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In [7], we described the set of words that appear in the codingof smooth (resp. analytic) curves at
arbitrary small scale. The aim of this paper is to compute thecomplexity of those languages.
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1 Introduction

A smooth curveis a mapγ from a compact intervalI of the real line to the plane, which isC∞ and such
that ||γ ′(t)|| > 0 for anyt ∈ I (this last property is calledregularity). Any such curve can (and will be
considered to) be arc-length reparametrised (i.e. ∀t ∈ I , ||γ ′(t)||= 1).
We can approximate such a curve by drawing a square grid of mesh h on the plane, and look at the
sequence of squares that the curve meets. For a generic position of the grid, the curveγ does not hit any
corner and crosses the grid transversally, hence the curve passes from a square to a square that is located
eitherr ight, up, left or down of it. We record this sequence of moves and define thecutting sequenceof
the curveγ with respect to this grid as a wordw on the alphabet{r,u, l ,d} which tracks the lines of the
grid crossed by the curveγ .
The following picture shows a curveγ with cutting sequencerruuldrrrd .

h

γ

Note that since the grid can be translated, a given curve may have more than one cutting sequence for a
given meshh. Our knowledge of the curve from one of its cutting sequencesincreases when the mesh
h decreases, and when the mesh approaches 0, the local patterns of the cutting sequence play the role
of discrete tangents. Such words are calledtangent words, their first properties were described in [7].
Cutting sequences associated to straight segments are known to be exactly thebalanced words, which
are also the finite factors of Sturmian words. It turns out that the tangent words strictly contain balanced
words, and that 2-balanced words strictly contain tangent words. The aim of this note is to count the
number of tangent words (resp. tangent analytic words) of a given length, in order to quantify those
inclusions.
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2 Tangent words

Tangent words are the finite words that appear in the cutting sequences of some smooth curve for arbitrary
small scale. More precisely, letF(γ ,G) denote the set of factors of the cutting sequence of the curveγ
with respect to the square gridG (when the curve hits a corner, the cutting sequence is not defined and
we setF(γ ,G) = /0). We define theasymptotic languageof γ by

T(γ) = limsup
mesh(G)→0

F(γ ,G) =
⋂

ε>0

⋃

mesh(G)≤ε
F(γ ,G).

More generally, whenX is a set of curves, let us denote byT(X) the set
⋃

γ∈X T(γ). WhenX is the set
of smooth curves, we denoteT(X) by T∞, and call its elementstangent words. WhenX is the set of
analytic curves, we denoteT(X) by Tω , and call its elementsanalytic tangent words. The two languages
T∞ andTω are factorial and extendable.

For the sake of simplicity, we will focus on curves going right and up,i.e. smooth curves such that
both coordinates ofγ ′(t) are positive for anyt. Let us renamer andu by 0 and 1 respectively to stick to
the usual notation about binary words.

The following results are proved in [7].

2.1 Combinatorial characterisation (desubstitution)

Balanced words are know to have a hierarchical structure, where the morphismsσ0 = (0 7→ 0,1 7→ 10)
andσ1 = (0 7→ 01,1 7→ 1) play a crucial role [8] [5]. The same renormalisation applies to tangent words.
Given a finite wordw, we can “desubstitute” it by

• removing one 0 per run of 0 if 11 does not appear inw, or

• removing one 1 per run of 1 if 00 does not appear inw.

This desubstitution map (denoted byδ ) consists in removing one letter per run of the non-isolatedletter.
An accelerated version of this desubstitution consists in removing a run equal to the length of the shortest
inner run from any run of the non-isolated letter (includingpossible leading and trailing runs even if they
have shorter length).
If we repeat this process as much as possible, we get aderivated worddenoted byd(w). The wordw is
balanced if, and only if,d(w) is the empty word, and the derivation process is related to the continued
fraction development of the slope of the associated straight segment.

A word is said to bediagonal if it is recognised by the following automaton with three states, which
are all considered as initial and accepting:

0

1

0

1

A word is said to bethin diagonalif it is diagonal and only two states are visited during its recogni-
tion.

A word is said to benon-oscillating diagonalif it is recognised by the following automaton with
eight states, which are all considered as initial and accepting:
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Proposition 1 A finite word w is tangent if, and only if, d(w) is diagonal.
A finite word w is tangent analytic if, and only if, d(w) is non-oscillating diagonal.

For example, the wordw = 100100010010010010001001000100 is tangent analytic since it can be
desubstituted as 1✚✚001✚✚0001✚✚001✚✚001✚✚001✚✚0001✚✚001✚✚0001✚✚00= 110111101101, and then✚✚110✚✚11110✚✚110✁1= 01100=
d(w), which is non-oscillating diagonal (start from the bottom left state).

2.2 Geometric characterisation

Proposition 2 A word w is tangent if, and only if, for anyε > 0, w is the cutting sequence of a smooth
curveγ which isε-close (for the C1 norm) to a straight segment (the grid is fixed).
A word w is tangent analytic if, and only if, for anyε > 0, w is the cutting sequence of a smooth curveγ
with nowhere zero curvature which isε-close (for the C1 norm) to a straight segment (the grid is fixed).

For example, the word 0110100110 is tangent and the word 1001010110 is tangent analytic:

0110100110
tangent

1001010110
tangent analytic

3 Complexity

Thecomplexityof a languageL is the map that counts, for any integern, the number of elements ofL of
lengthn. It is usually denoted bypn(L).
The complexity of the balanced wordsB was studied in [4], [6] and [1], where it was proved to be equal
to:

pn(B) = 1+
n

∑
i=1

i

∑
j=1

ϕ( j) = 1+
n

∑
i=1

(n− i +1)ϕ(i) ,

whereϕ denotes the Euler totient function:ϕ(n) = card{k ≤ n | gcd(k,n) = 1}.
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To compute the complexity ofT∞ and Tω , we will use the tools introduced by Julien Cassaigne us-
ing bispecial factors [3]. They have been used in the contextof billiards in [2]. LetL be a factorial and
extendable language on the alphabet{0,1}. A word w in L is said to bebispecialif 0w, 1w, w0, w1 are
in L. A bispecial factorw is called

• weak bispecialif card{(a,b) ∈ {0,1}2 | awb∈ L}= 2,

• ordinary bispecialif card{(a,b) ∈ {0,1}2 | awb∈ L}= 3,

• strong bispecialif card{(a,b) ∈ {0,1}2 | awb∈ L}= 4.

Let wbn(L) (resp. sbn(L)) denote the number of weak (resp. strong) bispecial factorsof lengthn in L.
Let sn(L) denote the first differencepn+1(L)− pn(L). We have:

sn+1(L)−sn(L) = sbn(L)−wbn(L) .

Hence, by summing twice, ifL is nontrivial, we have:

pn(L) = 1+n+
n−1

∑
i=0

i−1

∑
j=0

(sbj(L)−wbj(L)) .

Let us first describe the combinatorial structure of bispecial factors inT∞. Let w be a bispecial factor. If
w is not diagonal, then it can be desubstituted (in a single way) andδ (w) is a bispecial factor of the same
kind. Otherwise, ifw is thin diagonal, then it is strong or ordinary bispecial depending on the parity of
its length. Otherwise,w is diagonal and the three states are visited during its recognition: w is strong
bispecial. Hence, there is no weak bispecial factor inT∞. This also holds forTω .

The geometric characterisation of tangent (resp. tangent analytic) words is convenient to describe and
count the strong bispecial factors. We can visualise the strong bispecial factors as follows. Pick a seg-
ment from(0,0) to (p,q) ∈ Z

2
>0.

If there is no integer point on the way (which happens precisely when gcd(p,q) = 1), the coding of the
corresponding open interval is a bispecial factor of lengthp+ q− 2 in bothT∞ andTω . Those words
are also the bispecial factors for balanced words. There areϕ(n+ 2) such words of lengthn, this the
geometrical meaning of Lipatov’s formula [4].

1

1

1

1

Balanced bispecial factors of length 8



156 The complexity of tangent words

Otherwise, there arek≥1 points one the way. For tangent analytic words, each such segment corresponds
to two bispecial factors of lengthp+q−2: one bending above thek points, another bending under thek
points. There are 2(n+2−ϕ(n+2)) such words of lengthn.

+

1

1

1

1

2

2
2

2

2

Tangent analytic bispecial factors of length 8

For tangent words, each such segment corresponds to 2k bispecial factors of lengthp+ q− 2 corre-
sponding to all the possibilities of slaloming around thek integer points on the way. Hence, there are

∑
d|n+2
d6=1

ϕ(n+2)2(n+2)/d−1 strong bispecial factors of lengthn in T∞.

20

20

20

20

21

21

21

21

24

Tangent bispecial factors of length 8

Proposition 3 We have:

pn(T
ω) = 1+n+

n

∑
i=1

i

∑
j=2

(2 j −ϕ( j)−1)

pn(T
∞) = 1+n+

1
2

n

∑
i=1

i

∑
j=2

∑
d| j
d6=1

ϕ( j)2 j/d
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4 Conclusion

Let us recall that a wordw is k-balancedif:

∀u,v∈ Fact(w) |u|= |v| ⇒ ||u|1−|v|1| ≤ k .

Each class of words is strictly included in the next one:

• 1-balanced words (digital straight segments)

• tangent analytic words

• tangent words

• 2-balanced words

The complexity of the first two classes, is cubical whereas the complexity of the last two classes is
exponential. It can be shown that analytic tangent words canbe written as a concatenation of two 1-
balanced words. What is the gap between tangent words and 2-balanced words ?
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[3] Julien Cassaigne (1997):Complexit́e et facteurs sṕeciaux. Bull. Belg. Math. Soc. Simon Stevin4(1), pp.
67–88. Available athttp://projecteuclid.org/getRecord?id=euclid.bbms/1105730624. Journées
Montoises (Mons, 1994).

[4] E. P. Lipatov (1982):A classification of binary collections and properties of homogeneity classes. Problemy
Kibernet.(39), pp. 67–84.

[5] M. Lothaire (2002):Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications90,
Cambridge University Press, Cambridge. Chapter 3,Sturmian Words(by Jean Berstel and Patrice Séébold).
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