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This is the same result as for the denotational Petri net semantics
found in the literature.
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So instead one shows [[P ]]op ≈ [[P ]]den for a suitable relation ≈.
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Showing agreement between an operational and

denotational net semantics of CCSP

≡caus is a linear time equivalence:

[[a(b + c)]]op ≡caus [[ab + ac]].

This is less good for capturing phenomena like deadlock behaviour.

My contribution today is the proposal of a new branching time
equivalence that can play the rôle of ≡caus .

I call it structure preserving bisimilarity ↔sp .
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4. It should be real-time consistent. a and b one minute each

5. It should be preserved under action refinement. a 7→ a1; a2
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Question 5:

•

b

•

a

(CCSP expression: A‖b with A
def
= a.A.)



Fairness

In the literature I found only 4 meaningful types of fairness
assumptions:

1. Progress

2. Justness

3. Weak Fairness

4. Strong Fairness

These form a hierarchy, thus creating 5 assumptional states.
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Shop with 2 customers.
When in the shop, a customer is waiting expectantly to be served.
Upon being served, the customer leaves the shop, but usually returns
right away to buy something else.

A customer may leave the shop anytime, and possibly return later.

Failure of weak fairness: Customer A remains forever in the shop,
ready to be served, but is never served, because the clerk is always
busy serving customer B.
Failure of strong fairness: Customer A occasionally leaves the
shop, but always returns in the hope to get served. Yet, this never
occurs, because the clerk is always busy serving customer B.
Failure of progress: Customer A remains forever in the shop, ready
to be served, but no-one is ever served. The clerk stares
pathetically at the customer(s) without doing anything.
Failure of justness: There are two counters with a clerk each.
Customer A is the only customer at counter 1, yet never is served,
while customer B is being served repeatedly at counter 2.
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Fairness in process algebra

Strong or weak fairness can be

◮ indispensable for certain applications, such as a correctness
proof of the alternating bit protocol.

◮ patently wrong when used where not appropriate.

E with E
def
= a.E + b.0.

◮ could be a spec. of a mobile phone
◮ b is a successful dialling attempt
◮ a is an unsuccessful dialling attempt.

Fairness amounts to saying that if you try often enough,
dialling will succeed.
This is wishful thinking.
The real world is not fair.

◮ When assuming strong or weak fairness, we loose the ability
to finitely specify a system like E above that does allow an
infinite sequences of as without a b.



Semantic equivalences on Petri nets

bisimulation
semantics

trace
semantics

interleaving
semantics

step
semantics

split
semantics

ST-
semantics

partial order
semantics

structure
preserving
semantics

≈it

≈ib

≈tree

≈st

≈sb

≈2t

≈2b

≈STt

≈STb

≈pt

≈h

≈h (collective)

≡caus

↔sp

≡occ

≈pb

branching time

linear time

abstract from causality/concurrency capture causality/concurrency
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Causal equivalence does not respect inevitability

• •

b

•

a

•

•

a

•

•

. . .

The causal nets of both systems are the infinite one above, and all
its finite prefixes.



Conclusion

1. I proposed 9 requirements on semantic equivalences on Petri
nets.

2. None of the existing equivalences satisfies all (or almost all) of
these requirements.

3. I propose a new equivalence that does.

4. A major motivation of this equivalence is its suitability in
establishing agreement between the denotational and
operational Petri net semantics of CCSP.


