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The exponent of a word is the ratio of its length over its sestlperiod. The repetitive threshaiah)

of ana-letter alphabet is the smallest rational number for whidre exists an infinite word whose
finite factors have exponent at magt). This notion was introduced in 1972 by Dejean who gave
the exact values of(a) for every alphabet siza as it has been eventually proved in 2009.

The finite-repetition threshold for aletter alphabet refines the above notion. It is the smallest
rational number FR&) for which there exists an infinite word whose finite factorséhaxponent at
most FR{a) and that contains a finite number of factors with expoméait It is known from Shallit
(2008) that FRE2) = 7/3.

With each finite-repetition threshold is associated thellestanumber ofr (a)-exponent fac-
tors that can be found in the corresponding infinite word. a$ Ibeen proved by Badkobeh and
Crochemore (2010) that this number is 12 for infinite binaoyde whose maximal exponent ig3.

We show that FR8) = r(3) = 7/4 and that the bound is achieved with an infinite word contain-
ing only two 7/4-exponent words, the smallest number.

Based on deep experiments we conjecture that4Rt r(4) = 7/5. The question remains open
for alphabets with more than four letters.
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1 Introduction

The article deals with repetitions in strings and their dability. The question is grounded on the notion
of the exponent of a word: it is the ratio of its length oversitsallest period. A word of exponeastis
also called are-power.

An infinite word is said to avoid-powers or to be-power free if the exponents of its finite factors
are smaller thae.

The repetitive threshold(a) of ana-letter alphabet is the smallest rational number for whigre
exists an infinite word whose finite factors have exponent@stmia). The word is said to be(a)*-
power free. It is known from Thue [14] that2) = 2. Indeed, the notion was introduced in 1972 by
Dejean [5] who proved that(3) = 7/4 and gave the exact valuesrgh) for every alphabet siza > 3.
Her conjecture was eventually proved in 2009 after partiabfs given by several authors (séel[12, 4]
and references therein).

A generalised version of the repetitive threshold is byéli@l. [8]. The authors introduce the notion
of (B, p)-freeness: a word i§3, p)-free if it contains no factor that is@’, p’)-repetition (i.e. a word of
period p’ and exponeng’) for B’ > B andp’ > p; itis (B, p)-free if B’ > B instead. Their generalized
repetition thresholdR(a, p) defined for ara-letter alphabet as the real numtmefor which either
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38 Finite-Repetition threshold for infinite ternary words

(a) there exists ato ™, p)-free infinite word and al(a, p)-free words are finite,
(b) or there exists afa, p)-free infinite word and for alE > 0, (a — €, p)-free words are finite.

wherep is the minimum avoided period. The proof of boundary of thigshold for all alphabet sizes is
presented in [8], an&(k, 1) is essentially Dejean’s repetition threshold.

For infinite words whose maximal exponent of factors is badhadt is legitimate to ask whether they
can contain only a finite number ofa)-powers. This is an extra constraint on the word. When such
words exist, it is as legitimate to exhibit the minimal numbé r(a)-powers they can contain, which
adds another measure of the word complexity. The first restiis type is by Fraenkel and Simpsén [6]
for the binary alphabet. They showed that an infinite binaoydrcan contain only 3 squares, not less.
Two simple proofs of the result are by Harju and NowoiKa [ &me present authors![2].

The above consideration leads to the notion of finite-réipatthreshold associated with adetter
alphabet. It is the smallest rational number, noted(&Rfor which there exists an infinite word whose
finite factors have exponent at most F&tand that contains a finite numberrgh)-powers. It is known
from Shallit [13] that FR{2) = 7/3 (see also [11]). The present authars [3] proved that thecaged
minimal number of squares is 12 if the infinite word contaims 7/3-powers. Badkobeh[1] even refined
the results by showing the number is 8 if the infinite word adrtwo 5/2-powers, extending the result
of Fraenkel and Simpson![6] recalled above for which it is®vid cubes are allowed.

In this article, we consider the finite-repetition threshof the ternary alphabet. We show that
FRt3) =r(3) = 7/4. We provide a direct proof of the result and another prosfedaon a previous
result on word morphisms by Ochem [10].

The experiments reported in the conclusion show that theefrepetition threshold of the 4-letter
alphabet FR#) is likely to ber (4) = 7/5, which we conjecture. The hypothetical property @R (a)
(for a > 2) would be equivalent to say that infinite words whose makarponent of factors is Dejean’s
repetition threshold can be constrained to containing gefmimber of factors with that exponent.

2 Repetitions in ternary words

Let A be a finite alphabet. A word/ in A* of length |w| = n is a sequence of lettergO]w[1]...w[n—

1] also notedw[0..n—1]. The period ofw is the smallest positive integgeriodw) = p for which
w[i] = w[i + p] whenever both sides of the equality are defined. The expafemis the rational ratio
|w| /period(w). Thus, the exponent of a word is a rational number that isasti®. For example, a
square is a nonempty word with an even integer exponent @2al102 of exponent 74 can be written
(1020)7/%. A word of exponent s also called are-power.

An infinite word is a function from the natural number to thprabetA. An infinite word is said to
avoid e-powers (respet-powers) if the exponents of its finite factors are smallenth(resp. not more
thane). In this case we also say that the woraigower free (respet-power free).

The repetitive threshold(a) of ana-letter alphabet is the smallest rational number for whiare
exists an infinite word whose finite factors have exponent@itm{a). The word is them(a) " -power
free.

Thefinite-repetition thresholdor the alphabet o letters is defined as the smallest rational number
FRt(a) for which there exists an infinite word that both avoids @&Rt-powers and contains a finite
number ofr-powers, where is Dejean’s repetitive threshold.

The above notion is inspired by the following results of Kartéaki and Shallit.[[13]

Theorem 1 (Karhumaki and Shallit [9]) For all t > 1, there are no infinite binary words that simulta-
neously avoid all squares yy wityy >t and7/3-powers.
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Theorem 2 (Shallit [L3]) There is an infinite binary word that simultaneously avoitisguares yy with
ly| > 7 and7/3" -powers.

When an infinite binary word avoids/3*-powers and contains a finite number of squares itis natural
to ask more on these few squares. The previous theorem shaiheir period can be bounded by 7.
The next result goes slightly beyond by showing that thember is at least 12. But the two properties
cannot be satisfied simultaneously.

Theorem 3 (Crochemore and Badkobeh [3])The smallest number of squares occurring ify&-power
free infinite binary word id.2.

Showing that no infinite word satisfying the conditions cantain less squares is done by mere com-
putation. The second part is done by producing an infinitedvgatisfying the condition and containing
exactly 12 squares. Following Shallit's hierarchy of inrbinary words in[[13], the previous result was
refined by Badkobeh [1] according to the next table.

Maximal | Allowed number| Smallest numbe
exponenke of e-powers of squares
713 2 12
1 14
5/2 2 8
1 11
3 2 3
1 4

The main result of the present article is the following tlezor

Theorem 4 The finite-repetition threshold of the 3-letter alphabett$sDejean’s repetition threshold,
that is, 7/4.
The smallest number @f4-powers occurring in & /4" -power free infinite ternary word i2,

On the alphabefo, 1,2}, the two unavoidable /A-powers occurring in the word below are, up to a
permutation of letterg,0121)7/4 = 0121012 and(2010)7/4 = 2010201.

Computation shows that the longest ternary words with omlg @4-power are 102 letters long.
However we may think of having a larger threshold as in thatyircase. But even if we increase the
threshold tce < 2, the maximal length of words stays at 102 with only exqeower.

If we relax further the maximal exponent condition, it candbmwn that there exists an infinite
ternary word in which occur only one square, nam@yup to a permutation of letters, and agower
with 7/4 <e< 2.

Since the repetition threshold for a 3-letter alphabet /4, o prove this ratio is also its finite-
repetition threshold it is sufficient to show (contrary t@ thinary case) that there exists g47-free
infinite ternary word with finitely many /4-powers. To do it, we use the fact that the repetition thotesh
of 4-letter alphabets is/b and provide a translation morphism from 4 letters to 3 istteith suitable
conditions.
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We consider the morphisgnfrom {a,b,c,d}* to {0,1,2}* defined by:

g(a)= 0102101202102010210121020120210120102120121020120210121
0212010210121020102120121020120210121020102101202102012
10212010210121020120210120102120121020102101210212

g(b) = 0102101202102010210121020120210120102120121020120210121
0201021012021020121021201021012102010212012102012021012
10212010210121020120210120102120121020102101210212

g(c)= 0102101202102010210121020120210120102120121020102101202
1020121021201021012102010212012102012021012102010210120
21020102120121020120210120102120121020102101210212

g(d) = 0102101202102010210121020120210120102120121020102101202
1020102120121020120210121020102101202102012102120102101

\ 21020102120121020120210120102120121020102101210212

The morphism is uniform with codeword length 160. Anothexgantation of the morphismis:

g(a) =uv02120121020120210121020102101202102012102120102101yZ
g(b) = uv21021201021012102010212012102012021012102010210120yZ
g(c) =uw01021012021020121021201021012102010212012102012021xz,

g(d) =uw12010210121020102120121020120210121020102101202102xz,

whereu, v, w, X, y andz are:
u=01021012021020102101210201202101201021201210201,
V=2021012102, w= 0210120210201, Xx= 2102010212,y = 0121021201021,
z=0121020120210120102120121020102101210212
The wordu is the longest common prefix of the codewor{lg,= 47, andz is their longest common
suffix, |z| = 40.

Theoreni 4 is a direct consequence of the next proposition.

Proposition 1 The morphism g translates any infinitg5 " -free word on the alphabefta, b, c,d} into a
7/4" -free ternary word containing only two/4-powers, the fewest possible.

We present two proofs of Propositioh 1. The first one is a tipeoof that involves the longest
common prefix and the longest common suffix of the codeworddetive a contradiction from the
existence of any /4-power other thai9121012 and2010201 in the image byg of a 7/5" -free word.
The second proof is derived from a lemma on morphisms stat€ichem in [10].

Direct proof of Proposition [1I

Let us assume thaj(s) contains a non-extensible repetition, excluding the twé-gowers0121012
and2010201, with exponent at least/4. The repetition can be writtepg where|p| is its period. Then
Ipdl/|p| > 7/4. A simple computation verifies that no image of &7-free word with length at most 3
contains the repetition. Therefore the repetition is lond accurs in the image hyof a word of length
at least 4.

We consider two cases.

e Casep| <|q|. The wordpqis of the form

[P A —
=Ur --- ViU --- V.-
Pqg 1 VilUp 1
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whereu, vy is codeword. Indeed it starts with the squaneof the form

N N
wg(s)vaurg(s)vi

wheres € {a,b,c,d}*.
Note thats' cannot be the empty word becaysgwould occur in the image of a triplet.

Leta € {a,b,c,d} be such thagy(a) = vau;. Thereforesas is a factor ofs. The letter occurring
befores' in s and the letter occurring after it must differ fromto avoid the squaregsas’ or
Jasa sincesis 7/5"-power free).

Thenu; is not longer than the longest common prefix between two rdiffecodewords, that is,
|up| < |uwj = 60. Symmetricallyy; is not longer than the longest common suffix of two different
codewords, that iyvs| < |yZ = 53. But thenviu;| < 113 and cannot be a complete codeword, a
contradiction.

e Caselp| > |g|. The wordpqis of the form

More preciselyagpqby is of the form
aoU1g(S)viay ---bourg(s)vi by
N—— S——

wheres € {a,b,c,d}*, ag, a1, bp,b; € {0, 1,2} andag # by anda; +# by, becaus@qis inextensible.
It rewrites as

aou1g(s)g(s")g(s)vabs

whereg(s’) = viq~!pu because the morphism is synchronizing (no codeword ocautgicon-
catenation of two codewords). Theref@ie )g(s’)g(s) is a factor ofg(s) thuss's’s is a factor of
sand sincesis 7/5"-free we get

|IsSs’s| 7
< —
|I9s'| — 5
and
3| < 25|
and eventually
3lg(s)] < 2/g(s")] 1)

because the morphisgis uniform.
Furthermorepg = u;g(s)g(s”)g(s )vi andp = uyg(s)g(s”)u; 1 so its exponent satisfies

uLg(s)g(s")g(s)va| U
9(s)g(s")| -4

which rewrites as

l9(s)|+4uva| > 3Jg(s")] (2)
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Using EquationE]1 arid 2 we get

9lg(s)| 6lg(s")|

2(19(s) |+ 4Jugval)

ININA

and then
8
lais)| < 7!U1V1\-

But since|uivi| < 113 as in the first case, this implies tisats empty. Therefore the repetitiquy
is a factor of the image of a triplet, a contradiction.

This completes the direct proof of Propositldn 1.

Proof based on Ochem'’s result

Here we split the proof in two parts: first we show tlugs) is 7/4"-free, second we show the only
7/4-powers are the ones mentioned above. The proof depentte doilbwing result. In the statement,
35 (resp.Ze) is an alphabet witls (resp.e) letters; and the morphisim: i — X7 is synchronizing if for
anya,b,c € Zgandv,w € X, h(ab) = vh(c)w implies eitherv = ¢ anda=corw= g andb =c.

Lemma 1 (Ochem[10]) Leta,B € Q,1< a < B < 2, and pe N*. Let h: Z{ — 3§ be a synchronizing
g-uniform morphism (with g 1). If h(w) is (8, p)-free for everya*-free word w such thajw| <

max{B G,M} then Ht) is (B, p)-free for every (finite or infiniteyr *-free word t.

To apply the lemma to the morphisgrabove, we haver = 7/5 andq = 160. We choosg = 17/10
andp = 5. Then we can show that the morphism(1§/10",5)-free if g(w) is (17/10",5)-power free
for all wordsw for which

28 2(q-1)(28-1)

wl < max{ o SH

which implies|w| < 12. This set is finite and a simple computation can verify fa@c

Since every(7/4",5)-power is also &17/10", 5)-power then we can claim the morphisn{g4*, 5)-
power free.

So the only possible /4-powers with period less that 5 are:
(0122)7/4, (02127/4, (10207/4, (12027/4, (20107/4, and (2101)7/4. Any of those strings must be
either a factor of a codeword or a factor of the image of a detutWe immediately conclude the words
(1020)7/* and(2101)/* are the only factors a(s).

This concludes the whole proof of Theorém 4.

3 Repetitions for larger alphabets

Experiments show that a word on a 4-letter alphabet for wtiiehmaximal exponent of factors iy
and that contains at most ong5/power has maximal length 230. However if the constraintten
number of 75-powers is relaxed to 2 the length grows to at least 10000& 8xperiment intrigued us
to study the string further and to state the following cohjee.

Conjecture 1 The finite-repetition threshold of 4-letter alphabet3 i§ and their exist an infinitd /5" -
power free word containing only twi&y 5-powers.
The two7/5-powers are(023120321$% and (123021320375 up to a permutation of the letters.
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Note the above words have period 10, the smallest possibiedpsince there is no/B-power with
period 5 that is 75" -free.

The experiments are done with a mere backtracking techrigggenerate the suitable words. It
implements efficient algorithms for testing the properties
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