$$\alpha.E \xrightarrow{\alpha} E \qquad \frac{E_j \xrightarrow{\alpha} E'_j}{\sum_{i \in I} E_i \xrightarrow{\alpha} E'_j} \quad (j \in I)$$

$$\frac{E \xrightarrow{\alpha} E'}{E|F \xrightarrow{\alpha} E'|F} \qquad \frac{E \xrightarrow{a} E', F \xrightarrow{\bar{a}} F'}{E|F \xrightarrow{\tau} E'|F'} \qquad \frac{F \xrightarrow{\alpha} F'}{E|F \xrightarrow{\alpha} E|F'}$$

$$\frac{E \xrightarrow{\alpha} E', \alpha \notin L \cup \bar{L}}{E \setminus L \xrightarrow{\alpha} E' \setminus L} \qquad \frac{E \xrightarrow{\alpha} E'}{E[f] \xrightarrow{f(\alpha)} E'[f]} \qquad \frac{S(X)[\mathbf{fix}_Y S/Y]_{Y \in dom(S)} \xrightarrow{\alpha} E}{\mathbf{fix}_X S \xrightarrow{\alpha} E}$$

Table 1: Structural operational semantics of CCS

1 CCS

CCS [4] is parametrised with a set \mathscr{A} of *names*. The set $\overline{\mathscr{A}}$ of *co-names* is $\overline{\mathscr{A}} := \{\overline{a} \mid a \in \mathscr{A}\}$, and $\mathscr{L} := \mathscr{A} \cup \overline{\mathscr{A}}$ is the set of *labels*. The function $\overline{\cdot}$ is extended to \mathscr{L} by declaring $\overline{\overline{a}} = a$. Finally, $Act := \mathscr{L} \cup \{\tau\}$ is the set of *actions*. Below, a, b, c, \ldots range over \mathscr{L} and α, β over *Act*. A *relabelling function* is a function $f : \mathscr{L} \to \mathscr{L}$ satisfying $f(\overline{a}) = \overline{f(a)}$; it extends to *Act* by $f(\tau) := \tau$. Let \mathscr{X} be a set X, Y, \ldots of *process variables*. The set \mathscr{E} of CCS terms or *process expressions* is the smallest set including:

α .E	for $\alpha \in Act$ and $E \in \mathscr{E}$	prefixing
$\sum_{i\in I} E_i$	for <i>I</i> an index set and $E_i \in \mathscr{E}$	choice
E F	for $E, F \in \mathscr{E}$	parallel composition
$E \setminus L$	for $L \subseteq \mathscr{L}$ and $E \in \mathscr{E}$	restriction
E[f]	for <i>f</i> a relabelling function and $E \in \mathscr{E}$	relabelling
X	for $X \in \mathscr{X}$	a process variable
$\mathbf{fix}_X S$	for $S : \mathscr{X} \to \mathscr{E}$ and $X \in dom(S)$	recursion.

One writes $E_1 + E_2$ for $\sum_{i \in I} E_i$ with $I = \{1, 2\}$, and 0 for $\sum_{i \in \emptyset} E_i$. A partial function $S : \mathscr{X} \to \mathscr{E}$ is called a *recursive specification*. The variables in its domain dom(S) are called *recursion variables* and the equations Y = S(Y) for $Y \in dom(S)$ recursion equations. A recursive specification $S : \mathscr{X} \to \mathscr{E}$ is traditionally written as $\{Y = S(Y) \mid Y \in dom(S)\}$.

The operational semantics of CCS is given by the labelled transition relation $\rightarrow \subseteq T_{CCS} \times Act \times T_{CCS}$ between closed CCS expressions. The transitions $p \xrightarrow{\alpha} q$ with $p, q \in T_{CCS}$ and $\alpha \in Act$ are derived from the rules of Table 1. Formally a transition $p \xrightarrow{\alpha} q$ is part of the transition relation of CCS if there exists a well-founded, upwards branching tree (a *proof* of the transition) of which the nodes are labelled by transitions, such that

- the root is labelled by $p \xrightarrow{\alpha} q$, and
- if φ is the label of a node *n* and *K* is the set of labels of the nodes directly above *n*, then $\frac{K}{\varphi}$ is a rule from Table 1, with closed CCS expressions substituted for the variables E, F, \ldots

2 CSP

CSP [1, 5, 2, 3] is parametrised with a set \mathscr{A} of *communications*; $Act := \mathscr{A} \stackrel{\circ}{\cup} \{\tau\}$ is the set of *actions*. Below, *a*, *b* range over \mathscr{A} and α , β over *Act*. The set \mathscr{E} of CSP terms is the smallest set including:

STOP		inaction
DIV		divergence
$(a \rightarrow E)$	for $a \in \mathscr{A}$ and $E \in \mathscr{E}$	prefixing
$E \Box F$	for $E, F \in \mathscr{E}$	external choice
$E \sqcap F$	for $E, F \in \mathscr{E}$	internal choice
$E \parallel_A F$	for $E, F \in \mathscr{E}$ and $A \subseteq \mathscr{A}$	parallel composition
E/b	for $b \in \mathscr{A}$ and $E \in \mathscr{E}$	concealment
f(E)	for $E \in \mathscr{E}$ and $f : Act \to Act$ with $f(\tau) = \tau$ and $f^{-1}(a)$ finite	renaming
X	for $X \in \mathscr{X}$	a process variable
$\mu X \cdot E$	for $E \in \mathscr{E}$ and $X \in \mathscr{X}$	recursion.

As in [5], I here leave out the guarded choice $(x : B \to P(x))$ and the constant RUN of [1], and the inverse image and sequential composition operator, with constant SKIP, of [1, 2]. The semantics of CSP was originally given in quite a different way [1, 2], but [5] provided an operational semantics of CSP in the same style as the one of CCS, and showed its consistency with the original semantics. It is this operational semantics I will use here; it is given by the rules in Table 2. Let $\mathcal{L} := \mathcal{A}$.

$\text{DIV} \xrightarrow{\tau} \text{DIV}$	$(a \to E) \xrightarrow{a} E$	$E \sqcap F \stackrel{\tau}{\longrightarrow} E$	$E \sqcap F \stackrel{\tau}{\longrightarrow} F$
$\frac{E \xrightarrow{a} E'}{E \square F \xrightarrow{a} E'}$	$\frac{F \xrightarrow{a} F'}{E \square F \xrightarrow{a} F'}$	$\frac{E \stackrel{\tau}{\longrightarrow} E'}{E \square F \stackrel{\tau}{\longrightarrow} E' \square F}$	$\frac{F \xrightarrow{\tau} F'}{E \square F \xrightarrow{\tau} E \square F'}$
$\frac{E \stackrel{\alpha}{\longrightarrow} E' (\alpha \notin A)}{E \parallel_A F \stackrel{\alpha}{\longrightarrow} E' \parallel_A F}$		$ \xrightarrow{a} F' (a \in A) $ $ \xrightarrow{a} E' _A F' $	$\frac{F \xrightarrow{\alpha} F' (\alpha \notin A)}{E \parallel_A F \xrightarrow{\alpha} E \parallel_A F'}$
$\frac{E \xrightarrow{b} E'}{E/b \xrightarrow{\tau} E'/b}$	$\frac{E \xrightarrow{\alpha} E' \ (\alpha \neq b)}{E/b \xrightarrow{\alpha} E'/b}$	$\frac{E \xrightarrow{\alpha} E'}{f(E) \xrightarrow{f(\alpha)} f(E')}$	$\mu X \cdot E \stackrel{\tau}{\longrightarrow} E[\mu X \cdot E/X]$

Table 2: Structural operational semantics of CSP

References

- [1] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential processes. Journal of the ACM 31(3), pp. 560–599, doi:10.1145/828.833.
- [2] S.D. Brookes & A.W. Roscoe (1985): An improved failures model for communicating processes. In S.D. Brookes, A.W. Roscoe & G. Winskel, editors: Seminar on Concurrency, LNCS 197, Springer, pp. 281–305, doi:10.1007/3-540-15670-4_14.
- [3] C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice Hall, Englewood Cliffs.
- [4] R. Milner (1990): Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, editor: Handbook of Theoretical Computer Science, chapter 19, Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242. Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989, of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer, 1980.
- [5] E.-R. Olderog & C.A.R. Hoare (1986): Specification-oriented semantics for communicating processes. Acta Informatica 23, pp. 9–66, doi:10.1007/BF00268075.