arises and eases the computation.
Examples were given in Remailkis 4 and 5.

Let us now describe how we can code the set-08)-integers by an infinite word over the infinite
alphabetN.

Let (zn)nez be a strictly increasing sequence satisfying

=0 and Z_g={zm|neZ}.

We define a bidirectional infinite word over an infinite alpbt_g € N, which codes the set ¢f-3)-
integers. According to Theoremll11, for amg Z there exist a uniquk € N, a wordw with prefix 0 and
a letterd such that

Zns1— 70 = |y(w(d — 1) max(k)) — y(wdmin(k))|
We define the word_g = (Vi)icz by vh = k.

Theorem 13. Letv_g be the word associated with-)-integers. There exists an antimorphispn.

N* — N* such that¥ = ®? is a non-erasing non-identical morphism awdv_p) =v_p. @ is always of

the form - .
P2)=(24+1)Ry and P2 +1)=Ry1(2 +2)S41,

whereu denotes the reversal of the word u and words & depend only on j and omin(k), max(k)
with ke {j, j+1}.

The proof is based on the self-similarity @f g, i.e. —BZ_g C Z_g, and on the following idea.
Let x = y(w(d — 1)max(k)) <y = y(wdmin(k)) be two neighbours itZ_g with gapAx and suppose
only k even. If we multiply bothx andy by (—f), we get a longer gap with possibly mote 3)-
integers in between. It can be shown that betwe@y and—x there is always a gafi. 1. Hence the
description is of the formb(k) = S(k+ 1)§k, where the words, codes the distances betwegenf3)-
integers in[y(wdmin(k)0), y(wdmin(k+ 1))] and, similarly, R« encodes distances within the interval
[y(w(d — 1)max(k)0), y(w(d — 1) maxk+1))].

As it turns out, in some cases (mostly when reference stiitgls--- andrirors--- are eventually
periodic of a particular form) we can find a letter-to-lefpeojection to a finite alphab&l : N — 2 with
% C N, such thau_g =Tv_g also encodeZ_g and it is a fixed point of a an antimorphispn= o ®
over the finite alphabe®. Clearly, the square daf is then a non-erasing morphism ov&rwhich fixes
U,B.

Let us mention that—)-integers in the Ito-Sadahiro cake- —% are also subject of [8]. For
B with eventually periodiad(l), Steiner finds a coding df_g by a finite alphabet and shows, using
only the properties of thé—)-transformation, that the word is a fixed point of a non-&ivinorphism.
Our approach is of a combinatorial nature, follows a simitla as in([ll] and shows existence of an
antimorphism for any bas@.

To illustrate the results, let us conclude this contributxy an example.

Example 14. Let 3 be the real root of X— 3x? — 4x— 2 (B Pisot,~ 4.3) and | = —3. The admissibility
condition gives us for any admissible digit stritg)i>o:

2019 < XiXi11Xis2" - <a 201°  for all x > 0.

We obtain
min(0) =&, min(1l)=2, min(2) =20
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and
min(2k+ 1) = 20(11)%" 10, min(2k+2) = 20(11) fork>1.

Clearly it holds thatmax(i) = min(i) for all i € N.
Theoreni Il gives us the following distances withirg:

4 2 2 2 2 2
Aozl, Al:—1+ﬁ+p, and Azkzl—ﬁ—p, A2k+1:1+ﬁ+p fOI’kZl
Finally, the antimorphismb : N* — N* is given by
0— 0?10%,
1—2,
2—3,

and for k> 1

2k +1 — 0°10(2k + 2)01C7,
2k+2 — 2k +3.

It can be easily seen that a projection frafto a finite alphabet exists and a final antimorphigm
{0,1,2,3}* — {0,1,2,3}* is of the form

0— 0?107,
1-2,

2— 3

3 0°102016.
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