
Structure Preserving Bisimilarity,

Supporting an Operational Petri Net Semantics of CCSP

Rob van Glabbeek

NICTA, Sydney, Australia

University of New South Wales, Sydney, Australia

September 2015

Milner:

CCS LTS
[[]]op

Milner:

CCS LTS
[[]]op

Hoare:

CSP

failures
model

[[]]den

Milner:

CCS LTS
[[]]op

Hoare:

CSP

LTS

failures
model

[[]]op

[[]]den

[Olderog & Hoare ’86]

CCS LTS
[[]]op

CSP

LTS
[[]]op

Nielsen:
Olderog:

CCSP LTS
[[]]op

Goltz & Mycroft
Winskel
van Glabbeek & Vaandrager:

CCSP LTS
[[]]op

Petri nets

[[]]den

but no treatment of recursion.

Degano, De Nicola and Montanari:

CCSP LTS
[[]]op

Petri nets

[[]]op
[[]]den

including a treatment of recursion.

Degano, De Nicola and Montanari:

CCSP LTS
[[]]op

Petri nets

[[]]op
[[]]den

including a treatment of recursion.
But initial concurrency is not respected.

[[(ad‖b) + c]]DDM

op =

•

a

bd

b

a

d

c

Olderog, 1987:

CCSP LTS
[[]]op

Petri nets

[[]]op
[[]]den

including a treatment of recursion.
Concurrency is fully respected.

[[(ad‖b) + c]]Old

op =

•

a

d

•

bc

[[(ad‖b) + c]]Old

op =

•

a

d

•

bc

This is the same result as for the denotational Petri net semantics
found in the literature.

How to formalise the statement that Olderog’s operational
semantics respects concurrency?

How to formalise the statement that Olderog’s operational
semantics respects concurrency?
We use the well-known fact that the denotational semantics from
the literature respects concurrency, at least for those expressions P
for which it is defined (the recursion-free ones).

How to formalise the statement that Olderog’s operational
semantics respects concurrency?
We use the well-known fact that the denotational semantics from
the literature respects concurrency, at least for those expressions P
for which it is defined (the recursion-free ones).
So we want to prove: [[P]]op = [[P]]den .

How to formalise the statement that Olderog’s operational
semantics respects concurrency?
We use the well-known fact that the denotational semantics from
the literature respects concurrency, at least for those expressions P
for which it is defined (the recursion-free ones).
So we want to prove: [[P]]op = [[P]]den .
But this fails in the same way as the operational versus
denotational semantics of CCSP in terms of labelled transition
systems:

How to formalise the statement that Olderog’s operational
semantics respects concurrency?
We use the well-known fact that the denotational semantics from
the literature respects concurrency, at least for those expressions P
for which it is defined (the recursion-free ones).
So we want to prove: [[P]]op = [[P]]den .
But this fails in the same way as the operational versus
denotational semantics of CCSP in terms of labelled transition
systems: [[a + a]]op 6= [[a + a]]den.

How to formalise the statement that Olderog’s operational
semantics respects concurrency?
We use the well-known fact that the denotational semantics from
the literature respects concurrency, at least for those expressions P
for which it is defined (the recursion-free ones).
So we want to prove: [[P]]op = [[P]]den .
But this fails in the same way as the operational versus
denotational semantics of CCSP in terms of labelled transition
systems: [[a + a]]op 6= [[a + a]]den.

So instead one shows [[P]]op ≈ [[P]]den for a suitable relation ≈.

Showing agreement between an operational and

denotational net semantics of CCSP

Aim: propose a relation ≈ between nets, and show
[[P]]op ≈ [[P]]den .

Showing agreement between an operational and

denotational net semantics of CCSP

Aim: propose a relation ≈ between nets, and show
[[P]]op ≈ [[P]]den .

Which requirements to impose on ≈?

Showing agreement between an operational and

denotational net semantics of CCSP

Aim: propose a relation ≈ between nets, and show
[[P]]op ≈ [[P]]den .

Which requirements to impose on ≈?

1. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Showing agreement between an operational and

denotational net semantics of CCSP

Aim: propose a relation ≈ between nets, and show
[[P]]op ≈ [[P]]den .

Which requirements to impose on ≈?

1. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

2. ≈ respects concurrency.

Showing agreement between an operational and

denotational net semantics of CCSP

Aim: propose a relation ≈ between nets, and show
[[P]]op ≈ [[P]]den .

Which requirements to impose on ≈?

1. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

2. ≈ respects concurrency.

3. ≈ is a congruence relation for CCSP.

••
•

••
PN

R = P‖Q

Showing agreement between an operational and

denotational net semantics of CCSP

Olderog proposes a relation ≡ between nets, called strong

bisimulation.

Showing agreement between an operational and

denotational net semantics of CCSP

Olderog proposes a relation ≡ between nets, called strong

bisimulation.

1. [[P]]op ≡ [[P]]den for any P for which both sides are defined.

Showing agreement between an operational and

denotational net semantics of CCSP

Olderog proposes a relation ≡ between nets, called strong

bisimulation.

1. [[P]]op ≡ [[P]]den for any P for which both sides are defined.

2. ≡ respects concurrency.

Showing agreement between an operational and

denotational net semantics of CCSP

Olderog proposes a relation ≡ between nets, called strong

bisimulation.

1. [[P]]op ≡ [[P]]den for any P for which both sides are defined.

2. ≡ respects concurrency.

3. ≡ has the typical congruence properties.

Showing agreement between an operational and

denotational net semantics of CCSP

Olderog proposes a relation ≡ between nets, called strong

bisimulation.

1. [[P]]op ≡ [[P]]den for any P for which both sides are defined.

2. ≡ respects concurrency.

3. ≡ has the typical congruence properties.

But it fails to be transitive!

Showing agreement between an operational and

denotational net semantics of CCSP

Olderog proposes a relation ≡ between nets, called strong

bisimulation.

1. [[P]]op ≡ [[P]]den for any P for which both sides are defined.

2. ≡ respects concurrency.

3. ≡ has the typical congruence properties.

But it fails to be transitive!
This is not a problem, because ≡ can be seen as just a tool to
proof things about causal equivalence ≡caus .
N1 ≡caus N2 if they have the same processes or causal nets.

Showing agreement between an operational and

denotational net semantics of CCSP

Olderog proposes a relation ≡ between nets, called strong

bisimulation.

1. [[P]]op ≡ [[P]]den for any P for which both sides are defined.

2. ≡ respects concurrency.

3. ≡ has the typical congruence properties.

But it fails to be transitive!
This is not a problem, because ≡ can be seen as just a tool to
proof things about causal equivalence ≡caus .
N1 ≡caus N2 if they have the same processes or causal nets.

N1 ≡ N2 ⇒ N1 ≡caus N2.

Showing agreement between an operational and

denotational net semantics of CCSP

Olderog proposes a relation ≡ between nets, called strong

bisimulation.

1. [[P]]op ≡ [[P]]den for any P for which both sides are defined.

2. ≡ respects concurrency.

3. ≡ has the typical congruence properties.

But it fails to be transitive!
This is not a problem, because ≡ can be seen as just a tool to
proof things about causal equivalence ≡caus .
N1 ≡caus N2 if they have the same processes or causal nets.

N1 ≡ N2 ⇒ N1 ≡caus N2.

≡caus respects concurrency.

Showing agreement between an operational and

denotational net semantics of CCSP

≡caus is a linear time equivalence:

[[a(b + c)]]op ≡caus [[ab + ac]].

This is less good for capturing phenomena like deadlock behaviour.

Showing agreement between an operational and

denotational net semantics of CCSP

≡caus is a linear time equivalence:

[[a(b + c)]]op ≡caus [[ab + ac]].

This is less good for capturing phenomena like deadlock behaviour.

My contribution today is the proposal of a new branching time
equivalence that can play the rôle of ≡caus .

I call it structure preserving bisimilarity ↔sp .

Structure Preserving Bisimulation

N1 N2

•

•

•

•

•

•

•

•

•

•

Structure Preserving Bisimulation

N1 N2

•

•

•

•

•

•

•

•

•

•

a

Structure Preserving Bisimulation

N1 N2

•

•

•

•

•

•

•

•

•

•

a a

Structure Preserving Bisimulation

N1 N2

•

•

•

•

a

•

•

a

•

•

Structure Preserving Bisimulation

N1 N2

•

•

•

•

a

•

•

a

•

•

Criteria for choosing this equivalence

2. It should capture concurrency. a‖b 6= ab + ba causality

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

6. It should be finer than ≡caus .

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

6. It should be finer than ≡caus .

7. It should not distinguish nets whose behaviours are patently
the same, i.e. when differing only in unreachable parts.

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

≈tree

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

≈tree

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

≈tree

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

structure
preserving
semantics

≡caus

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

≈tree

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

structure
preserving
semantics

≡caus

≈pb

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

≈tree

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

structure
preserving
semantics

≡caus

≈pb

≡occ

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

≈tree

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

structure
preserving
semantics

≡caus

≈pb

≡occ

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

≈tree

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

structure
preserving
semantics

≡caus

≈pb

≡occ

↔sp

Semantic equivalences on Petri nets

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

bisimulation
semantics

trace
semantics ≈it

≈ib

≈tree

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

structure
preserving
semantics

≡caus

≈pb

≡occ

↔sp

≈h (collective)

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

6. It should be finer than ≡caus .

7. It should not distinguish nets whose behaviours are patently
the same, i.e. when differing only in unreachable parts.

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Semantic equivalences on Petri nets

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

6. It should be finer than ≡caus .

7. It should not distinguish nets whose behaviours are patently
the same, i.e. when differing only in unreachable parts.

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Semantic equivalences on Petri nets

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

6. It should be finer than ≡caus .

7. It should not distinguish nets whose behaviours are patently
the same, i.e. when differing only in unreachable parts.

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Semantic equivalences on Petri nets

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

6. It should be finer than ≡caus .

7. It should not distinguish nets whose behaviours are patently
the same, i.e. when differing only in unreachable parts.

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Semantic equivalences on Petri nets

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

6. It should be finer than ≡caus .

7. It should not distinguish nets whose behaviours are patently
the same, i.e. when differing only in unreachable parts.

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Semantic equivalences on Petri nets

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

Criteria for choosing this equivalence

1. It should be a branching time equivalence.

2. It should capture concurrency. a‖b 6= ab + ba causality

3. It should respect inevitability. [Mazurkiewicz]

4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2

6. It should be finer than ≡caus .

7. It should not distinguish nets whose behaviours are patently
the same, i.e. when differing only in unreachable parts.

8. It should be a congruence for CCSP.

9. [[P]]op ≈ [[P]]den for any P for which both sides are defined.

Inevitability

I will show you Petri nets featuring a transition b.
I will ask you by a show of hands whether you hold b to be
inevitable.

Inevitability

I will show you Petri nets featuring a transition b.
I will ask you by a show of hands whether you hold b to be
inevitable.

Question 0: Are you insufficiently familiar with Petri nets to
answer such questions, or decline to answer for any other reason?

Question 1:

•

b

(CCSP expression: b)

Inevitability

Question 2:

•

ba

(CCSP expression: a + b)

Inevitability

Question 3:

•

ba

(CCSP expression: E with E
def
= a.E + b.)

Inevitability

Question 4:

•

ba c

(CCSP expression: E ′ with E ′ def= a.c .E ′ + b.)

Inevitability

Question 5:

•

b

•

a

(CCSP expression: A‖b with A
def
= a.A.)

Fairness

In the literature I found only 4 meaningful types of fairness
assumptions:

1. Progress

2. Justness

3. Weak Fairness

4. Strong Fairness

These form a hierarchy, thus creating 5 assumptional states.

Fairness

Shop with 2 customers.
When in the shop, a customer is waiting expectantly to be served.
Upon being served, the customer leaves the shop, but usually returns
right away to buy something else.

A customer may leave the shop anytime, and possibly return later.

Fairness

Shop with 2 customers.
When in the shop, a customer is waiting expectantly to be served.
Upon being served, the customer leaves the shop, but usually returns
right away to buy something else.

A customer may leave the shop anytime, and possibly return later.

Failure of weak fairness: Customer A remains forever in the shop,
ready to be served, but is never served, because the clerk is always
busy serving customer B.

Fairness

Shop with 2 customers.
When in the shop, a customer is waiting expectantly to be served.
Upon being served, the customer leaves the shop, but usually returns
right away to buy something else.

A customer may leave the shop anytime, and possibly return later.

Failure of weak fairness: Customer A remains forever in the shop,
ready to be served, but is never served, because the clerk is always
busy serving customer B.
Failure of strong fairness: Customer A occasionally leaves the
shop, but always returns in the hope to get served. Yet, this never
occurs, because the clerk is always busy serving customer B.

Fairness

Shop with 2 customers.
When in the shop, a customer is waiting expectantly to be served.
Upon being served, the customer leaves the shop, but usually returns
right away to buy something else.

A customer may leave the shop anytime, and possibly return later.

Failure of weak fairness: Customer A remains forever in the shop,
ready to be served, but is never served, because the clerk is always
busy serving customer B.
Failure of strong fairness: Customer A occasionally leaves the
shop, but always returns in the hope to get served. Yet, this never
occurs, because the clerk is always busy serving customer B.
Failure of progress: Customer A remains forever in the shop, ready
to be served, but no-one is ever served. The clerk stares
pathetically at the customer(s) without doing anything.

Fairness

Shop with 2 customers.
When in the shop, a customer is waiting expectantly to be served.
Upon being served, the customer leaves the shop, but usually returns
right away to buy something else.

A customer may leave the shop anytime, and possibly return later.

Failure of weak fairness: Customer A remains forever in the shop,
ready to be served, but is never served, because the clerk is always
busy serving customer B.
Failure of strong fairness: Customer A occasionally leaves the
shop, but always returns in the hope to get served. Yet, this never
occurs, because the clerk is always busy serving customer B.
Failure of progress: Customer A remains forever in the shop, ready
to be served, but no-one is ever served. The clerk stares
pathetically at the customer(s) without doing anything.
Failure of justness: There are two counters with a clerk each.
Customer A is the only customer at counter 1, yet never is served,
while customer B is being served repeatedly at counter 2.

Fairness in CCSP

Are the following processes guaranteed to do action b eventually?

Assuming nothing progr. justness wk. f. str. fair.

b

a + b

E with E
def
= a.E + b.

E
′ with E

′ def
= a.c.E

′ + b.

A‖b with A
def
= a.A

Fairness in CCSP

Are the following processes guaranteed to do action b eventually?

Assuming nothing progr. justness wk. f. str. fair.

b −
a + b −
E with E

def
= a.E + b. −

E
′ with E

′ def
= a.c.E

′ + b. −
A‖b with A

def
= a.A −

Fairness in CCSP

Are the following processes guaranteed to do action b eventually?

Assuming nothing progr. justness wk. f. str. fair.

b − X X X X

a + b −
E with E

def
= a.E + b. −

E
′ with E

′ def
= a.c.E

′ + b. −
A‖b with A

def
= a.A −

Fairness in CCSP

Are the following processes guaranteed to do action b eventually?

Assuming nothing progr. justness wk. f. str. fair.

b − X X X X

a + b − − − − −
E with E

def
= a.E + b. −

E
′ with E

′ def
= a.c.E

′ + b. −
A‖b with A

def
= a.A −

Fairness in CCSP

Are the following processes guaranteed to do action b eventually?

Assuming nothing progr. justness wk. f. str. fair.

b − X X X X

a + b − − − − −
E with E

def
= a.E + b. − − − X X

E
′ with E

′ def
= a.c.E

′ + b. −
A‖b with A

def
= a.A −

Fairness in CCSP

Are the following processes guaranteed to do action b eventually?

Assuming nothing progr. justness wk. f. str. fair.

b − X X X X

a + b − − − − −
E with E

def
= a.E + b. − − − X X

E
′ with E

′ def
= a.c.E

′ + b. − − − − X

A‖b with A
def
= a.A −

Fairness in CCSP

Are the following processes guaranteed to do action b eventually?

Assuming nothing progr. justness wk. f. str. fair.

b − X X X X

a + b − − − − −
E with E

def
= a.E + b. − − − X X

E
′ with E

′ def
= a.c.E

′ + b. − − − − X

A‖b with A
def
= a.A − − X X X

Fairness in process algebra

Strong or weak fairness can be

◮ indispensable for certain applications, such as a correctness
proof of the alternating bit protocol.

◮ patently wrong when used where not appropriate.

E with E
def
= a.E + b.0.

Fairness in process algebra

Strong or weak fairness can be

◮ indispensable for certain applications, such as a correctness
proof of the alternating bit protocol.

◮ patently wrong when used where not appropriate.

E with E
def
= a.E + b.0.

◮ could be a spec. of a mobile phone
◮ b is a successful dialling attempt
◮ a is an unsuccessful dialling attempt.

Fairness amounts to saying that if you try often enough,
dialling will succeed.
This is wishful thinking.
The real world is not fair.

Fairness in process algebra

Strong or weak fairness can be

◮ indispensable for certain applications, such as a correctness
proof of the alternating bit protocol.

◮ patently wrong when used where not appropriate.

E with E
def
= a.E + b.0.

◮ could be a spec. of a mobile phone
◮ b is a successful dialling attempt
◮ a is an unsuccessful dialling attempt.

Fairness amounts to saying that if you try often enough,
dialling will succeed.
This is wishful thinking.
The real world is not fair.

◮ When assuming strong or weak fairness, we loose the ability
to finitely specify a system like E above that does allow an
infinite sequences of as without a b.

Semantic equivalences on Petri nets

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

branching time

linear time

abstract from causality/concurrency capture causality/concurrency

HP bisimilarity does not respect inevitability

•
s0

•
s4

•
s20

atr1 •
s30

a t l1•
s10

b

tb1

s21

atr2 •
s31

a t l2•
s11

b

tb2

s22

.

.

.

.

.

.

HP bisimilarity does not respect inevitability

•
s0

•
s4

•
s20

atr1 •
s30

a t l1•
s10

b

tb1

s21

atr2 •
s31

a t l2•
s11

b

tb2

s22

.

.

.

.

.

.

Causal equivalence does not respect inevitability

• •

b

•

a

•

•

a

•

•

. . .

The causal nets of both systems are the infinite one above, and all
its finite prefixes.

Conclusion

1. I proposed 9 requirements on semantic equivalences on Petri
nets.

2. None of the existing equivalences satisfies all (or almost all) of
these requirements.

3. I propose a new equivalence that does.

4. A major motivation of this equivalence is its suitability in
establishing agreement between the denotational and
operational Petri net semantics of CCSP.

