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The critical exponent of an infinite word is defined to be the supremum of the exponent of each
of its factors. Fork-automatic sequences, we show that this critical exponent is always either a
rational number or infinite, and its value is computable. This generalizes or recovers previous results
of Krieger and others. Our technique is applicable to other situations; e.g., the computation of the
optimal recurrence constant for a linearly recurrentk-automatic sequence.

1 Introduction

Let a = (a(n))n≥0 be an infinite sequence (or infinite word) over a finite alphabet ∆. We writea[i] = a(i),
and we leta[i..i +n−1] denote the factor of lengthn beginning at positioni.

If a finite wordw is expressed in the formxnx′, wheren≥ 1 andx′ is a prefix ofx, then we say that
w hasperiod xandexponent|w|/|x|. The shortest such period is calledtheperiod and the largest such
exponent is calledtheexponent. For example, the period ofalfalfa is 3 and its exponent is 7/3. The
critical exponentof an infinite worda is defined to be the supremum, over all nonempty factorsw of a,
of the exponent ofw; it is denoted byc(a). It is possible for the critical exponentc(a) to be rational,
irrational, or infinite. If it is rational, it is possible forc(a) to be attained by some finite factor ofa, or
not attained by any finite factor.

Critical exponents are an active subject of study. Here are just a few examples.
Example 1. Consider the Thue-Morse sequence

t = 0110100110010110· · · ,
defined byt[i] = the sum, modulo 2, of the digits in the binary expansion ofi. Alternatively,t is the fixed
point, starting with0, of the morphismµ defined by0→ 01 and1→ 10.

As is well-known,t contains no overlaps, that is, no factors of the formaxaxa, wherea∈ {0,1} and
x∈ {0,1}∗. On the other hand,t contains square factors such as00. It follows that the critical exponent
of t is 2, and this exponent is attained by a factor oft.
Example 2. The sequence0000 · · · clearly has a critical exponent of∞, as does any ultimately periodic
word.
Example 3. The Rudin-Shapiro sequencer= 00010010 · · · counts the number of (possibly overlapping)
occurrences of11, modulo 2, in the base-2 expansion ofn. Its critical exponent is 4 and it is attained at,
for example, the factor0000 [1].
Example 4. The sequencec = 2102012101202102012021012102012· · · , which counts the number
of 1’s between consecutive occurrences of0 in t, is well-known to be squarefree. However, sincet
contains arbitrarily large squares — for example, the squaresµn(00) — it follows thatc contains factors
of exponent arbitrarily close to 2. Thus its critical exponent is 2, but this is not attained by any finite
factor.
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Example 5. Consider the Fibonacci word

f = 0100101001001010010100100101001001· · · ,

defined to be the fixed point of the morphism0→ 01 and1→ 0. Then Mignosi and Pirillo [14] proved
that the critical exponent off is (5+

√
5)/2, an irrational number.

Example 6. In fact, every real number greater than 1 is the critical exponent of some infinite word [12],
and every real number≥ 2 is the critical exponent of some infinite binary word [8].

Krieger [9, 10, 11] showed (among other things) that if an infinite sequence is given as the fixed point
of a uniform morphism, then its critical exponent is either infinite or a rational number.

In this paper we generalize this result to the case ofk-automatic sequences. An infinite sequencea is
said to bek-automaticfor some integerk≥ 2 if it is computable by a finite automaton taking as input the
base-k representation ofn, and havinga[n] as the output associated with the last state encountered; see,
for example, [3, 7].

For example, in Figure 1, we see an automaton generating the Thue-Morse sequencet = t0t1t2 · · · =
011010011001· · · . The input isn, expressed in base 2, and the output is the number contained in the
state last reached.

0

0 1

0
1

1

Figure 1: A finite automaton generating a sequence

As is well-known, the class ofk-automatic sequences is slightly more general than the class of fixed
points of uniform morphisms; the former also includes wordsthat can be written as the image, under a
coding, of fixed points of uniform morphisms [7]. An example of a word that is 2-automatic but not the
fixed point of any uniform morphism is the Rudin-Shapiro sequencer, discussed above in Example 3.

(Since this fact does not seem to have been explicitly provedbefore, we sketch the proof. We know
thatr is 2-automatic. Ifr were the fixed point of ak-uniform morphism for somek not a power of 2, then
by Cobham’s celebrated theorem [6],r would be ultimately periodic, which it is not (since its critical
exponent is 4). So it must be the fixed point of a morphismh that is 2k-uniform for somek ≥ 1. Now
r starts00; if r = h(r) thenr starts withh(0)h(0). This meansr[2k−1] = r[2k+1−1]. But clearly the
number of occurrences of11 in 2k − 1 is one less than the number of occurrence of11 in 2k+1 − 1, a
contradiction.)

Allouche, Rampersad, and Shallit [2] proved that the question

Given a rational numberr > 1, isa r-power-free?

is recursively solvable fork-automatic sequencesa. More recently, Charlier, Rampersad, and Shallit [5]
showed that

Givena, is its critical exponent infinite?
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also has a recursive solution fork-automatic sequences.
In this paper we show, generalizing some of the results of Krieger mentioned above, that the critical

exponent of ak-automatic sequence is always either rational or infinite. Furthermore, we show that the
question

Givena, what is its critical exponent?

is recursively solvable fork-automatic sequences.

2 Two-dimensional automata

In this paper, we always assume that numbers are encoded in basek using the digits inΣk = {0,1, . . . ,k−
1}.

The canonical encodingof n is the one with no leading zeroes, and is denoted(n)k. Thus, for
example, we have(43)2 = 101011. Similarly, if w is a word overΣk, then [w]k denotes the integer
represented byw in basek. Thus[101011]2 = 43.

We will need to encode pairs of integers. We handle these by first padding the representation of the
smaller integer with leading zeroes, so it has the same length as the larger one, and then coding the pair as
a word overΣ2

k. This gives thecanonical encodingof a pair(m,n), and is denoted(m,n)k. Note that the
canonical encoding of a pair does not begin with a symbol thathas 0 in both components. For example,
the canonical representation of the pair(20,13) in base 2 is

[1,0][0,1][1,1][0,0][0,1],

where the first components spell out10100 and the second components spell out01101. Sometimes, by
abusing notation, we will write this as(10100,01101).

Given a finite wordx∈ (Σ2
k)

∗, with second component representing a number other than 0, we define
f (x) =m/n, wherem is the integer represented by the first component ofx andn is the integer represented
by the second component ofx. Without further comment we will always assume that the words we
discuss have a second component representing a nonzero number.

Usually we will assume that the base-k representation is given with the most significant digit first,
but sometimes, as in the following result, it is easier to deal with the reversed representations, where
the least significant digit appears first (and shorter representations, if necessary, are padded with trailing
zeroes). Since the class of regular languages is (effectively) closed under the mapL → LR that sends a
regular language to its reversal, this distinction is not crucial to our results, and we will not emphasize it
unduly.

Lemma 7. Letβ be a non-negative real number and define

L≤β = {x∈ (Σ2
k)

∗ : f (x)≤ β},

and analogously for the other relations such as<,=,≥,>. Then L≤β (resp., L<β , L=β , L≥β , L>β ) is
regular iff β is a rational number.

Proof. We handle only the caseL≤β , the others being similar.
Supposeβ is rational. Then we can writeβ =P/Q for integersP≥ 0, Q≥ 1. On inputx representing

a pair of integers(p,q) in the reversed base-k representation, we need to accept iffp/q≤ P/Q, that is, iff
pQ≤ qP. To do so, we simply transducep andq to pQandqPon the fly, respectively, and compare them
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digit-by-digit. Minor complications arise if the base-k expansions ofpQ andqP have different numbers
of digits. To handle this, we accept if some path ending in[0,0]i leads to an accepting condition. This
construction was already given in [2], and the details can befound there.

For the other direction, we use ordinary (most-significant-digit first) representation. Without loss
of generality, we can assume 1/k ≤ β < 1; if not, we can ensure this condition holds by modifying the
automaton, shifting one coordinate to the left or right. TakeL≤β and intersect with the (regular) language
of words whose second coordinates are of the form 10∗; then project onto the first coordinate to getL′,
a regular language overΣk. Now take the lexicographically largest word of each lengthin L′ to getL′′;
by a well-known result (e.g., [16]), this language is also regular. ButL′′ has exactly one word of each
length, so by another well-known result (e.g., [13, 15, 16]), L′′ must be a finite union of languages of the
form uv∗w. But thenβ is rational, as it is given by a number whose base-k representation is.uvvv· · · for
someu,v. �

Theorem 8. Let L⊆ (Σ2
k)

∗ be a regular language. Thensupx∈L f (x) is either infinite or rational.

Proof. We assume — in order to derive a contradiction — that

α := sup
x∈L

f (x)

is finite and irrational. LetL be accepted by a DFAM of n states.
The basic idea of the proof is simple: ifα is irrational, then we can find an elementx∈ L with f (x)

arbitrarily close toα . Using an argument like the classical pumping lemma for regular languages, we
show how to find a newx′ with f (x′)> α , a contradiction.

Define
δ = min

0≤r<kn
1≤s<kn

∣

∣

∣
α − r

s

∣

∣

∣
.

Clearlyδ > 0 sinceα is irrational.
Choosex= (p,q)k ∈ L such that

0< α − p
q
< k−(n+2)δ . (1)

Without loss of generality, we may also assume that|x| ≥ n and ify∈ L and|y|< |x| then f (y)< f (x).
Now consider the path labeledx in M. By the pumping lemma, since|x| ≥ n, we can writex= uvw

for |uv| ≤ n such thatuviw∈ L for all i ≥ 0. We now claim

Lemma 9. Exactly one of the following cases holds:
(a) We have f(uviw) = f (uvi+1w) for all i ≥ 0;
(b) We have f(uviw)< f (uvi+1w) for all i ≥ 0;
(c) We have f(uviw)> f (uvi+1w) for all i ≥ 0.

Proof. Let us extract the first and second coordinates from the wordsu,v, andw as follows:u= (u1,u2),
v= (v1,v2), andw= (w1,w2). Then

f (uvi+1w) =
[u1vi+1

1 w1]k

[u2vi+1
2 w2]k

=
([u1v1]k− [u1]k) ·ki|v1|+|w1|+[u1vi

1w1]k

([u2v2]k− [u2]k) ·ki|v2|+|w2|+[u2vi
2w2]k

.
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It follows that

f (uvi+1w)− f (uviw) =
B(AE−CD)
E(DB+E)

, (2)

wherea= |v1|= |v2| andb= |w1|= |w2| and

A = [u1v1]k− [u1]k

B = kia+b

C = [u1vi
1w1]k

D = [u2v2]k− [u2]k

E = [u2vi
2w2]k.

If [u2]k and [v2]k are both 0, then the second component ofx begins with 0. Since we are using
the canonical representation, this means the first component begins with a nonzero digit (for otherwise
the representation would begin with leading zeroes). Hencef (uviw) → ∞ as i → ∞, contradicting our
hypothesis. Therefore[u2]k(ka−1)+ [v2]k is positive, and henceD > 0. Thus the sign off (uvi+1w)−
f (uviw) is the same as the sign ofAE−CD, so it suffices to show this quantity is independent ofi.

Writing U1 = [u1]k, V1 = [v1]k, W1 = [w1]k, and similarly forU2,V2,W2, we find

A = U1 ·ka+V1−U1

C = U1 ·kia+b+V1 ·kb · kia −1
ka−1

+W1

D = U2 ·ka+V2−U2

E = U2 ·kia+b+V2 ·kb · kia −1
ka−1

+W2.

A tedious calculation gives

AE−CD= (ka−1)−1
(

(k2a(U1W2−U2W1)+ka+b(U2V1−U1V2)

+ ka(2U2W1−V2W1−2U1W2+V1W2)+kb(U1V2−U2V1)

+ U1W2+V2W1−V1W2−U2W1)
)

,

which is indeed independent ofi. �

Now if case (a) or (c) of Lemma 9 applies, thenuw is a shorter word withf (uw)≥ p/q, contradicting
our assumption thatx= uvwwas the shortest such.

Otherwise case (b) applies. Suppose
∣

∣

∣

∣

p
q
− A

D

∣

∣

∣

∣

≤ δ
2
. (3)

From (1) we have|α − p
q |< k−(n+2)δ < δ

2 and hence, combining with (3) and using the triangle inequal-
ity, we get

∣

∣

∣

∣

α − A
D

∣

∣

∣

∣

< δ
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with |A|, |D|< kn. But this contradicts the definition ofδ .
Hence

∣

∣

∣

∣

p
q
− A

D

∣

∣

∣

∣

>
δ
2
.

From the inequality of case (b) we getp
q = f (uvw) < f (uv2w). Now

q≤ k|x| = k|uvw| = k|vw|+|u| ≤ ka+b+n. (4)

Furthermore, by (2) withi = 1 we have

f (uv2w)− f (uvw) =
B(AE−CD)
E(DB+E)

=
ka+b(Aq− pD)
q(D ·ka+b+q)

>
δ
2Dqka+b

q(q+ka+bD)

=
δ
2Dka+b

q+ka+bD

≥
δ
2Dka+b

ka+b+n+ka+bD

=
δ
2

kn

D +1

≥
δ
2

kn+1

≥
δ
2

2kn

≥ k−(n+2)δ ,

so f (uv2w)> p
q +k−(n+2)δ > α , a contradiction.

This completes the proof.�

Next, we prove a decidability result.

Theorem 10. Given an automaton M accepting L, the quantityα = sup(p,q)k∈L p/q is computable.

Proof. It suffices to produce a finite setS of explicitly-computable rational numbers in whichα must
lie. For once we do this, using Lemma 7, we can intersectL with L>β for eachβ ∈ S; thenα equals the
smallestβ for which this intersection is empty.

SupposeM hasn states. We claim that we can take

S= S1 ∪ S2
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where

S1 = {p/q : 0≤ p< kn, 1≤ q< kn}

S2 =

{

[u1]k+
[v1]k
ka−1

[u2]k+
[v2]k
ka−1

: |u1v1| ≤ n, |u2v2| ≤ n, |u1|= |u2|, |v1|= |v2|= a≥ 1

}

.

There are two cases to consider:

Case 1:α = sup(p,q)k∈L p/q is achieved on somex∈ L. Without loss of generality we can assume this is
the shortest word achieving the sup.

Suppose (to get a contradiction) that|x| ≥ n. Then as in the proof of Theorem 8, we can use the
pumping lemma to writex= uvwwith |uv| ≤ n and|v| ≥ 1. If f (uw) = α , then we have found a shorter
word achieving the sup, a contradiction. Iff (uw) > f (uvw), then f (uvw) = α is not the sup. Hence
f (uw)< f (uvw). Then by Lemma 9 we must havef (uv2w)> f (uvw) = α , a contradiction.

Since the length of the word achieving the sup is at mostn, we must haveα ∈ S1.

Case 2: The sup is not achieved onL. Choose a sequencexi ∈ L with f (xi) converging strictly monoton-
ically to α , with f (xi)> f (y) for all y∈ L with |y|< |xi |, and such that eachxi is of length≥ n.

As before, use the pumping lemma to writexi = uvwwith |uv| ≤ n and|v| ≥ 1. If f (uw)≥ f (uvw) =
f (xi), then this contradicts our assumption aboutf (xi). So f (uw)< f (uvw). But then, by Lemma 9 we
have f (xi) = f (uvw) < f (uvj w) for all j ≥ 2. Now let j → ∞. Then f (uvj w) converges to

g(u,v) :=
[u1]k+

[v1]k
ka−1

[u2]k+
[v2]k
ka−1

,

whereu= (u1,u2), v= (v1,v2), anda= |v1|= |v2|. Eachuvjw lies inL, so supx∈L f (x)≥ g(u,v) for each
of theu,v considered above. On the other hand, since thexi converge toα , we see thatα must equal the
sup ofg(u,v) over allu,v corresponding to anxi . Thusα ∈ S2.

This completes the proof.�

Corollary 11. Let L be accepted by a DFA with n states. Ifp
q = supx∈L f (x) is attained by some x∈ L,

then p,q< kn. If the sup is not attained, then p,q< k2n.

3 Application to the critical exponent

We can now apply the results of the previous section to the critical exponent problem.
Theorem 12. Given a k-automatic sequence we can effectively compute itscritical exponent.

Proof. Given ak-automatic sequencea = (ai)i≥0, we can, using the techniques of [2, 5], (effectively)
create a two-dimensional DFAM accepting

L = {(p,q)k : ∃ a factor ofa of lengthq with periodp }.
To do so, on input(p,q)k, we nondeterministically choose an indexi at which a factor of lengthq begins
in a, and then verify thata[ j] = a[ j + p] for i ≤ j ≤ i +q− p−1.

Then the critical exponent ofa is supx∈L(M) f (x), which, as we have seen, is either rational or infinite.
The infinite case has already been handled in [5]. In the finitecase, Theorem 8 tells us that the critical
exponent is rational, and Theorem 10 tells us how to compute it from M. �
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Remark13. The same results also hold for some variations of the critical exponent, such as when the sup
is taken over only the factors that occur infinitely often. They also hold for the “initial critical exponent”,
where the supremum is taken over allprefixesof a given infinite word, as opposed to all factors.

Remark14. We can obtain the same results for limsupx∈L f (x) instead of supx∈L f (x). Here, to get a
contradiction, we assume thatα is the limsup, and then we construct an infinite sequence of distinct
points lying in a bounded interval> α .

Remark15. In [4] the authors studied limsupk→∞( jk/ik), where(ik, jk) are the starting and ending indices
of thek’th maximal block of letters chosen from some subalphabet∆′ in a morphic word. Our technique
also applies here if the underlying sequence isk-automatic.

4 Other applications

The results in this paper have applications to other problems.
A sequencea is said to berecurrent if every factor that occurs, occurs infinitely often. It islinearly

recurrent if there exists a constantC such that for allℓ ≥ 0, and all factorsx of lengthℓ occurring ins,
any two consecutive occurrences ofx are separated by at mostCℓ positions.

Theorem 16. It is decidable if a k-automatic sequencea is linearly recurrent. Ifa is linearly recurrent,
the optimal constant C is computable.

Proof. First, as in [5], we construct an automaton accepting the language

L = {(n, l)k : (a) there existsi ≥ 0 s. t. for all j,0≤ j < ℓ we havea[i + j] = a[i +n+ j] and

(b) there is not,0< t < n s. t. for all j,0≤ j < ℓ we havea[i + j] = a[i + t + j] }

Another way to say this is thatL consists of the base-k representation of those pairs of integers(n, ℓ)
such that (a) there is some factor of lengthℓ for which there is another occurrence at distancen and (b)
this occurrence is actually the very next occurrence.

Now from Theorem 10 we know that sup{n/ℓ : (n, ℓ)k ∈ L} is either infinite or rational. In the latter
case this sup is computable, and this gives the optimal constantC for the linear recurrence ofa.

5 Open problems

In this paper we have examined supx∈L f (x). We do not know how to extend these results to the more
general case of morphic sequences.
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