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We develop new polynomial methods for studying systems afiveguations. We use them to im-
prove some earlier results and to analyze how sizes of sgstémord equations satisfying certain
independence properties depend on the lengths of the egeaffhese methods give the first non-
trivial upper bounds for the sizes of the systems.

1 Introduction

Word equations are a fundamental part of combinatorics omlsysee e.g.[ [20] of [2] for a general
reference on these subjects. One of the basic results iélogyt of word equations is that a nontrivial
equation causes a defect effect. In other words vifords satisfy a nontrivial relation, then they can be
represented as productsrof- 1 words. Not much is known about the additional restrictioagsed by
several independent relations [9].

In fact, even the following simple question, formulatedcealtty in [3], is still unanswered: how large
can an independent system of word equations on three unleioeThe largest known examples consist
of three equations. The only known upper bound comes fronkttirenfeucht Compactness Property,
proved in [1] and independently inl[8]: an independent systannot be infinite. This question can be
obviously asked also in the caserof 3 unknowns. Then there are independent systems ofXia®)
[16]. Some results concerning independent systems on timieewns can be found in[11],/[5] and [6],
but the open problem seems to be very difficult to approach euitrent techniques.

There are many variations of the above question: we may studyhe free semigroup, i.e. require
thath(x) # € for every solutiorh and unknowrx, or examine only the systems having a solution of rank
n— 1, or study chains of solution sets instead of independestien)s. See e.d. [LOLLI[9L.][4] and [17].

In this article we will try to use polynomials to study someegtions related to systems of word
equations. Algebraic techniques have been used beford, motably in the proof of Ehrenfeucht’s
conjecture, which is based on Hilbert’s Basis Theorem. Hewneghe way in which we use polynomials
is quite different and allows us to apply linear algebra ®phoblems.

One of the main contributions of this article is the develepimof new methods for attacking prob-
lems on word equations. This is done in Sectidns 3[and 5. @tmributions include simplified proofs
and generalizations for old results in Sddt. 4 and in the érkot.[5, and studying maximal sizes of
independent systems of equations in Sett. 6. Thus the coomdetween word equations and linear
algebra is not only theoretically interesting, but is alkovgn to be very useful at establishing simple-
looking results that have been previously unknown, or tlathad only very complicated proofs. In

addition to the results of the paper, we believe that thenigcies may be useful in further analysis of
word equations.
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Now we give a brief overview of the paper. First, in S¢¢t. 2 \wértk a way to transform words into
polynomials and prove some basic results using these polate

In Sect[ B we prove that if the lengths of the unknowns are fittezh there is a connection between
the ranks of solutions of a system of equations and the raalceftain polynomial matrix. This theorem
is very important for all the later results.

Sectior 4 contains small generalizations of two earlienltesThese are nice examples of the meth-
ods developed in Sedtl 3 and have independent intereshdyuaite not important for the later sections.

In Sect.[ we analyze the results of Sddt. 3, when the lendttieeainknowns are not fixed. For
every solution these lengths form ardimensional vector, called tHength typeof the solution. We
prove that the length types of all solutions of ramk 1 of a pair of equations are covered by a finite
union of (n— 1)-dimensional subspaces, if the equations are not equivaiesolutions of rank— 1.
This means that the solution sets of pairs of equations a@nre sense more structured than the solution
sets of single equations. This theorem is the key to provmegrémaining results. We conclude Sect.
by proving a theorem about unbalanced equations. This giveonsiderably simpler reproof and a
generalization of a result in [11]

Finally, in Sect.[6 we return to the question about sizes défrendent systems. There is a trivial
bound for the size of a system depending on the length of tgekt equation, because there are only
exponentially many equations of a fixed length. We prove itiaie system is independent even when
considering only solutions of rank— 1, then there is an upper bound for the size of the system daypen
quadratically on the length of the shortest equation. Efengh it does not give a fixed bound even in
the case of three unknowns, it is a first result of its type —-chespening, we hope, a new avenue for
future research.

2 Basic Theorems

Let |w| be the length of a word and |w|, be the number of occurrences of a letéan w. We use the
notationu <\, if uis a prefix ofv. We denote the set of nonnegative integerfpynd the set of positive
integers byN;. The empty word is denoted gy

In this section we give proofs for some well-known resultbe3e serve as examples of the polyno-
mial methods used. Even though the standard proofs of thes®raple, we hope that the proofs given
here illustrate how properties of words can be formulatati@oved in terms of polynomials.

LetZ c N; be an alphabet of numbers. For awaere- ag...a, 1 € 2" we define a polynomial

Pv=ap+aiXl+ - +ap 1 X" 1.

Now w — R, is an injective mapping from words to polynomials (here wechthe assumption @ ).
If wi,...,wm € Z*, then

Py = P, + szx\Wll I PWmX|W1---Wm—1|. 1)
If we X andk € Ny, then
kw1
Pue =R 1

The polynomiaR, can be viewed as a characteristic polynomial of the wartle could also replace
X with a suitable numbdv and get a number whose revelsary representation is. Or we could let the
coefficients ofR, be from some other commutative ring thAnSimilar ideas have been used to analyze
words in many places, see e.q.1[19],][23] and [15].
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Example2.1. If w= 1212, therRy = 1+ 2X + X2+ 2X3.
A word w is primitive, if it is not of the formu* for anyk > 1. If w= u andu is primitive, thenu is
a primitive rootof w.

Lemma2.2. If wis primitive, then R is not divisible by any polynomial of the forf™ — 1) /(X" — 1),
where n< |w| is a divisor of|w].

Proof. If By is divisible by(X™ —1)/(X"— 1), then there are numbess, ..., a,_1 such that

XW—1

s = (Bt aX o an XM (L X X,

Ry= (a0 +a X'+ +a, 1 X" )

sow = (ag...an_1)"/". 0

The next two theorems are among the most basic and well-knesuits in combinatorics on words
(except for item[(#) of Theorem 2.4).

Theorem 2.3. Every nonempty word has a unique primitive root.
Proof. Letu™ = V", whereu andyv are primitive. We need to show that= v. We have

Xmiul 9 XM —1
Puixlu‘ — 1 = Pum = P\/n = PV7X|V‘ — 1 .

Becausen|u| = n|v|, we getP,(XIV — 1) = R,(X Y —1). If d = ged(|ul, |v|), then gedX ¥ —1,XM —1) =
X9 — 1. ThusP, must be divisible by XYl — 1) /(X4 — 1) andR, must be divisible byXM — 1) /(X9 —1).
By Lemmd 2.2, botlu andv can be primitive only ifiul =d = |v|. O

The primitive root of a wordv € Z* is denoted by (w).
Theorem 2.4. For u,ve =T, the following are equivalent:

1. p(u) =p(v),

2. ifU,V e {u,v}*and|U| = |V|, thenU=V,

3. uand v satisfy a nontrivial relation,

4. R/(XM 1) =R/(XM-1).

Proof. (@) = @): U = p(u)VI/1PWI = p(u)VI/IPWI =

@) = @): Clear.
@) = @): Letuy...un=Vi...Vn, Whereu;,v; € {u,v}. Now
R R
0=Py. .un—PRu.v, = = 1p— XM — lp
for some polynomiap. If m+ nor u; # v; for somei, thenp # 0, and thu$, /(XY — 1) = R,/ (XM —1).
@) = (@): We haveP,, = Py, souM = vl andp(u) = p(u¥) = p(Vl¥) = p(v). O

Similarly, polynomials can be used to give a simple prooftha theorem of Fine and Wilf. In fact,
one of the original proofs ir_[7] uses power series. Algebtachniques have also been used to prove
variations of this theorem [21].

Theorem 2.5 (Fine and Wilf) If u' and v have a common prefix of lengtinl + [v| — gcd(|ul, |v|), then
p(u) = p(v).
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3 Solutionsof Fixed Length

In this section we apply polynomial techniques to word eiguat From now on, we will assume that
the unknowns are ordered ®5s. .., X, and that= is the set of these unknowns.

A (coefficient-free)word equation u= v on n unknowns consists of two wordsv € =*. A solution
of this equation is any morphistn: =* — >* such that(u) = h(v). The equation igrivial, if u andv
are the same word.

The (combinatorialyank of a morphismh is the smallest numberfor which there is a sed of r
words such thati(x) € A* for every unknowrx. A morphism of rank at most one jgriodic

Leth: =" — Z* be a morphism. Thkength typeof h is the vector

L= (Jh(x)]|,---,|h(X:)|) € Ng.

This length type. determines a morphism len=* — No, len_(w) = |h(w)|.
For a word equatiolfe : y1 ... Yk = z1...2, wherey;,z € =, a variablex € = and a length typé, let

QexL = xlen(yi.yi-1) _ xlen(z..zi-1)
X inX ZZX

Theorem 3.1. A morphism h =* — >* of length type L is a solution of an equatiort E= v if and only
if
ZQE.X,LPh(x) =0.

Xe=
Proof. Now h(u) = h(v) if and only if B, = By, and the polynomiaPk,, — Py, can be written as
¥ xe= Qe xLPhx by (D). O

Example3.2. Let=={x,y,z}, E : xyz=zxyandL = (1,1,2). Now
Qext=1-X% Qe =X-X°  Qez=X*-1
If his the morphism defined Hy(x) = 1, h(y) = 2 andh(z) = 12, thenh is a solution ofE and
Qe.xPhix + QeyPhy) + QeztPhg = (1-X%) - 1+ (X = X%) - 2+ (X*~1)(1+2X) = 0.

A morphismg : =* — =* is anelementary transformatigrif there arex,y € = so thatg(y) € {xy,x}
and@(z) = zfor ze =~ {y}. If @(y) = xy, theng is regular, and if p(y) = x, theng is singular. The
next lemma follows immediately from results in [20].

Lemma 3.3. Every solution h of an equation E has a factorizatior-10 o ¢ o a, wherea (x) € {x,&}
forallxe =, = @gno---o @, everyq is an elementary transformation amgb a is a solution of E. If
o (x) = € for s unknowns x and t of thg are singular, then the rank @o a is n—s—t.

Lemma3.4. Let E: u=v be an equation on n unknowns. Let®* — >* be a solution of length type L
that has rank r. There is an r-dimensional subspace Q'b$uch that Lc V but those length types of the
solutions of E of rank r that are in V are not covered by anydinihion of(r — 1)-dimensional spaces.

Proof. Leth=08o@gno---o@oa asin Lemma3i3. Lefy = gxo---o@oa. Nowgo fy, is a solution
of E for every morphisng: =* — Z*. The length type ofjo fr, is

_;lg(Xa)l'(Ifm(Xl)lm---,lfm(Xn)lm) (2)
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To prove the theorem, we need to show that at lea$the vectors in this sum are linearly independent.
Let Ac be then x nmatrix (| fu(x)[x; ). If there ares unknownsx such thatr (x) = €, then the rank of

Apisn—s. If ¢ is regular, then the matriRy is obtained fromA,_1 by adding one of the columns to

another column, so the ranks of these matrices are equglidfsingular, them is obtained fromA,_;

by adding one of the columns to another column and settingesmstumn to zero, so the rank of the

matrix is decreased by at most onet &ff the @ are singular, then the rank 8§, is at leasn—s—t. The

rank of f,isn—s—t, sor < n—s—t and at least of the columns ofA,, are linearly independent. O

Lemma 3.5. Let E: u=v be an equation and h=" — %* be a solution of length type L that has rank
r. There are morphismsyf: =* — =* and g, : =* — X* and polynomials # such that the following
conditions hold:

1. h=gmo fmn,

2. fmis asolution of E,

3. Rgotmx) = X PijPyx) forall i, j, if g : =* — 2* is a morphism of the same length type as g
4. r of the vectori plj,...,pn,), where j=1,...,n, are linearly independent.

Proof. Let fi be as in the proof of Lemnia 3.4 and tgtbe such thah = gy o fx. For everyk, there are
polynomialspij so thath ) ZJ 1 Pijk Py foralli € {1,...,n} (pij “encodes” the positions of the
word gk(X;j) in h(x;)). Let Bk be then x n matrlx (pij)- The matrika+1 is obtained fronBy by adding
one of the columns to another column, and multiplying somersn with a polynomial. Like in Lemma
[3.4, we conclude that at least- s—t of the columns oB,, are linearly independent amd< n—s—t. If
we letpij = pijm, then the four conditions hold. O

With the help of these lemmas, we are going to analyze solsittcd some fixed length type. Fun-
damental solutions (which were implicitly present in theypous lemmas, seé [20]) have been used in
connection with fixed lengths also in [13] and [12].

Theorem 3.6. LetE,...,En be a system of equations on n unknowns and lefNg. Let qj = Qe x.L-

If the system has a solution of length type L that has rankem ttine rank of the nx n matrix () is
at most n—r. If the rank of the matrix is 1, at most one component of L ie z2ed the equations are
nontrivial, then they have the same solutions of length kype

Proof. Leth be a solution of length typke that has rank. If r = 1, the first claim follows from Theorem

3.1, so assume that> 1. LetE be an equation that has the same nonperiodic solutions ayshem.

We will use Lemmd_3]5 for this equation. Hixand letg: =* — Z* be the morphism determined by
g(x) = 109m()|1=1 andg(x;) = 019Xl for all i # k (We assumed earlier that0%, but it does not matter

here). Thergo fr is a solution of every, Py, (x zj 1 Pij Py and
0= ZlQE| XL Z Pij Py(x)) ZlQE| XL Pik
for all | by Theorem 3]1. Thus the vectaipa;j,..., pnj) are solutions of the linear system of equations

determined by the matrifg;j). Because at leastof these vectors are linearly independent, the rank of
the matrix is at most —r.

If at most one component df is zero and the equations are nontrivial, then all rows ofntlagrix
are nonzero. If also the rank of the matrix is 1, then all rovesraultiples of each other and the second
claim follows by Theorerh 3]1. O
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4 Applications

The graph of a system of word equations is the graph, wheris the set of vertices and there is an
edge between andy, if one of the equations in the system is of the faxm- =y---. The following
well-known theorem can be proved with the help of Thedrerh 3.6

Theorem 4.1 (Graph Lemma) Consider a system of equations whose graph has r connectagozo
nents. If h is a solution of this system anih # € for all i, then h has rank at most r.

Proof. We can assume that the connected components are

{Xla---7Xi2—1}a{xi27"'7Xi3—1}a"'7{xir7'"7X|"I}

and the equations are

Xj"':ij"'>
wherej € {1,...,n} ~{1,ip,...,i;} andk; < j. Letq;j be as in Theoreiin 3.6. If we remove the columns
1,is,...,ir from the(n—r) x n matrix (c; ), we obtain a square matr, where the diagonal elements

are not divisible byX, but all elements above the diagonal are divisibleXbyrhis means that dg¥l) is
not divisible byX, so detM) # 0. Thus the rank of the matrifq;; ) is n—r andh has rank at most by
Theoreni 3.B. O

The next theorem generalizes a result from [5] for more thaget unknowns.

Theorem 4.2. If a pair of nontrivial equations on n unknowns has a solutfoof rank n— 1, where

no two of the unknowns commute, then there is a numbelf such that the equations are of the form
k

Xp+or = XoXg+ - .

Proof. By Theoreni 4.11, the equations must be of the fagm - = x---. Let them be
X1uy- - - = XoVZ- - - and )(:I_u’y’...:)(2\/2’...7

whereu,v,u,V € {x;,%}* andy,zy,Z € {xs,...,%}. We can assume that= x3 and |h(xpv)| <
[h(xqu)|, [h(xaU')[,|h(x2V')|. If it would be |h(xiu)| = |h(xzv)|, thenh(x;) and h(x;) would commute,
so|h(xiu)| > |h(xzv)|. If v would containx;, thenh(x;) andh(xz) would commute by Theorem 2.5, so
v=x5 ' for somek > 1.

Let L be the length type ofi and letq;; be as in Theorerh 3.6. By Theorém3.6, the rank of the
matrix (gjj) must be 1 and thug 2023 — 013022 = 0. The term ofgyatp; of the lowest degree iX/0%)!,
The same must hold fay20ps, and thus the term adps of the lowest degree must bex!"C9I. This
means thath(xV')| = [h(x§)| < |h(xU)| andZ = x3. As above, we conclude thit(xV')| < |h(x.U)],

V cannot contain andv' = x5 2. O

It was proved in[[18] that if _ _ ‘ ‘
SOULSL- .. USm = toVits ... Vitn

holds form+ n+ 3 consecutive values of then it holds for ali. By using similar ideas as in Theorem
[3.6, we improve this bound tm+ n and prove that the values do not need to be consecutive. |n [18
it was also stated that the arithmetization and matrix tegles in [24] would give a simpler proof of a
weaker result. Similar questions have been studied in [dd here are relations to independent systems
[22].
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Theorem 4.3. Letmn>1,s;,t; € * and y,vj € 7. LetU = sou}s; ... U smand V = tovity . .. Vitn. If
U; =V, holds for m+ n values of i, then it holds for all i.

Proof. The equatiot; =V, is equivalent withR,, — R, = 0. This equation can be written as

m . .
ijl|u1...uj\ + kaI|V1...Vk| =0, (3)
% &

wherey;, z, are some polynomials, which do not depend candK is the set of thos& € {0,...n} for
which |v1...v| is not any of the numbetsl; ... u;| (j =0,...,m). If U;, =V, andU;, =V, then

(i1~ i2) U1 U] = [Uiy| = Uiy = Viy | — V| = (i~ i2) Vi Val-

Thus|ug...up| = |v1...vy| and the size oK is at mostn— 1. If (3) holds form+1+#K < m+n
values ofi, it can be viewed as a system of equations, wiygrg are unknowns. The coefficients of
this system form a generalized Vandermonde matrix, whosmd@ant is nonzero, so the system has a
unique solutiory; = z. = 0 for all j,k, (3) holds for alli andU; =V for all i. O

5 Setsof Solutions

Now we analyze how the polynomial@e x| behave whe is not fixed. Let
M ={ X+ +aXn|ag,...,a0 € No} CZ[Xy,..., Xn]

be the additive monoid of linear homogeneous polynomiath monnegative integer coefficients on the
variablesX, ..., X,. Themonoid ringof .# overZ is the ring formed by expressions of the form

alxpl + ,,,_,_akxpk7

whereg € Z andp; € ., and the addition and multiplication of these generalizelgqpmials is defined

in a natural way. This ring is denoted BJX;.#]. If L € Z", then the value of a polynomigl € .# at
the point(Xy,...X,) = L is denoted byp(L), and the polynomial we get by making this substitution in
se Z[X;.#] is denoted bys(L).

The ringZ[X;.# is isomorphic to the rin@.[Y1,...,Y,] of polynomials om variables. The isomor-
phism is given byx* — Y;. However, the generalized polynomials, where the expenanet in.#, are
suitable for our purposes.

If & <bfori=1,...,n, then we use the notation

Xy + -+ anXn 2 biXy+ -+ bnXn.

If p,ge .# andp =< q, thenp(L) < q(L) for all L € Nj.
For an equatiof : X;, ... %, = X, ...Xj, we define

Sex= Y X4 o 5 OXRT e e ZiX;).

X =X Xj, =X

Now St x(L) = Qg xL. Theoreni 3]l can be formulated in terms of the generaliz§thpmials S .
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Theorem 5.1. A morphism h =* — Z* of length type L is a solution of an equation E if and only if

Z SE.X(L)H'](X) =0.

Xe=

Example5.2. Let E : Xy XoX3 = XaX1X2. Now
S =1-X0, S = XU X g =X

Thelengthof an equatiorE : u=vis |[E| = |uv].

Theorem 5.3. Let E;, E;, be a pair of nontrivial equations on n unknowns that don’'tdnéive same sets
of solutions of rank A 1. The length types of solutions of the pair of rank h are covered by a union
of |[E1|? (n— 1)-dimensional subspaces @f. If Vi, ..., Vi, is a minimal such cover and £ V; for some
i, then B and B have the same solutions of length type L and rarkin

Proof. Letsj = &, x fori=1,2andj=1,...,n. If all 2 x 2 minors of the 2 n matrix (sj) are zero,
then for all length types& of solutions of rankn — 1 the rank of the matriXg;; ) in Theoreni 3.6 is 1 and
E; andE; are equivalent, which is a contradiction. Thus therekakresuch thaty = s1kSy — Sy Sk # O.
The generalized polynomig), can be written as

c bi A Gi

wherep;,q; € . andp; # q; for alli, j. If L is a length type of a solution of ramk- 1, thenM = N and
L must be a solution of the system of equations

pi=0oiy  (i=1,...,M) (4)

for some permutatioo. For everyo the equations determine an at m@st- 1)-dimensional space.
Let

=Y XV Y XH, s =FXO-FXA sy =YX -FXG, sy= XY X,
| | | | | | | |

wherea; < a1, & =< a_ 4, and so on. The polynomialg form a subset of the polynomialg + b,
a+b,c +dj andc] +d; (the reason that they form just a subset is that we assysngdq; for all
i,j). For anyi, let j; be the smallest index such thata; 4 bj = pm for somem. Now for everyi, j,m
such thatg + b; = pm we havea; + bj, < pm. We can do a similar thing for the polynomiads b and
c,d/ andc/,d;. In this way we obtain at mosE;| polynomialsp; such that for any the value of one
of these polynomials is minimal among the valygd.). Similarly we obtain at mosfE; | “minimal”
polynomialsg;. It is sufficient to consider only those systemk (4), where oithe equations is formed
by these “minimal” polynomialg;,g;. There are at mosE; |2 possible pairs of such polynomials, and
each of them determines &an— 1)-dimensional space.

Consider the second claim. Because the cover is minimaie tlsea solution of rank — 1 whose
length type is inV;, but not in any othe¥;. By Lemma& 3.4, the length types of solutions of rank 1
in this space cannot be covered by a finite uniofrof 2)-dimensional spaces. Thus one of the systems
(4) must determine the spade The same holds for systems coming from all other nonzer@ gninors
of the matrix(s;j ), SOE; andE; have the same solutions of rank- 1 and length typé for all L € V; by
Theoreni 3.B. O
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The following example illustrates the proof of Theoreml 5I18gives a pair of equations on three
unknowns, where the required number of subspaces is two.oWetknow any example, where more
spaces would be necessary.

Example 5.4. Consider the equations; : X;XoX3 = XaX1X2 andE; : X1XoX1X3XoX3 = X3X1Xa3XoX1 X2 and the
generalized polynomial

S :SEl,XlsEz,Xa - SEl«,XSSEZ«,Xl

:X2X1+X2 + x2X1+2X2+X3 + XX1+2X3 + XX1+X2+X3 _ X2X1+X2+X3 _ XX1+X3 _ X2X1+2X2 _ )(X1+X2+2X3.

If L is a length type of a nontrivial solution of the pé&i, E, thens(L) = 0. If (L) = 0, thenL must
satisfy an equatiorp) =q, Wherep S {ZX]_ + Xo, Xg + 2X3, X1 + Xo + X3} andq € {X]_ + X3,2X1 + 2X2}.
The possible relations are

X3 =0, X1+ Xo = Xs, Xo =0, X1+ 2Xo = 2X3.

If L satisfies one of the first three, thsfi.) = 0. If L satisfies the last one, thefL) # 0, except ifL = 0.
So if his a nonperiodic solution, then

()| =0 or |h(xuxz)| = |h(xs)] or |h(xz)| =O.

There are no nonperiodic solutions whix,) = &, but everyh with h(x3) = € or h(x;x2) = h(x3) is a
solution.

An equationu = v is balanced if |u|x = |v|x for every unknowrx. In [11] it was proved that if an
independent pair of equations on three unknowns has a riodjesolution, then the equations must be
balanced. With the help of Theorém5.3 we get a significamthpker proof and a generalization for this
result.

Theorem 5.5. Let E;, E;, be a pair of equations on n unknowns having a solution of rarkilnIf E1 is
not balanced, then every solution of & rank n— 1is a solution of k.

Proof. The length types of solutions &} are covered by a single— 1)-dimensional spacé. Because
the pairEy, E» has a solution of rank— 1,V is a minimal cover for the length types of the solutions of
the pair of rankn— 1. By Theorem 5J3E; andE, have the same solutions of length tylpend rank
n—1forallLeV. O

Another way to think of this result is that; is not balanced but has a solution of rank 1 that is
not a solution ok, then the paiE, E, causes a larger than minimal defect effect.

6 Independent Systems

A system of word equationg;, ..., Ey is independentif for everyi there is a morphism that is not a
solution ofE;, but is a solution of all the other equations.

A sequence of equations, ..., Eny is achain if for everyi there is a morphism that is not a solution
of E;j, but is a solution of all the preceding equations.

The question of the maximal size of an independent systempan.cOnly things that are known are
that independent systems cannot be infinite and there aensy®f sized(n*), wheren is the number
of unknowns. For a survey on these topics, seé [17].
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We study the following variation of the above question: hamgd can a sequence of equations
Ei,...,Em be, if for everyi there is a morphism of rank— 1 that is not a solution oE;, but is a
solution of all the preceding equation? We prove an uppentdaepending quadratically on the length
of the first equation. For three unknowns we get a similar ddonthe size of independent systems and
chains.

Theorem 6.1. Let E,...,Ey be nontrivial equations on n unknowns having a common swoluf rank
n— 1. For every i€ {1,...,m—1}, assume that there is a solution of the system E, E; of rank n—1

that is not a solution of & 1. If the length types of solutions of the paif, E, of rank n— 1 are covered
by a union of N(n — 1)-dimensional subspaces, thensN 4 1. In general, m< |Eg |2 + 1.

Proof. We can assume th&; is equivalent with the syster;,...,E; for all i € {1,...,m}. Let the
length types of solutions dE, of rankn— 1 be covered by thén— 1)-dimensional spaceé,...,W.
Some subset of these spaces forms a minimal cover for theéhlgmes of solutions oE3 of rankn— 1.
If this minimal cover would be the whole set, thEpandEz would have the same solutions of ramk 1
by the second part of Theordm b.3. Thus the length types afisns of E3 of rankn— 1 are covered
by someN — 1 of these spaces. We conclude inductively that the lengtistyf solutions oE; of rank
n—1 are covered by some — i + 2 of these spaces for ale {2,...,m}. It must beN —m+2 > 1, so
m < N+ 1. By the first part of Theorein 5.8} < |E1|°. ]

In Theoren{ 6.1 it is not enough to assume that the equatiasdependent and have a common
solution of rankn— 1. If the number of unknowns is not fixed, then there are atiliyr large such
systems, where the length of every equation is 10, see @fy. [1

In the case of three unknowns, Theorem 6.1 gives an upperdbdepending on the length of the
shortest equation for the size of an independent systemuztieqs, or an upper bound depending on
the length of the first equation for the size of a chain of eiqnat A better bound in Theorem 5.3 would
immediately give a better bound in the following corollary.

Corollary 6.2. If Ey,...,Enis anindependent system on three unknowns having a nodpesolution,
then m< |Ey|?+ 1. If Eq,...,En is a chain of equations on three unknowns, thest (&, |? + 5.
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