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Classically in combinatorics on words one studies unasmalgegularities that appear in sufficiently
long strings of symbols over a fixed size alphabet. In thispam take another viewpoint and focus
on combinatorial properties of long words in which the numbioccurrences of any symbol is

restritced by a fixed constant. We then demonstrate the ctinonef these properties to constructing
multicollision attacks on so called generalized iteratashfunctions.

1 Introduction

In combinatorics on words, the theory of 'unavoidable ragties’ usually concerns properties of long
words over a fixed finite alphabet. Famous classical resultenheral combinatorics and algebra such
as theorems of Ramsey, Shirshov and van der Waerden can ¢hstnaightforwardly exploited [([2],
[9], [11], [12], [13]). The theory can be applied in the studfyfiniteness conditions for semigroups
and (through the concept of syntactic monoid) also in regalaguages and finite automata. To give
the reader a view of the traditional basic results in unasdoliel regularities we list some of its most
noteworthy achievements.

Ramsey’s Theorem immediately implies

Theorem 1 (Repeated Patterns[2]) For all positive integers m and n there exists a positivegate
R(m,n) satisfying the following. Given an alphabet A and a partitipA }[", of At into m sets, if
w € A" is any word of length at least(R, n), then w is in AA]A" for some je {1,2,...,m}.

Let A be an alphabet totally ordered by We extend the ordet: to thelexiographic order<ey of
A* as follows. For all,v € A*: u < Vif eitherv € uA™ or u = xayandv = xbzfor somex,y,z € A* and
a,b € Afor whicha < b.
Given a positive integen, the wordw € A* is n-dividedif there exist wordsu, X1,Xo, ..., %n,Vin A*
such thatv = ux; X - - - Xqv and
W <iex UXg(1)Xg(2) =" Xa(n)V
for any nontrivial permutatiow : {1,2,...,n} — {1,2,...,n}.

Theorem 2 (Shirshov [8,(9,[12]) Let A be an alphabet of k symbols and p and n positive integitins w
p > 2n. There then exists a positive integék P, n) such that any word in Aof length at least &, p,n)
either is n-divided or contains a pth power of a nonempty wafrigngth at most i 1.

Letw=ajay---anwhereg; € Afori=1,2,...,m. A cadenceof wis any sequencéy,io,...,is) of
integers such that

O<ii<ip<---<isanda, =a,="=8a;.
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Here the numbes is theorder of the cadence. The caden@e,i,...,is) is arithmeticif there exists a
positive integed such thaij =iy + (j—1)dfor j=1,2,...,s.
The celebrated van der Waerden’s theorem can be reforrditateords as follows.

Theorem 3 (van der Waerden [8,[9]) Let A be an alphabet of k symbols and s a positive integer.eTher
then exists a positive integer \k/s) such that any word in Aof length at least {k,s) possesses an
arithmetic cadence of order s.

Combinatorial problems are also encountered in informasiecurity, for example, when design-
ing and investigating hash functions, techniques used issage authentication and digital signature
schemes. Aash function of length (wheren € N, ) is a mappingi : {0,1}* — {0,1}". For com-
puting resource reasons, practical hash functions ara éetive i.e., they are based on some finite
compression function and an initial hash value. For moraildetsee subsectidn 3.1.

An ideal hash functio : {0,1}* — {0,1}" is a (variable input length random oracle for each
x € {0,1}*, the valued(x) € {0,1}" is chosen uniformly at random.

There are three main security properties that usually apeined from a hash function: collision
resistancepreimage resistang@ndsecond preimage resistance

Collision resistance: It is computationally infeasible to find X' € {0,1}*, x # X, such tha#(x) =
H(X).

Preimageresistance: Given anyy € {0,1}", it is computationally infeasible to finde {0,1}* such
thatH(x) =.

Second preimage resistance: Given anyx € {0,1}*, it is computationally infeasible to fing €
{0,1}*, x# X, such that(x) = H(X).

If we want to consider the resistance properties matheaitithe concept ‘computationally infea-
sible’ should be rigorously defined. Then the securityHofs compared to the security of a random
oracle.

We thus say thaH is collision resistant (or possesses the collision rasigtgroperty) if to find
x, X € {0,1}*, x#£ X, such thati(x) = H(X) is (approximately) as difficult as to firdlZ € {0,1}*,z#Z,
such that(z) = G/'(Z) for any random oracle hash functiarof lengthn.

The concepts of preimage resistance and second preimaggames can be defined analogously.

Given a se€ C {0,1}* of finite cardinalityk > 1, we say tha€ is ank-collision onH if H(x) = H(X)
for all x,xX € C. Any 2-collison is also called a collision (af).

The sharpened definitions allow us to define a fourth secpritperty, the so called multicollision
resistance: The hash functi@inis multicollision resistanif, for eachk € N, to find ank-collison onH
is (approximately) as difficult as to find &ncollison on any random oracle hash functi®of lengthn.

Our conciderations are connected to multicollison rests#a Given a message= x1x - - - X where
X1,X2,...,X are the (equally long) blocks of the value of a generalized iterated hash functiornx @
based on the values of a finite compression function on thesagesblocks, Xz, ...,X. A nonempty
word a over the alphabefl,2,...,1} may then tell us in which order and how many times each bipck
is expended by the compression function when producingahe\of the respective generalized iterated
hash function. Since the length of messages vary, we getrisidar sequences of words, a,,... in
which, for eacH € {1,2,...}, the worda, € {1,2,...,1}* is related to messages wittblocks. Practical
applications state one more limitation: given a messagayiength, a fixed block is to be consumed
by the compression function only a restricted numigeséy) of times when computing the generalized
iterated hash function value. Thus in the sequemger,,... we assume that for eatle {1,2,...} and
me {1,2,...,1}, the numbeta|, of occurrences of the symbnoiin the worda; is at mosi.
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What can be said about the general combinatorial propesfiise worda; whenl grows? More
generally: which kind of unavoidable regularities app@esufficiently long words in which the number
of occurrences of any symbol is bounded by a fixed constant?

As is easy to imagine, the regularities in the worgsweaken the respective generalized iterated
hash function against multicollision attacks. This topasiirst studied in [3], see aldo [4,110] 1|, &, 17, 5].
We shall present combinatorial results on words which intpat g-bounded generalized iterated hash
functions are not multicollision resistant.

We proceed in the following order. In the next section basiocepts are briefly given. In the
third section we first introduce the basics of generalizedated hash functions. The connection to
combinatorics on words is then established. The fourthi@econtains the necessary combinatorial
results. Finally, the last section contains conclusiorgsfarther research proposals.

2 Prdiminaries

LetN ={0,1,2,...} be the set of all natural numbers aNd = N\ {0}. For each finite se§, let |S be
the cardinality of Sthat is to say, the number of elementsSn

Let A be a finite alphabet angdl € A™. The length of the wordr is denoted bya|; for eacha € A,
let |a|a be the number of occurrences of the letten o, and let alplia) denote the set of all letters
occurring ina at least once. The empty word is denotedsbyA permutation ofA is any wordf3 € A*
such thaif|, = 1 for eacha € A.

Let B C A. Then theprojection morphisnirom A* into B*, denoted by4 is defined byn4(b) = b
if b e BandMg(b) = ¢ if b € A\ B. We writelNg instead off1§ whenA is understood. Define the word
(a)g as follows: (a)g = ¢ if Ig(a) = € and(a)g = away---as if TB(a) € afa) ---ad, wherese N,
ai,a,...,as€B,andg #a,1fori=12,...,s—1.

3 Hash functions and collisions

In this section we first present a compact lead-in to (geized) iterated hash functions. Later we wish
to point out how certain results in combinatorics on wordsiaterconnected to successful multicollision
construction on these type of hash functions.

3.1 Introduction to (generalized) iterated hash functions

Let m,n € N be such tham > n. ThenH = {0,1}" is the set ofhash valuegof lengthn) andB =
{0,1}™) is the set ofmessage block&f lengthm). Any w € BT is amessage Given a mappingf :
H x B— H, call f acompression functiofof lengthn and block sizem).

Define the functionf* : H x B™ — H inductively as follows. For eachc H, b € Bandx € BT, let
f™(h,b) = f(h,b) andf*(h,bx) = f*(f(h,b),x). Note thatf ™ is nothing but an iterative generalization
of the compression functioh.

Letl € N, anda be a nonemptyword such that a(ph C N;. Thena =iz --is, wherese N and
ijeN for j=1,2,...,s Define theterated compression functiory f H x B' — H (based orx andf)
by

fo(h,biby---by) = f(h,bj b, ---by)
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for eachh € H andbq,b,,... b € B. Note that clearlyo only declares how many times and in which
order the message blocks, by, ... b are used when creating the (hash) vafyéh,bib,...by) of the
messagd;b,---by.

Givenk € N andhg € H, ak-collision (with initial value ) in the iterated compression function
f, is a selC C B! such that the following holds:

1. The cardinality ofC is k;
2. For allu,v € C we havefq(hg,u) = f4(ho,v); and

3. For any pair of distinct messageas= uiu,---u; andv = vy ---v; in C such thaty;,v; € B
fori=1,2,...,1, there exist§ € {1,2,...,1} for which u; # v;.
For eachj € N, let nowa; € Nj+ be such that alplwj) = N;. Denoted = (a1, ay,...). Define the
generalized iterated hash functig¢a gihf for short)Hs ¢ : H x Bt — H (based orér and f) as follows:
Given the initial valughy € H and the messagec Bi, j € N, let

Hd’f(hO,X) = fa,-(hmx) :

Thus, given any messag®f j blocks and hash valu®, to obtain the valuéy ¢ (ho, x), we just pick
the worda; from the sequencé and computefq, (o, x). For more details, see![6] and [3].

Rermark 1 A traditional iterated hash functiod : BT — H based on f (with initial value he H) can
of course be defined hiy(u) = f*(hg,u) for each ue B*. On the other hand is a generalized iterated
hash functiortia ; : H x B" — H based orix and f whered = (1,1-2,1-2-3,...) and the initial value
is fixed as b. Note that almost all hash functions used nowadays in adie of this form.

Givenk € N, andhy € H, ak-collision in the generalized iterated hash functigg (with initial
value hy) is a setC of k messages such that for allv € C, |u| = |v| andHg ¢ (ho,u) = Hg ¢ (ho,V).
Now suppose that is ak-collision in Hg s with initial value hy. Letl € N be such thaC C B, ie.,
the length in blocks of each messagedns |. Then, by definition, for each,v € C, the equality
fo, (ho,u) = fq, (ho,V) holds. Since alpfu;) =N, (and thus each symbol I§; occurs in alpla)), the set
C is ak-collision in fg, with initial valuehg. Thus, ak-collision in the generalized iterated hash function
Hg ¢ necessarily by definition, iskacollision in the iterated compression functidg for somel € N..

Now, in our security model, thattackertries to find &-collision inHg ;. We assume that the attacker
knows howHg ¢ depends on the respective compression functidire., the attacker knows), but sees
f only as a black box. She/he does not know anything about teenad structure off and can only
makequeries(i.e., pairs(h,b) € H x B) on f and get the respectivesponsegvaluesf (h,b) € H).

We thus define thémessagecomplexity of a k-collisioim Hg 1 to be the expected number of queries
on the compression functiohthat is needed to create a multicollision of skz& Hg ¢ with any initial
valuehe H.

According to the (generalizedjirthday paradox a k-collision for any compression functioh of
lengthn can be found (with probability appro%) by hashing(k!)%ZM?D messages [14] if we assume
that there is no memory restrictions. Two remarks can be rimaaediately:

e Inthe cas& = 2 approximatelyy/2- 22 hashings (queries of) are needed; intuitively many of us
would expect the number to be arourtd 2

e For eachk in N, finding a(k+ 1)-collision consumes much more resources than finditkg a
collision.
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Of course, when attacking, for instance, against an itérasesh function based on a random oracle
compression function of length the attacker needs a lot of computing power wheslarge; to create
a 2-collison requires approximately2 - 22 queries onf and this is resource consuming.

The paperi[4] presents a clever way to find &@llision in the traditional iterated hash functitifisee
RemarK1) for any € N, . The attacker starts from the initial valbgand searches two distinct message
blocksby, b; such thatf (hg,b1) = f(ho,b}) and denote$y = f(ho,b1). By the birthday paradox, the
expected number of queries dris 422 , whereais approximately 5. Then, for each=2,3,...,r — 1,
the attacker continues by searching message blmeksdb] such thab; # bl andf (hi_1,b;) = f(hi_1,b)
and and statingy = f(hi_1,b;). Now the seC = {by, b} } x {bp,b,} x --- x {by,b}} is 2"-collision inH.
The expected number of queries biis clearlyar22, i.e., the work the attacker is expected to do is only
r times greater than the work she or he has to do to find a singtdi2ion. The size of the multicollision
grows exponentially while the need of resources increasearly.

The question arises whether or not the ideas of Joux can bedjppa more broad setting, i.e., can
Joux’s approach be used to multicollisions in certain galierd iterated hash functions?

In the following we shall see that this indeed is possible.ll @& sequenceér = (ai,0...) -
boundedq € N4, if |aj|i < gfor eachj € N andi € Nj. The gihfHs ¢ is g-boundedf & is g-bounded.
Note that Joux’s method is easy to apply to any 1-boundedrgkred iterated hash function.

Is it possible to extend Joux’s method furthermore to be &dafw g-bounded gihfs, wheqg > 1?
This question has been investigated first for 2-boundedsgih{10] and then for ang-bounded gihf
in [3] (see alsol[56]). It turned out that it is possible to ¢eed -collision in anyg-bounded gihf with
O(g(n, q,r)Z%) queries onf, whereg(n,q,r) is function ofn,q andr which is polynomial with respect
to n andr but double exponential with respectdo

The idea behind the successful construction of the attattiei$act that sincer is g-bounded, un-
avoidable regularities start to appear in the wayef & whenl is increased. More accurately, choosing
| large enough, yet so thélph(a;)| depends only polynomially onandr (albeit double exponentially
inq), anumbemp € {1,2,...,q} and a seA C alph(a;) of cardinality|A] = nP~1r can be found such that

(P1) ay = BB -- Bp the word(3 ) a is a permutation oAfori=1,2,...,p; and

(P2) for anyi € {1,2,...,p— 1}, if (Bi)a = 212---Z-i, iS a factorization of(3)a such that
lalph(zj)| = n'=t for j = 1,2,...nP~'r and (Bi11)a = Uiz~ Upp-i+1, iS & factorization of
(Bi+1)a such thatalph(uj)| = n' for j =1,2,...nP~*+1r, then for eachj; € {1,2,..., nP7'r},
there existg, € {1,2,..., n"P~"=1r} such that alpte;,) C alph(uj,).

The property (P1) allows the attacker construct/a-@llision Cy in fg with any initial valuehg
so that the expected number of queriesfois &(|S1] 25). The property (P2) ensures that based on the
multicollision guaranteed by (P1), the attacker can prdeeel, fori =2,3,...,p, create a? "-collision
Giin fg,p,..5 SO that the expected number of queriesfda é|B1[32---Bi|2g. Thus finally a 2-collision
of complexityaTa]Zg in Ha IS generated.

Finally on the basis of the previous attack construction(@melfuture) Theoreml 8, the following can
be proved ([5]).

Theorem 4 Letm nand q be positive integers such thatnmand g> 1, f: {0,1}" x {0,1}™ — {0,1}"

a compression function, anl = (a1, a>,...) a g-bounded sequence of words such #iph(a;) = N,

for each le N,.. Then, for each e N, there exists & -collision attack on the generalized iterated hash
functionHg ¢ such that the expected number of queries on f is at @gstn(@1°r24-3 g) 23,

Rermark 2 The inequality Nm,q) < M2 (see Theoreifl 5) implies that

N(n@ 1203 ) < n(@-D27" (-3 20
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The results in[[14] imply that, given a random oracle hastction G of length 2, the expected

number of queries o@ to find a 2-collision is inQ(Z”Z—rz#).
Call a generalized iterated hash function bounded ifdg¢unded for somg e N .

Corollary 1 There does not exist a bounded generalized iterated hasttidunthat is multicollision
resistant.

3.2 Essential combinatorial results

We state a list of combinatorial results that imply TheoténThe main result in stated is the form of
classical combinatorial theorems. For a proof, §ée [5].

Theorem 5 For all positive integers m and q there exists a (minimal)itis integer Nm,q) such that
if a is a word for whichjalph(a)| > N(m,q) and|a|, < q for each a alph(a), there exist AC alph(a)

with |A| =m, and pe {1,2,...,q}, as well as wordsty, a2, ..., 0p such thata = ai1a;--- ap and for all

ie{1,2,...,p}, the word(ai)ais a permutation of A. Moreover, for allge N, we have Nm,q+1) <

N(m? —m+1,q).

Rermark 3 Let me N, . In the case g 2, the previous theorem gives us the boundary valg®,[®) =
m? —m+ 1. Let
A={a;li=12...m-1j=12..m}

be an alphabet of (m— 1) symbols. Let furthermore

Y =a18 2 dm-18miimi1dm-2-ai1

fori=1,2,....m—landa = yy--- ¥m_1. Itis quite straightforward to see that there does not eaist
m-letter subalphabet of A such that either (@)a is a permutation of A or (ii) there exists a factorization
a = a1a; such that{a)a and (a2)a are both permutations of A. ThugM,2) = m? —m+1forme N,

Suppose now thak anda = a10z--- ap are as in Theorem 5, i.e., for alk {1,2,..., p}, the word
(ai)ais a permutation of. To make our multicollision attack succeed, this is not yéficient. We need
permutationsB, 3, ..., Bp of an sufficiently large alphab&such that when factoring = Bi1fi2 - - - Bia,
into d; € N equal length factors far=1,2,..., p whered; dividesd;,; and the following holds: for
eachi € {1,2,...,p—1} andj; € {1,2,...,d;} there existsj; € {1,2,...,di;1} such that alpfBij,) C
alph(Bi+1,j,)- Only then we can, starting from the first permutation (arevitorda1) roll on our attack
well. Above the permutationgy, 3o, ..., Bp are induced by the words,, ay, ..., ap, respectively, when
a is long enough (or equivalently, the alphabet &lph is sufficiently large). That these permutations
always can be found, is verified in the following three conalamial results.

We wish to further study the mutual structure of permutaionlong words guaranteed by Theo-
rem[5. By increasing the length of the wosdthe permutations are forced to possess certain stronger
structural properties. The motives are, besides our isiténecombinatorics on words, in information
security applications. The connection of the results tating multicollisions on generalized iterated
hash functions is more accurately, albeit informally, diésal in Section 5.

As the first step of our reasoning we need an application ofalmus Hall's Matching Theorem.

For the proof, see [6] and][3].
Theorem 6 (Partition Theorem) Let ke N, and A be a finite nonempty set such that k divigés
Furthermore, lef{B;}¥_; and{C;}¥_, be partitions of A such thaB;| = |Cj| for i, j = 1,2,... k. Then
for each xc N, such that|A| > k3 x, there exists a bijectionr : {1,2,...,k} — {1,2,... k} for which
‘Biﬂca(i)’ >xfori=12,... k.
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The next theorem is also froml[6]. It is an inductive geneedlbn of Partition Theorem to different
size of factorizations. For the proof, seé [6].

Theorem 7 (Factorization Theorem) Let cy,ds,do,...,dr, where re N, , be positive integers such that
d; divides g1 for i = 1,2,....r, A an alphabet of cardinalityA| = dod?d2---d2, and W, Wy, ..., W1
permutations of A. Then there exists a subset B of A of cdityin®| = dy such that the following
conditions are satisfied.

(1) Forany i€ {1,2,...,r}, if TgB(W;) = X1X2---Xqg, iS the factorization ofrig(w;) and ms(Wit1) =
y1Y2---Yq is the factorization offig(wi+1) into d equal length(= %?) blocks, then for each ¢
{1,2,...,d}, there exists’je {1,2,...,d;} such thatalph(xj) = alph(yj ); and

(2) If wri1 = UgUp---Ug is the factorization w.; into d equal length(= dod?d2---d2 ;d;) blocks,
then s(Wr11) = me(U1)TR(U2) --- TiB(Ug, ) IS the factorization ofrig(w,1) into d equal length
(= $) blocks.

In fact what we need in our considerations is the following

Corollary 2 Let th,d and r be positive integers such that d divides A an alphabet of cardinality
|Al = dod?, and wi,Ws, ..., w1 permutations of A. Then there exists a subset B of A of cdityina
|B| = dp satisfying the following. Let,joj € {1,2,...,r+ 1} and mg(Wp) = X1%2 - - - X4 the factorization of
TB(Wp) and 1s(Wq) = Y1Y2- - - Y4 the factorization ofiiz(wg) into d equal length(= %) blocks, then for
each ie {1,2,...,d}, there exists £ {1,2,...,d} such thatalph(x;) = alph(y;).

The last result of this section combines the main result isfghction (Theorerl 5) to the previous
combinatorial accomplishments. Theorgim 8 is indisperséd the attack constrution in the end of

Sectior{ 3.11.
Theorem 8 Leta be aword and k> 2, n> 1, and g> 2 integers such that
(1) [alph(a)| > N(n(@Yk24-2,q); and
(2) |a|a < qforeach a alph(a) .
Then there exists B alph(a), p€ {1,2,...,q} and a factorizationo = a;a5 - - - o for which
(3) [B] =nP~'k;
(4) BC alph(a;j) and(a)g is a permutation of B for+ 1,2, ..., p; and
(5) Foranyie {1,2,...,p—1},if (0i)s = 2122 - - - Zyp-ii IS the factorization of ofa;)g into np_“k equal
length(= n'_*l) blocks and @i +1)s = U1Uz - - - Upp-i-1c the factorization ofai1)g into npf'*l equal
length(= n') blocks, then for eachy je {1,2,...,nP~'k}, there existsjc {1,2,..., nP~'=1k} such
thatalph(zj,) C alph(u;,).

4 Conclusion

We have considered combinatorics on words from a fresh vaewpvhich is induced by applications in
information security. Some small steps have already bdemtm the new research frame. The results
have been promising; they imply more efficient attacks oregaized iterated hash functions and, from
their part, confirm the fact that the iterative structureggsses certain generic security weaknesses.

Research ProblemConsider Theoreml 5. The exact valueNgin, q) is known only in the casesn =1,
q=1andq = 2: Trivially N(1,q) = 1 andN(m,1) = m, furthermoreN(m,2) = n? — m+ 1 (see Remark
). Itis probable that in general the numidém, g+ 1) is significantly smaller thaiN(m? —m-+1,q).
Moreover, we have not evaluat®&t{m, q) from below at all. Find reasonable lower and upper bounds to
N(m,q) form>1,q> 2.
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