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The critical exponent of an infinite word is defined to be thpremum of the exponent of each
of its factors. Fork-automatic sequences, we show that this critical exporseatways either a
rational number or infinite, and its value is computable sTgeneralizes or recovers previous results
of Krieger and others. Our technique is applicable to otitaasons; e.g., the computation of the
optimal recurrence constant for a linearly recurdeatitomatic sequence.

1 Introduction

Leta= (a(n))n=0 be an infinite sequence (or infinite word) over a finite alphabéVe writea[i] = a(i),
and we let[i..i + n— 1] denote the factor of lengthbeginning at positiom.

If a finite wordw is expressed in the forxd'x', wheren > 1 andx is a prefix ofx, then we say that
w hasperiod xandexponeniw|/|x|. The shortest such period is calléte period and the largest such
exponent is callethe exponent. For example, the periodaaffalfa is 3 and its exponent is/3. The
critical exponeniof an infinite worda is defined to be the supremum, over all nonempty facioos a,
of the exponent ofv; it is denoted byc(a). It is possible for the critical exponenta) to be rational,
irrational, or infinite. If it is rational, it is possible far(a) to be attained by some finite factor af or
not attained by any finite factor.

Critical exponents are an active subject of study. Herelmteg few examples.
Example 1. Consider the Thue-Morse sequence

t=0110100110010110---,

defined byt[i] = the sum, modulo 2, of the digits in the binary expansion @fternatively,t is the fixed
point, starting with0, of the morphisnu defined byo — 01 and1 — 10.

As is well-known,t contains no overlaps, that is, no factors of the f@xaxa whereac {0,1} and
x € {0,1}*. On the other hand,contains square factors suchas It follows that the critical exponent
of t is 2, and this exponent is attained by a factot.of
Example 2. The sequence000--- clearly has a critical exponent of, as does any ultimately periodic
word.
Example 3. The Rudin-Shapiro sequence- 00010010--- counts the number of (possibly overlapping)
occurrences of 1, modulo 2, in the base-2 expansionrofits critical exponent is 4 and it is attained at,
for example, the facto®000 [1].
Example 4. The sequence = 2102012101202102012021012102012---, which counts the number
of 1's between consecutive occurrencesoon t, is well-known to be squarefree. However, sirice
contains arbitrarily large squares — for example, the sgjat(00) — it follows thatc contains factors
of exponent arbitrarily close to 2. Thus its critical expones 2, but this is not attained by any finite
factor.
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Example 5. Consider the Fibonacci word
f=0100101001001010010100100101001001--- ,

defined to be the fixed point of the morphi$m- 01 and1 — 0. Then Mignosi and Pirillo[[14] proved
that the critical exponent dfis (5+ +/5)/2, an irrational number.

Example 6. In fact, every real number greater than 1 is the critical eembd of some infinite word [12],
and every real number 2 is the critical exponent of some infinite binary ward [8].

Krieger [9/10[ 11] showed (among other things) that if amiitdi sequence is given as the fixed point
of a uniform morphism, then its critical exponent is eithdiriite or a rational number.

In this paper we generalize this result to the cadeafitomatic sequences. An infinite sequeade
said to bek-automaticfor some integek > 2 if it is computable by a finite automaton taking as input the
basek representation af, and havingajn| as the output associated with the last state encountered; se
for example, [[3[. 7].

For example, in Figurel 1, we see an automaton generatinghthe-Morse sequende= totity--- =
011010011001---. The input isn, expressed in base 2, and the output is the number contairtbe i
state last reached.

Figure 1: A finite automaton generating a sequence

As is well-known, the class df-automatic sequences is slightly more general than the ofdféxed
points of uniform morphisms; the former also includes wdtdg can be written as the image, under a
coding, of fixed points of uniform morphisms| [7]. An exampfeaowvord that is 2-automatic but not the
fixed point of any uniform morphism is the Rudin-Shapiro saper, discussed above in Example 3.

(Since this fact does not seem to have been explicitly privetdre, we sketch the proof. We know
thatr is 2-automatic. If were the fixed point of &uniform morphism for somk not a power of 2, then
by Cobham’s celebrated theorem [6]ywould be ultimately periodic, which it is not (since its ardl
exponent is 4). So it must be the fixed point of a morphisthat is *-uniform for somek > 1. Now
r startsoo; if r = h(r) thenr starts withh(0)h(0). This means [2€ — 1] = r[2"1 — 1]. But clearly the
number of occurrences dft in 2€— 1 is one less than the number of occurrence bin 21 —1, a
contradiction.)

Allouche, Rampersad, and Shallit [2] proved that the qoasti

Given a rational numbear> 1, isar-power-free?

is recursively solvable fok-automatic sequences More recently, Charlier, Rampersad, and Shallit [5]
showed that

Givena, is its critical exponent infinite?
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also has a recursive solution ferautomatic sequences.

In this paper we show, generalizing some of the results afgéi mentioned above, that the critical
exponent of &-automatic sequence is always either rational or infiniterttfermore, we show that the
guestion

Givena, what is its critical exponent?

is recursively solvable fok-automatic sequences.

2 Two-dimensional automata

In this paper, we always assume that numbers are encodesék bising the digits irkx = {0,1,... ,k—
1}.

The canonical encodingf n is the one with no leading zeroes, and is dendted. Thus, for
example, we havé¢43), = 101011. Similarly, if wis a word overZy, then [w]x denotes the integer
represented bw in basek. Thus[101011], = 43.

We will need to encode pairs of integers. We handle these $typgirdding the representation of the
smaller integer with leading zeroes, so it has the sameheagjthe larger one, and then coding the pair as
a word overzﬁ. This gives thecanonical encodingf a pair(m,n), and is denotedm, n)x. Note that the
canonical encoding of a pair does not begin with a symbolhhat0 in both components. For example,
the canonical representation of the p@e, 13) in base 2 is

[1,0][0,1][1, ][0, 0] 0, 1],

where the first components spell dwt100 and the second components spell @ut01. Sometimes, by
abusing notation, we will write this §20100,01101).

Given a finite wordk € (Zﬁ)*, with second component representing a number other thae @gfine
f(x) = m/n, wheremis the integer represented by the first componemtaofdn is the integer represented
by the second component &f Without further comment we will always assume that the \sone
discuss have a second component representing a nonzerenumb

Usually we will assume that the bakeaepresentation is given with the most significant digit first
but sometimes, as in the following result, it is easier tol dégth the reversed representations, where
the least significant digit appears first (and shorter rgmtagions, if necessary, are padded with trailing
zeroes). Since the class of regular languages is (effégtiglsed under the map — LR that sends a
regular language to its reversal, this distinction is natil to our results, and we will not emphasize it
unduly.

Lemma 7. LetS be a non-negative real number and define

Lep={xe (X)) : f(x) <B},

and analogously for the other relations suchas=,>,>. Then L (resp., L.g, L_g, L>pg, L) is
regular iff 3 is a rational number.

Proof. We handle only the cade g, the others being similar.

Supposes is rational. Then we can writ@ = P/Q for integersP > 0, Q > 1. On inputx representing
a pair of integergp,q) in the reversed baderepresentation, we need to acceppifi < P/Q, that is, iff
pQ < gP. To do so, we simply transdugeandq to pQ andgP on the fly, respectively, and compare them
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digit-by-digit. Minor complications arise if the bageexpansions opQ andgP have different numbers
of digits. To handle this, we accept if some path endingDif]' leads to an accepting condition. This
construction was already given [n [2], and the details cafobred there.

For the other direction, we use ordinary (most-signifiadigtt first) representation. Without loss
of generality, we can assumeKl< 8 < 1; if not, we can ensure this condition holds by modifying the
automaton, shifting one coordinate to the left or right. élakz and intersect with the (regular) language
of words whose second coordinates are of the forriy t@n project onto the first coordinate to ¢ét
a regular language ové&i;. Now take the lexicographically largest word of each lerigth’ to getL”;
by a well-known result (e.g. [16]), this language is alsgutar. ButL” has exactly one word of each
length, so by another well-known result (e.q.,/[13,[15, I6])must be a finite union of languages of the
form uv'w. But thenf is rational, as it is given by a number whose bksepresentation isuvvv- - - for
someu,v. [

U
Theorem 8. Let LC (32)* be a regular language. Thesup,, f(x) is either infinite or rational.
Proof. We assume — in order to derive a contradiction — that
o :=supf(x)
xeL

is finite and irrational. LeL be accepted by a DFM of n states.

The basic idea of the proof is simple:dfis irrational, then we can find an element L with f(X)
arbitrarily close toa. Using an argument like the classical pumping lemma for leeganguages, we
show how to find a new with f(X') > a, a contradiction.

Define .
0= min |a— —‘ .
0<r<kn S
1<s<kn
Clearly é > 0 sinceaq is irrational.
Choosex = (p,q)k € L such that
O<a-— ap <k (M2, (1)

Without loss of generality, we may also assume tRiat- nand ify € L and|y| < |x| thenf(y) < f(x).
Now consider the path labeledn M. By the pumping lemma, sindg > n, we can writex = uvw
for juv] < nsuch thauvw e L for all i > 0. We now claim

Lemma 9. Exactly one of the following cases holds:
() We have fuvw) = f(uv*iw) for alli > 0;
(b) We have fuvw) < f(uv*iw) foralli > 0;
(c) We have fuvw) > f(uv*w) for alli > 0.

Proof. Let us extract the first and second coordinates from the wordsindw as follows:u = (u, uz),
v = (v1,V2), andw = (wy,Wy). Then

_ upvitt
fuvw) = ﬁ
([ugVa]i — [ug]i) - KIVal+wal 4 [U1V':1W1]k
([uaVak — [Uz]k) - KIV2IFWal 4 Tupvhws




J. Shallit 235

It follows that

- - B(AE —CD)
+1g,n _
f(uv/ ™ w) — f(uvw) EDBLE)’ )
wherea = |v;| = |v2| andb = |wy| = |w;| and

A = [uvi]k— [ug]k
B — kia+b
C = [U]_VilW]_]k
D = [U2V?]k — [uz]k
E = [Uz\/I2W2]k.

If [uz]k and [vz] are both O, then the second componenkdfegins with 0. Since we are using
the canonical representation, this means the first compdregyins with a nonzero digit (for otherwise
the representation would begin with leading zeroes). Herfagw) — o asi — oo, contradicting our
hypothesis. Thereforgi](k? — 1) 4 [vo] is positive, and hencB > 0. Thus the sign of (uv*1w) —

f (u/w) is the same as the sign AE — CD, so it suffices to show this quantity is independent. of

Writing U1 = [ug]k, Vi = [V1]k, W = [Wa]k, and similarly forU,, Vo, Ws, we find

A = Up-k+Vvi—U;
kia —1
ka—1

— Ul' kia+b +Vlkb

C —|—W1
D = Uz-ka+V2—U2
E

kia —1
ka—1

— U2‘kia+b+V2'kb' _|_VV2

A tedious calculation gives

AE - CD = (K — 1)-1< (K23(UWs — UWh) + K¥+B(ULV; — U\Vsy)
+ K3(2U W — VoWg — 2UgWo -+ VaW) + K (U1 Va — Uo\Vy)
+ UsVe VAW — Vi —UpW) ),
which is indeed independent bf O
O

Now if case (a) or (c) of Lemnid 9 applies, thewis a shorter word witt (uw) > p/q, contradicting
our assumption that= uvwwas the shortest such.
Otherwise case (b) applies. Suppose

3)

From (1) we havéa — g\ <k (M25 < % and hence, combining withl(3) and using the triangle inequal
ity, we get

A
_Dles
a-8]<
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with |A|, |D| < k. But this contradicts the definition @f.
Hence

q D

p Al 0
5

From the inequality of case (b) we g%t: f(uvw) < f(uvPw). Now
g< k‘xl — k‘UV\M — leW‘JFM < ka+b+n. (4)

Furthermore, by (2) with= 1 we have

B(AE—CD)
E(DB+E)
k*(Ag— pD)
q(D-katb4q)
SDgke+P
a(q-+k¥PD)
nga+b
g+ ka+bpD
nga-&-b
katb+n + ka+bp

f(uvw) — f(uvw) =

v
S

Y

ol
s
+
»

o

so f(uPw) > £+ k=" > a, a contradiction.
This completes the proof.d

Next, we prove a decidability result.

Theorem 10. Given an automaton M accepting L, the quantity= SUR p.g)elL p/q is computable.

Proof. It suffices to produce a finite s&of explicitly-computable rational numbers in whichmust
lie. For once we do this, using Lemrina 7, we can interkegtth L. g for eachB € S thena equals the
smallestB for which this intersection is empty.

SupposeM hasn states. We claim that we can take

S=5US
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where
S = {p/g:0<p<k’ 1<qgq<k}

{[ul]k+ Lk
(Ui + e

There are two cases to consider:

S =

sluava| <ngjupva| <nJug | = (U i = Vo] =a > 1}-

Case 1.0 = suppg)eL p/qis achieved on somec L. Without loss of generality we can assume this is
the shortest word achieving the sup.

Suppose (to get a contradiction) tHat > n. Then as in the proof of Theorem 8, we can use the
pumping lemma to writ& = uvwwith |uvj < nand|v| > 1. If f(uw) = a, then we have found a shorter
word achieving the sup, a contradiction. fifuw) > f(uvw), then f(uvw) = a is not the sup. Hence
f(uw) < f(uvw). Then by Lemmal9 we must havéuv’w) > f(uvw) = a, a contradiction.

Since the length of the word achieving the sup is at mpgte must havex € S;.

Case 2: The sup is not achievedlanChoose a sequengec L with f(X;) converging strictly monoton-
ically to a, with f(x) > f(y) for all y € L with |y| < ||, and such that each is of length> n.

As before, use the pumping lemma to weite= uvwwith [uv] < nand|v| > 1. If f(uw) > f(uvw) =
f(x), then this contradicts our assumption abb(¥). So f (uw) < f(uvw). But then, by Lemmg]9 we
havef (x) = f(uww) < f(uviw) for all j > 2. Now letj — o. Thenf(uv/w) converges to

(Ui + e

g(u,V) 1= ———,
(Ui + 2

whereu = (ug,Up), V= (v1,V2), anda = |vi| = |v»|. Eachuviwlies inL, so sug_, f(x) > g(u,v) for each
of theu, v considered above. On the other hand, sincestltenverge tax, we see thatr must equal the
sup ofg(u,v) over allu,v corresponding to ar. Thusa € S,.

This completes the proof.[]

O

Corollary 11. Let L be accepted by a DFA with n states.glf: sup,, f(X) is attained by some % L,
then pq < k". If the sup is not attained, then gp< k2".

3 Application to thecritical exponent

We can now apply the results of the previous section to thie&riexponent problem.
Theorem 12. Given a k-automatic sequence we can effectively computstital exponent.

Proof. Given ak-automatic sequencg= (&;)i>o, We can, using the techniques bf [2, 5], (effectively)
create a two-dimensional DR accepting

L={(p,q)x : Jafactor ofa of lengthq with periodp }.

To do so, on inputp, q)x, we nondeterministically choose an indeat which a factor of lengtlq begins
in a, and then verify thaa[j] = a[j+ p|fori < j<i+q—p—1.

Then the critical exponent afis supc () f(X), which, as we have seen, is either rational or infinite.
The infinite case has already been handledin [5]. In the fo@ise, Theoreml 8 tells us that the critical
exponent is rational, and Theoréni 10 tells us how to compéitern M. [
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O

Remarkl3. The same results also hold for some variations of the crgigaonent, such as when the sup
is taken over only the factors that occur infinitely ofteneylkalso hold for the “initial critical exponent”,
where the supremum is taken overifixesof a given infinite word, as opposed to all factors.

Remark14. We can obtain the same results for limgypf (x) instead of sup, f(x). Here, to get a
contradiction, we assume thatis the limsup, and then we construct an infinite sequence stihdt
points lying in a bounded interval a.

Remarkl5. In [4] the authors studied limsyp., (jk/ik), where(ig, jk) are the starting and ending indices
of thek’'th maximal block of letters chosen from some subalph@ét a morphic word. Our technique
also applies here if the underlying sequende-&itomatic.

4 Other applications

The results in this paper have applications to other proklem

A sequenca is said to beecurrentif every factor that occurs, occurs infinitely often. Itliisearly
recurrentif there exists a constaf such that for all > 0, and all factors of length# occurring ins,
any two consecutive occurrencesxare separated by at md3sf positions.

Theorem 16. It is decidable if a k-automatic sequenaés linearly recurrent. Ifais linearly recurrent,
the optimal constant C is computable.

Proof. First, as in[[5], we construct an automaton accepting thguage

L={(nl)k : (a)there exists > 0 s. t. forallj,0 < j < ¢ we havea|i + j] =ali+n+ j] and
(b) thereisnd,0<t<ns.t. forallj,0< j</¢wehavea|i+ j|=ali+t+]j] }

Another way to say this is th&t consists of the baderepresentation of those pairs of integans?)
such that (a) there is some factor of lengtfor which there is another occurrence at distan@nd (b)
this occurrence is actually the very next occurrence.

Now from Theoreni 10 we know that sp/¢ : (n,¢)x € L} is either infinite or rational. In the latter
case this sup is computable, and this gives the optimal aotGtfor the linear recurrence @t O

5 Open problems

In this paper we have examined gypf(x). We do not know how to extend these results to the more
general case of morphic sequences.
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